JSCSEN 75(3)297-422(2010)

Journal of the Serbian Chemical Society

VOLUME 75

No 3

BELGRADE 2010

Available on line at

www.shd.org.rs/JSCS/

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS

J. Serb. Chem. Soc. Vol. 75, No. 3 (2010)

CONTENTS

Editor's Note	297
Organic Chemistry	
H. Ghasemnejad-Bosra, M. Faraje, S. Habibzadeh and F. Ramzanian-Lehmali: An efficient one-pot sy nthesis of hig hly substituted furans catalyzed by N-bromosuccinimide	299
A. Hasaninejad, M. A. Zolfigol, G. Chehardoli and M. Mokhlesi: Moly bdatophosphoric acid as an effic ient catalyst for the cataly tic and che moselective oxidation o f sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant	307
Biochemistry and Biotechnology	
A. Divac, B. Tomić and J. Kušić: The role of adeno sine triphosphate in the f unction of human origin recognition complex 4 protein	317
V. D. Dragičević, S. D. Sredojević and M. B. Spasić: Introduction of the interdependence between the glutathione half-c ell reduction p otential and the rmodynamic pa rame- ters during accelerated aging of maize seeds	323
<i>M. Voicescu, R. Ion</i> and <i>A. Meghea</i> : Evaluation of the oxidative activity of some free base porphyrins by a chemiluminescence method	333
R. S. Verma, L. U. Rahman, C. S. Chanotiya, R. K. Verma, A. Chauhan, A. Yadav, A. Singh and A. K. Yadav: Essential oil composition of <i>Lavandula angustifolia</i> Mill. culti- vated in the mid hills of Uttarakhand, India (Short communication)	343
Inorganic Chemistry	
A. S. Munde, A. N. Jagdale, S. M. Jadhav and T. K. Chondhekar: Synthesis, characterization and th ermal study of so me transition m etal complexes of an asy mmetrical tetradentate Schiff base ligand	349
Theoretical Chemistry	
A. R. Ashrafi and M. Ghorbani: Enumeration of a class of IPR hetero-fullerenes	361
Polymers	
<i>Y. Liu, L. Wang, X. Tuo</i> and <i>S. Li</i> : An SEM and EDS study of the microstructure of nitrate ester plasticized polyether propellants	369
J. Gao, Z. Ma, J. Guo, Y. Huai, Z. Deng and J. Suo: Surfa ce-charged polyacrylonit- rile/poly(vinyl alcohol) (PAN/PVA) colloids used to prepare proton conducting ma- terials (Short communication)	377
Materials	
Z. Li, T. Shi and L. Guo: Preparation and morphology of porous SiO ₂ ceramics derived from fir flour templates	385
Chemical Engineering	
J. Ivanović, D. Mišić, M. Ristić, O. Pešić and I. Žižović: Supercritical CO ₂ extract and essential oil of bay (<i>Laurus nobilis</i> L.) – che mical composition and antibacterial activity	395
Environmental	
F. J. Rojas Moreno, J. M. Cardenete López, R. Marín Galvín, M. J. Martínez Cordón and J. M. Rodríguez Mellado: On the removal of s-triazine herbicides from waters using commercial low-cost granular carbons	405
S. P. Agarwal, M. D. Khalid Anwer, R. Khanna, A. Ali and Y. Sultana: Humic acid from Shilajit – a physico-chemical and spectroscopic characterization	413
Published by the Serbian Chemical Society Karnegijeva 4/III, 11000 Belgrade, Serbia Printed by the Faculty of Technology and Metallurgy Karnegijeva 4, P.O. Box 35-03, 11120 Belgrade, Serbia	

Available online at www.shd.org.rs/JSCS/

Journal of the Serbian Chemical Society

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS

Editor's note

J. Serb. Chem. Soc. 75 (3) 297 (2010)

JSCS – OnLine First

The section "JSCS – OnLine First" at www.shd.org.rs/JSCS, starting March 1, 2010, and issue No. 3 of Vol. 75 (2010), displays peer reviewed and accepted articles to be published in the *Journal of the Serbian Chemical Society*. The articles are prepared for final technical work.

When the final article is assigned to an issue of the Journal, the "JSCS – - OnLine First" version will be rem oved from this section and will appear in the associated printed Journal issue and in t he electronic form at the Journal's Web Site.

