SUPPLEMENTARY MATERIAL TO
The influence of glass fibers on the morphology of β-nucleated isotactic polypropylene evaluated by differential scanning calorimetry

ACO JANEVSKI1* and GORDANA BOGOEVA-GACEVA2

1Faculty for Technology, “Goce Delcev” University, 2000 Stip, FYR Macedonia and
2Faculty of Technology and Metallurgy, St. Cyril and Methodius University, 1000 Skopje, FYR Macedonia

THEORETICAL BACKGROUND

From the DSC scans (isothermal crystallization at given T_c and then melting of the crystallized sample), the equilibrium melting temperature (T_m^0) was determined by the Hoffman–Weeks method:1

$$ T_m^0 = T_m (\gamma - 1) \frac{T_c}{\gamma} $$ (1)

where γ is a constant that represents the ratio between the final thickness of the crystalline lamellae and the initial critical thickness, and T_m is the observed melting temperature of the sample isothermally crystallized at T_c. According to the kinetic theory of polymer crystallization,2 assuming that the growth of lamellae is controlled by a process of secondary nucleation, the temperature dependence of the overall kinetic constant, k, is given by the Eq. (2):

$$ \log(k/n) = A_0 - \frac{\Delta F^*}{2.3RT_c} - \frac{\Delta \Phi^*}{2.3KT_c} $$ (2)

where A_0 is a constant (assuming that the primary nucleation density at each T_c examined does not vary with time), ΔF^* is the activation energy for the transport of crystallizing units across the liquid–solid interface, K is the Boltzmann constant, n is the Avrami exponent, and $\Delta \Phi^*$ is the energy of formation of a nucleus with critical dimensions, expressed by Eq. (3):2

$$ \Delta \Phi^* = \frac{4h_0\sigma_e\sigma_e T_m}{\Delta\text{mel}H\Delta T} $$ (3)

where h_0 is the molecular thickness, and σ and σ_e are the crystal growth lateral surface energy and the crystal fold surface energy, respectively. $\Delta\text{mel}H$ is the enthalpy of fusion and

*Corresponding author. E-mail: aco.janевski@ugd.edu.mk

S44
ΔT = T_0 - T_c is the supercooling. ΔF* is usually expressed as the activation energy of viscous flow given by the Williams–Landel–Ferry relation, Eq. (4):

\[\Delta F^* = \frac{C_1 T_c}{T_g + T_c - T_g} \]

where \(C_1 \) and \(C_2 \) are constants \((C_1 = 17.2 \text{ kJ mol}^{-1}; C_2 = 51.5 \text{ K}) \) and \(T_g \) is the glass transition temperature. In further calculations, the literature value of \(T_g = 260 \text{ K} \) was used for iPP.\(^4\) The plot of: \[\log k/n + \Delta F^*/2.3RT_c \] vs. \(T_m/T_c \) yields a straight line with a negative slope equal to:

\[4b_0\sigma_b = \frac{2.3K\Delta_{\text{fus}}H}{\Delta T_y} \]

from which \(\Delta F^* \) and \(\sigma_b \) are obtained assuming that \(b_0 = 0.525 \text{ nm}^5 \) and \(\Delta_{\text{fus}}H \) of 193 and 209 J g\(^{-1}\), and \(\sigma = 0.1b_0\Delta_{\text{fus}}H \).

To calculate the nucleation activity (\(\theta \)) of foreign additives and substrates during the crystallization of a polymer melt, a method was proposed by Dobreva \textit{et al.}\(^6\) for analyzing DSC data. \(\theta \) is defined as:

\[\theta = \frac{A_{k3}^0}{A_{k3}} \]

where

\[A_{k3}^0 = \frac{16\pi\sigma V_m^2}{3\Delta_{\text{melt}}S^22\Delta_T^2} \]

is the work of homogeneous nucleation, in which \(V_m \) is molar volume of the crystallizing substance, \(\Delta_{\text{melt}}S \) is entropy of melting and \(\Delta T = T_m - T_{\text{cmax}} \) (where \(T_{\text{cmax}} \) corresponds to the crystallization peak temperature in the nonisothermal regime), and \(A_{k3} \) is the work of heterogeneous nucleation. Clearly, \(\theta \) is unity for absolutely inert substrates and is practically zero for very active substrates. Following the formalism presented by Dobreva \textit{et al.}\(^6\) the Avrami equation\(^7\) (8):

\[\alpha = 1 - \exp(-kt^n) \]

for nonisothermal conditions can be transformed into:

\[\log(V_c) = \text{const} - \frac{B^0}{2.3\Delta T^2} \]

where

\[B^0 = \frac{16\pi\sigma V_m^2}{3T_m^2\Delta_{\text{melt}}S^2} \]

and where \(V_c \) is the cooling rate. The activity of a substrate, \(\theta \), is then given by the ratio of the two slopes \(B^* \) and \(B_0 \).

REFERENCES

Available on line at www.shd.org.rs/JSCS/

(CC) 2015 SCS. All rights reserved.