Please be aware that, although "JSCS – On Line First" versions do not have all bibliographic details available yet, they can already be cited using the year of OnLine publication and the DOI as follows: Author (s), Article Title, *Journal* (Year), DOI. Printed (or electronic) versions are to be cited in the usual way.

Please consult the Journal's reference style for the exact appearance of these elements, abbreviation of journal names and the use of punctuation.

297

Available online at www.shd.org.rs/JSCS/

J. Serb. Chem. Soc. 75 (3) 299–305 (2010) JSCS–3961 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 547.461.4+547.223+66.091+544.4:547.72 Original scientific paper

An efficient one-pot synthesis of highly substituted furans catalyzed by N-bromosuccinimide

HASSAN GHASEMNEJAD–BOSRA^{1*}, MOHAMMAD FARAJE¹, SETAREH HABIBZADEH² and FARHAD RAMZANIAN-LEHMALI³

¹Islamic Azad University-Babol Branch, School of Science, P.O. Box 755, Babol, ²Industrial Noshiravani University, Babol and ³University of Payamenoor, Babol, Iran

(Received 24 August, revised 25 December 2009)

Abstract: N-Bromosuccinimide was found to efficiently catalyze the synthesis of highly functionalized, tetra- substituted furan derivatives in the one-pot re - actions of but-2-ene-1,4-diones and acetoacetate esters in the presence of *i*-PrOH as solvent under mild and neutral conditions at 8 0–90 °C f or 3–7 h in high yields (87–94 %).

Keywords: hig hly substitut ed furans; *N*-bromosuccinimide; but-2-ene-1,4-diones; acetoacetate esters.

INTRODUCTION

Highly substituted furans are a structural component of a vast number of biologically active natural and s ynthetic compounds.¹⁻⁴ These com pounds ar e found as stru ctural units i n many natural products, s uch as kallolides, ⁵ combranolides,⁶ pheromones⁷ and polyether antibiotics.⁸ These heterocycles have found applications in many pharmaceuticals, fragrances and dyes.⁹ Furan subunits have also been used as building blocks for a large number of heterocyclic compounds and as synthons in natural product synthesis.¹⁰ As a consequence, the s ynthesis of furan derivatives has been a subject of research for over a century, and a variety of well-established classical methods are now available in the litera ture.^{11–14} The development of newer approaches for heterocy cle syntheses e mploying efficient and econom ic routes is a popular resear ch area nowadays. The most common strategy involved in the s ynthesis of furans is the cyclization¹⁵ of 1,4-dicarbonyl compounds. Of the other various methods, syntheses involving transition-metal salts have recently been described for the preparation of substituted furan derivatives. ^{16,17} Oh *et al.*¹⁸ synthesized highly substituted furans via Pt-catalyzed hy droxyl- or alkoxy-assist ed cy clization of 2-(1-alkynyl)-2-alkene-1-ones. More recen tly, Dey and coworkers r eported a novel method t o

^{*} Corresponding author. E-mail: h_ghasem2000@yahoo.it doi: 10.2298/JSC090824025G

 $300\,{\rm GHAS}$

EMNEJAD-BOSRA et al

highly substituted furans b y InCl₃-catalyzed nucleophilic addition followed by cyclization reaction, although it is limited to specific substrate classes.¹⁹

EXPERIMENTAL

The employed chemicals were obtained from either Merck or Fluka. The IR spectra were recorded using a Shimadzu 435-U-04 spectrophotometer (KBr pellets) and the NMR spectra were obtained in CD Cl₃ using a 90 MH z JE OL FT NMR spectrometer. All melting points were determined on a Büchi 530 melting point apparatus and are reported uncorrected.

Typical procedure for the synthesis of tetra-substituted furans

To a stirred sol ution of but-2-ene-1,4-dione, **1a** (0.24 g, 1.0 mmol), and methyl acetoacetate, **2a** (0.18 g, 1.0 m mol), in dry *i*-PrOH (7.0 ml) was added anhydrous *N*-bromosuccinimide, NBS (52 mg, 0.23 mmol). The reaction mixture was then stirred und er reflux at 80– -90 °C for 3.1 h. After complete disappearance of the startin g materials (monitored by TLC using petroleum ether–chloroform (6:4)), the solvent was removed from the reaction mixture on a rot ary evaporator. The re sidue was then diluted with water (15 ml) and extracted with CHCl₃ (4×15 m l). The organ ic lay er was se parated, washed with brine an d then dried ov er anhydrous Mg SO₄. Removal of the solvent r esulted in a sol id which was chromatographed over silica gel using petroleum ether and an increasing proportion of ethyl acetate as eluent. Petroleum ether–ethyl acetate (96:4) eluent gave a solid which was recrystallized from chloroform–petroleum ether (2:8): **3a** (0.31 g, 93 %). white solid, m.p. 92 °C.

The products **3b–j** were obtained in a similar manner using the appropriate but-2-ene--1,4-dione and acetoacetate ester.

The product s were chara cterized on t he basis of their phy sical and spectral analysis (Table I) and by direct comparison with literature data.¹⁹

		3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
TABLE I. IR (KBr),	H-NMR and	[•] C-NMR spectral	data of the tet	ra-substituted	turans 3a –j

Product	IR, $\widetilde{\nu}$ / cm ⁻¹	¹ H-NMR, δ / ppm	¹³ C-NMR, δ / ppm
3a	3068, 1712,	2.35 (3H, s, -CH ₃), 3.28 (3H,	14.40 (-CH ₃), 35.63 (-CH ₂ -), 51.12
	1610, 1452,	s, –OCH ₃), 4.45 (2H, s,	(-OCH ₃), 107.69 (C ₃), 122.79 (C ₄),
	1058, 772	–CH ₂ –), 7.36–7.55	126.01–134.57 (Ph), 149.02 (C ₅), 155.15
		(10H, <i>m</i> , Ar,)	(C ₂), 166.78 (– C O ₂ Me), 196.69 (CO)
3b	3063, 1716,	1.24 (3H, <i>t</i> , –CH ₂ –CH ₃),	14.01 (-CH ₂ -CH ₃), 16.49 (-CH ₃), 37.57
	1625, 1460,	2.34 (3H, s, -CH ₃), 4.12	(-CH ₂ -), 59.74 (-OCH ₂ -), 111.32 (C ₃),
	1050, 796	$(2H, q, -CH_2 - CH_3), 4.42$	125.65 (C ₄), 127.97–135.12 (Ph)
		(2H, <i>s</i> , –CH ₂ –), 7.30–7.57	149.02 (C ₅), 155.74 (C ₂), 166.49
		(10H, <i>m</i> , Ar)	(– C O ₂ Et), 196.62 (CO)
3c	3058, 2933,	2.31 (3H, s, -CH ₃), 2.35	14.85 (-CH ₃), 21.08 (-CH ₃), 21.67
	1783, 1678,	(3H, <i>s</i> , –CH ₃), 2.44 (3H, <i>s</i> ,	(-CH ₃), 35.78 (-CH ₂ -), 51.38 (-OCH ₃)
	1509, 1316,	–CH ₃), 3.62 (3H, <i>s</i> ,	114.36 (C ₃), 114.85 (C ₄), 127.03–144.15
	1050, 827	–OCH ₃), 4.43 (2H, <i>s</i> ,	(Ph), 150.79 (C ₅), 159.27 (C ₂), 165.08
		–CH ₂ –), 7.18–7.33 (4H,	(- C O ₂ Me), 197.33 (CO)
		<i>dd</i> , Ar), 7.35 (2H, <i>d</i> , Ar),	
		7.96 (2H, <i>d</i> , Ar)	

TABLE I.	Continued
----------	-----------

Product	IR $\widetilde{\nu}$ / cm ⁻¹	1 H-NMR δ / norm	13 C-NMR δ / nnm
2.1	1K, V / CIII		$\frac{14.15}{14.15} (CH, CH) + 1(50) (CH) + 21.10$
3 d	50/0, 1/10, 1600, 1449	1.22 (3H, t , $-CH_2-CH_3$),	14.15 ($-CH_2-CH_3$), 16.58 ($-CH_3$), 21.10
	1609, 1448,	$2.32 (3H, s, -CH_3), 2.34$	$(-CH_3), 21.82 (-CH_3), 35.79 (-CH_2-),$
	1250, 1108,	$(3H, s, -CH_3), 2.3 / (3H, s, CH) = 0.000$	$58.45 (-0CH_2-), 115.01 (C_3), 114.97$
	//0	$-CH_3$, 4.10 (2H, q, $-CH_2$ -	(C_4) 12/.03–143.4/ (Ph), 15/.98 (C ₅),
		CH_3 , 4.45 (2H, s, $-CH_2$ -),	$164.35 (C_2), 166.08 (-CO_2Et),$
		(.03-/.19 (4H, dd, Ar), /.76)	197.97 (CO)
•	2000 1704	(2H, d, Ar), 8.02 (2H, d, Ar)	15.22 (CH) 21.20 (CH) 50.72
3 e	3080, 1704,	$2.36 (3H, s, -CH_3), 3.30 (3H, OCH) + 4.47 (2H)$	$15.32 (-CH_3), 31.29 (-CH_2-), 50.73$
	1605, 1442,	$s, -OCH_3), 4.4/(2H, s, CH_3), 7.40, 7.50 (4H)$	$(-0CH_3), 118.49 (C_3), 123.84 (C_4),$
	1238, 1025,	$-CH_2$ -), 7.48-7.56 (4H,	126.03-141.49 (Ph), 149.02 (C ₅), 155.17
	/85	dd, Ar), $/./0-/.81$ (4H,	$(C_2), 165.23 (-CO_2Me), 196.70 (CO)$
26	2005 1700	dd, Ar)	1(01(CH_CH) 1707(CH) 2(11
31	3085, 1709,	$1.24 (3H, t, CH_2-CH_3), 2.41$	16.01 (CH_2 – CH_3), 1/.0/ (– CH_3), 36.11
	1611, 1437,	$(3H, s, -CH_3), 4.13 (2H, q, $	$(-CH_2-)$, 59.82 $(-OCH_2-)$, 116.12 (C_3) ,
	1245, 1062,	$-CH_2-CH_3$, 4.48 (2H, s,	110.97 (C ₄), $131.17 - 147.53$ (Pn), 158.58
	/88	$-CH_2$ -), 7.41-7.50 (4H dd,	$(C_5), 165.25 (C_2), 165.98 (-CO_2Et),$
•	2100 1705	Ar), /.68–/./6 (4H, dd, Ar)	198.17 (CO)
3g	3100, 1705,	$2.35 (3H, s, -CH_3), 3.28 (3H, OCH) = 4.45 (2H)$	$14.68 (-CH_3), 31.5 / (-CH_2-), 51.38$
	1610, 1450,	$s_{1} = OCH_{3}$, 4.45 (2H, s_{1}	$(-0CH_3), 116.33 (C_3), 127.81 (C_4),$
	1248, 1055,	$-CH_2-$), 7.39 (2H, <i>d</i> , Ar),	129.10-142.40 (Ph), 151.03 (C ₅), 156.37
	792	7.50–7.58 (4H, <i>dd</i> , Ar), 7.85	$(C_2), 16/.03 (-CO_2Me), 196.19 (CO)$
21	2000 1706	(2H, d, Ar)	15.01 (CH. CH.) 17.10 (CH.) 24.24
3h	3090, 1706,	1.20 (3H, t , –CH ₂ –CH ₃), 2.32	$(-CH_2-CH_3), 17.19 (-CH_3), 34.24$
	1613, 1458,	$(3H, s, -CH_3), 4.08 (2H, q, -$	$(-CH_2-)$, 59.01 ($-OCH_2-$), 116.57 (C_3),
	1090, 838	CH_2 - CH_3), 4.51 (2H, s, -	$115.8/(C_4), 132.54-14/.78$ (Ph), 15/.44
		CH_2 -), /.31 (2H, <i>d</i> , Ar),	$(C_5), 166.05 (C_2), 167.01 (-CO_2Et),$
		/.45–/.51 (4H, <i>dd</i> , Ar), /./3	197.18 (CO)
2:	2110 1702	(2H, d, Ar)	14.11 (CU) 25.09 (CU) 2(20
31	3110, 1703,	$2.18(3H, s, -CH_3), 2.21(3H, CH)$	$(-CH_3), 25.98 (-CH_3), 26.29$
	1606, 1451,	$s, -CH_3), 2.29 (3H, s, -CH_3),$	$(-CH_3), 37.12 (-CH_2-), 51.74 (-OCH_3)$
	1100, 840	$3.32 (3H, s, -OCH_3), 4.56$	$(C_3), 116.84 (C_4), 129.14-145.35 (D1), 159.70 (C), 1(0.47 (C)), 170.22 (C), 170.22 (C)$
		$(2H, s, -CH_2-)/.24(3H, m, $	(Pn), 159.70 (C ₅), 169.47 (C ₂), 170.22
2:	2105 1707	Ar), $/.51$ (3H, m, Ar)	$(-CO_2Me)$, 198.35 (CO)
3 J	3105, 1707,	$1.23 (3H, t, CH_2-CH_3), 2.1/$	14.15 ($-CH_2-CH_3$), 16.58 ($-CH_3$) 26.78
	1611, 1452,	$(3H, s, -CH_3), 2.28 (3H, s, CH_3)$	$(-CH_3), 2/.2/(-CH_3), 3/.48(-CH_2-),$
	1235, 1039,	$-CH_3$, 2.51 (5H s, $-CH_3$),	59.57 (-OCH ₂ -), 115.01 (C ₃), 116.13
	//0	4.10 (2H q , –CH ₂ –CH ₃), 4.53	(C_4) 130.12–145.25 (Pn), 160.15 (C ₅),
		$(2\Pi, S, -C\Pi_2 -), /.12 (3H, m, $	$1/0.51 (C_2), 1/2.15 (-CO_2Et),$
		Ar), 7.49 (3H, m, Ar)	198.54 (CO)

RESULTS AND DISCUSSION

In continuation of on-going research on various transformations by halogenating agents and s ydnones, 2^{20-26} and also in order to avoid the drawbacks generally resulting from the use of stron g acidic media in nitrosation reactions, herein is reported the use of NBS as a more robust and efficient cataly st in the

EMNEJAD-BOSRA et al

one-pot synthesis of the highl y functionalized tetra-substituted fur an derivatives 3a-j by reaction of but-2-ene-1,4-diones 1a-e and acetoacetate esters 2a or 2b in *i*-PrOH in satisfactory yields (87–94 %) under neutral conditions (Scheme 1, Table II). As shown in Table II, the reactions occurred satisfactorily within 3.1--6.1 h under reflux conditions. The experimental results indicate that the most effective conversion occurred when a 1:0.23 substrate:NBS mole ratio was used. Longer reaction times were required when lower amounts of NBS were employed. It is important to note that n o furan derivatives were afforded when the reactions were performed in the absence of NBS in the reaction mixture.

Scheme 1. Proposed mechanism for the synthesis of highly substituted furans.²⁶

Entry Product	a	Ar	R	Time, h	Yield, % ^b M	.p., °C
1 3	a	C ₆ H ₅ Me		3.1	93	92
2 31	b	C ₆ H ₅ Et		3.9	91	89
3 3	c	4-Me-C ₆ H ₄ Me		4.0	89	83
4 3	d	4-Me-C ₆ H ₄ Et		3.8	87	80
5 3	e	4-Br-C ₆ H ₄ Me		3.3	89	87
6 3	f	4-Br-C ₆ H ₄ Et		5.2	94	85
7 3	g	4-Cl-C ₆ H ₄ Me		4.7	90	96
8 3	h	4-Cl-C ₆ H ₄ Et		5.5	91	94
9 3	i	3-Cl,4-Me-C ₆ H ₃ Me		6.0	93	79
10 3	j	3-Cl,4-Me-C ₆ H ₃ Et		6.1	94	77

TABLE II. NBS-catalyzed synthesis of furans 3a-j

 $302\,\mathrm{GHAS}$

^aAll the isolated products were char acterized by their physical properties, by ¹H-NMR, ¹³C-NMR and IR spectra and by direct comparison with literature data; ^{19 b} isolated yields

The mechanism shown in Sche me 2 is proposed for these reactions.²⁶ Thus, the 1,4-diarylbut-2-ene-1,4-diones act as Michael acceptors and the acetoacetates as nucleophiles resulting in a Michael adduct that under the influence of NBS forms a hemiketal, which undergoes spontaneous dehydration to afford the furans. It is important to note that no furan derivatives were formed when the reactions were performed in the presence of HBr as cat alyst. Furthermore, no reaction was see n when the 1,4-diary lbut-2-ene-1,4-diones and acetoac etates were used separ ately as substrates with NBS as the catalyst in the presence of *i*-PrOH under reflux.

The advantages or the char acteristic aspects of the method described in this paper in comparison with other previou sly reported ones are the following: the yields of products were b etter than the pr evious reported yields and in addition, the catalyst NBS in comparison with 1,3-dibrom o-5,5-dimethylhydantoin (DBH)

303

and InCl₃ is inexpensive, has no moisture sensitivity, and no special measures are required for the reaction.

The role of the solvent w as also inv estigated. Among the various solvents tested, *i*-PrOH afforded the maximum yield of the furan derivative **3a** (Table III). It is well known that reactions of this type are more efficient in polar solvents, which was corroborated in this study (Table III). It was also observed that t he inclusion of water had very little or no effect on this reaction.

TABLE III. Role of the solvent in the synthesis of furan 3a

Solvent Ti	me, ^a h	Isolated yield of 3a , %
<i>i</i> -PrOH 3.0		93
<i>i</i> -PrOH–H ₂ O (6:4)	11	60
MeOH 9.0		52
CH ₃ CN 18		44
CH ₂ Cl ₂ 15		38
THF 14		61

^aExtension of the reaction did not improve the product yield

 $304\,{\rm GHAS}$

EMNEJAD-BOSRA et al

CONCLUSIONS

The present methodology shows that *N*-bromosuccinimide (NBS) is an efficient cataly st in t he one-pot s ynthesis of hi ghly functionalized tetra-substituted furan derivatives. The main advantages of the presented protocol a re mild, clean and environmentally benign reaction cond itions, as well as the high yields. Furthermore, this method is also expected to find appli cation in org anic synthesis due to the low cost of the reagent. It is believed that this method will be a useful addition to modern synthetic methodologies.

Acknowledgements. W e wish to thank the Isla mic Azad University –Babol Branch , Babol, Iran, for financial support during the realization of this research.

ИЗВОД

ЕФИКАСНА СИНТЕЗА У ЈЕДНОМ СУДУ ВИСОКО СУПСТИТУИСАНИХ ФУРАНА КАТАЛИЗОВАНА *N*-БРОМСУКЦИНИМИДОМ

HASSAN GHASEMNEJAD-BOSRA $^{\rm l},$ MOHAMMAD FARAJE $^{\rm l},$ SETAREH HABIBZADEH $^{\rm 2}$ $_{\rm H}$ FARHAD RAMZANIAN-LEHMALI $^{\rm 3}$

¹Islamic Azad University-Babol Branch, School of Science, P.O. Box 755, Babol, ²Industrial Noshiravani University, Babol u ³University of Payamenoor, Babol, Iran

Утврђено је да *N*-бромсукцинимид ефикасно катализује синтезу високо функционализованих, тетрасупституисаних деривата фурана у реакцији у једном суду бут-2-ен-1,4-диона и ацатоацетатних естара у *i*-PrOH као растварачу под благим и неутралним условима на 80– -90 °C током 3–7 h уз високе приносе (87–94 %).

(Примљено 24. августа, ревидирано 25. децембра 2009)

REFERENCES

- a) Y. Guindon, M. Therien, Y. Girard, C. Yoakim, J. Org. Chem. 52 (1987) 1680; b) D. J. Goldsmith, E. Kennedy, R. J. Ca mpbell, J. Org. Chem. 40 (1975) 3571; c) B. H. Lipshutz, Chem. Rev. 86 (1986) 795
- 2. K. S. Huang, J. Chin. Chem. Soc. 51 (2004) 1305
- S. Solujić, S. Sukdolak, N, Vu ković, N. Niciforović, S. Stanić, J. Serb. Chem. Soc. 73 (2008) 1039
- 4. T. Shah, V. Desi, J. Serb. Chem. Soc. 72 (2007) 443
- 5. S. A. Look, M. T. Burch, W. Fenical, Q. Zheng, J. Clardy, J. Org. Chem. 50 (1985) 5741
- W. Fenical, R. K. Okuda, M. M. Bandurraga, P. Culver, R. S. Jacobs, *Science* 212 (1981) 1512
- a) K. Mori, *Tetrahedron* 45 (1989) 3233; b) D. L. Wright, *Chem. Innov.* 31 (2001) 17; c)
 B. A. Keay, P. W. Dibble, in *Comprehensive Heterocyclic Chemistry* II, Elsevier, Oxford, 1997, p. 395
- 8. J. W. Westley, *Polyether Antibiotics: Naturally Occurring Acid Ionophores*, Marcel Dekker, New York, 1982
- X. L. Hou, H. Y. Cheu ng, T. U. Hon, P. L. Kwan, T. H. Lo, S. Y. Tong, H. N. C. Wong, *Tetrahedron* 54 (1998) 1955
- 10. D. L. Wright, Prog. Heterocycl. Chem. 17 (2005) 1

ONE-POT SYNTHESIS OF HIGHLY SUBSTITUTED FURANS

305

- 11. C.-T. Chunge, C.-H. Yen, H.-J. Wu, J. Chin. Chem. Soc. 45 (1998) 789
- 12. T.-W. Tsai, E.-C. Wang, S.-R. Li, Y.-H. C hen, Y.-L. Lin, Y.-F. Wang, K.-S. Huang, J. Chin. Chem. Soc. **51** (2004)1307
- 13. K.-S. Huang, E.-C. Wang, H.-M. Chen, J. Chin. Chem. Soc. 51 (2004) 585
- 14. K. Yasutaka, T. Makoto, T. Kazuhiko, U. Kiitiro, Tetrahedron 48 (1992) 3495
- a) J. A. Marshall, E. D. Robinson, J. Org. Chem. 55 (1990) 3450; b) J. A. Marshall, X. J. Wang, J. Org. Chem. 57 (1992) 3387; c) A. S. K. Hashmi, T. L. Ruppert, T. Knöfel, J. W. Bats, J. Org. Chem. 62 (1997) 7295; d) J. B. Sperry, C. R. Whitehead, I. Ghiviriga, R. M. Walczak, D. L. Wright, J. Org. Chem. 69 (2004) 3726; e) A. S. K. Hash mi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. Int. Ed. 112 (2000) 2382; f) A. S. K. Hash mi, P. Sinha, Adv. Synth. Catal. 346 (2004) 432
- a) W. C. Christopfel, L. L. Miller, J. Org. Chem. 51 (1986) 4169; b) F. Freeman, D. S. H. L. Kim, E. Rodriguez, J. Org. Chem. 57 (1992) 1722
- a) B. M. Trost, M. C. McIntosh, J. Am. Chem. Soc. 117 (1995) 7255; b) M. Aso, A. Ojida, G. Yang, O.-J. Cha, E. Osawa, K. J. Kanematsu, J. Org. Chem. 58 (1993) 3960
- 18. C. H. Oh, V. R. Reddy, A. Kim, C. Y. Rhim, Tetrahedron Lett. 47 (2006) 5307
- S. Dey, D. Na ndi, P. K. Prad han, V. S. Giri, P. Jai sankar, *Tetrahedron Lett.* 48 (2007) 2573
- 20. D. Azarifar, H. Ghasemnejad, F. Ramzanian, Mendeleev Commun. (2005) 209
- D. Azarifar, H. Ghase mnejad-Bosra, M.-A. Zolfigol, M. Tajbaksh, *Heterocycles* 68 (2006) 175
- 22. D. Azarifar, H. Ghasemnejad-Bosra, Synthesis (2006) 1123
- 23. D. Azarifar, H. Ghasemnejad-Bosra, M. Tajbaksh, J. Heterocycl. Chem. 44 (2007) 467
- 24. H. Ghasemnejad-Bosra, M. Haghdadi, I. Gholampour-Azizi, Heterocycles 75 (2008) 391
- 25. H. Ghasemnejad-Bosra, M. Haghdadi, O. Khanmohamadi, M. Gholipour, G. Asghari, J. Chin. Chem. Soc. 55 (2008) 464
- 26. H. Ghasemnejad-Bosra, M. Faraje, S. Habibzadeh. Helv. Chim. Acta 92 (2009) 575.

J. Serb. Chem. Soc. 75 (3) 307–316 (2010) JSCS–3962 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 66.094.3.097+546.221.1+544.478:547.544 Original scientific paper

Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

ALIREZA HASANINEJAD¹, MOHAMMAD ALI ZOLFIGOL², GHOLAMABBAS CHEHARDOLI^{3*} and MOHAMMAD MOKHLESI²

¹Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, ²Faculty of Chemistry, Bu-Ali Sina University, P. O. Box 4135, Hamedan 6517838683 and ³School of Pharmacy, Hamedan University of Medical Sciences, zip code 65178, Hamedan, Iran

(Received 10 December 2008, revised 16 October 2009)

Abstract: An efficient proced ure for the ch emoselective o xidation of alk yl (aryl) sulfides t o the corresponding sulfoxides u sing urea hydrogen peroxi de (UHP) in the p resence of a ca talytic a mount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and che moselectivity, short reaction ti me, low cost and compliment with green chemistry protocols.

Keywords: molybdatophosphoric acid; urea hydrogen peroxide (UHP); chemoselective; oxidation; sulfides; sulfoxides.

INTRODUCTION

The development of efficient catalytic systems for selective organic transformations is currently one of the challenging tasks in synthetic organic chemistry.¹ In recent years, the search for environmentally benign chemical processes or methodologies has received m uch attention from chemists, because they are essential for the conservation o f the global ecos ystem. From this viewpoint, cataly tic oxidation is a valuable process because the use of stoichiometric reagents, which are often toxic, poses inherent limitations from both economical and environmental viewpoints regarding product purification and waste management.²

Heteropolyacids (HPAs) are more active cataly sts than conventi onal inorganic and organic acids for a variety of organic reactions.³ They have been used as the cataly st for several types of reac tions such as Freidel–Cra fts acylation,⁴ hetero-Michael addition reaction⁵ and the oxidation of anilines to their nitro com-

307

Available online at www.shd.org.rs/JSCS/

^{*}Corresponding author. E-mails: chehardoli@umsha.ac.ir; cheh1002@gmail.com doi: 10.2298/JSC081210001H

308 has

ANINEJAD et al.

pounds.⁶ Among heteropolyacids, molybdatophosphoric acid is a good promoter due to its hi gh acid strength, therm al stability, low reducibility and atom economy.⁷

Concentrated H_2O_2 is very dangerous to handl e and not readily available. Hence this reagent has been replaced by its more stable and safe complexes. The strongly H-b onded urea h ydrogen pe roxide (UHP, H $_2NCONH_2...H_2O_2$),⁸ is nowadays commercially available,⁹ and its applications in organ ic and analytical chemistry, as well as in industry, are quickly widening. Its stability at room temperature, high hydrogen peroxide content (36.2 %) and the potential for releasing it in a controlled manner, as well as its so lubility in organic solvents, make it a good and safe substitute as a "dry carrier" of the hazardous and unstable hy drogen peroxide in most oxidation reactions. Moreover, selectivity can be achieved by replacing the potentially explosive hydrogen peroxide with the safer cry stalline UHP for the controlled release of the oxidant and it is a well-recognized source of oxygen.¹⁰

The selective oxidation of organic sulfides to sulfox ides without any overoxidation to sulfones is a c hallenging research topic in synthetic organic chemistry, partly because of the importance of sulfoxides as intermediates in a range of biologically active molecules, including therapeutic agents such as anti-ulcer, antibacterial, antifungal, anti-atherosclerotic, antihypertensive and cardiotonic agents as well as psychotropic and vasodilators.¹¹ There are many reagents available for the oxidation of sulfides to sulfoxides. ^{12–23} However, most of t he existing methods use sophisticated reagents, complex catalysts, toxic metallic compounds, or rare oxidizing agents that are difficult to prepare. Many of these procedures also suffer from poor selectivity or undesirable products, such as aro matic halogennation, C–S bond cleavage and over-oxidation to sulfone. Hence, for the facile conversion of sulfides to sulfoxides, careful selection of the oxidiz ing agent and the reaction conditions are prerequisites.

Before commencing the results and discussion section, a list of the employed abbreviations is given in Table I.

Abbreviation Nam	e
UHP	Urea hydrogen peroxide
MPA Moly	bdatophosphoric acid
TPA Tungstopho	sphoric acid
BTPPDC	<i>n</i> -Butyltriphenylphosphonium dichromate
CAN	Ceric ammonium nitrate
CPCC 3-Carboxy	pyridinium chlorochromate
NBS	N-Bromosuccinimide
THF Tetrahydrofura	n
DMF Di	methylformamide

TABLE I. List of abbreviations

RESULTS AND DISCUSSION

In continuation of our interest in the development of synthetic methods for the transformation of organic functional groups, in particularly the application of heteropolyacids, H_2O_2 adducts and catalytic oxidation reactions,²⁴ urea hydrogen peroxide is introduced in this report as a safe and eco-friendly oxidant for the selective conversion of sulfides to sulfoxid es in the presence of a catalytic amount of molybdatophosphoric acid (Scheme 1).

$$R^{S}R' = \frac{UHP}{Cat., Solvent, r.t.} R^{S}R'$$

Cat.: Molvbd atophosphoric acid Scheme 1.

In order to optim ize the reaction conditions, the oxidation of benzy l phenyl sulfide using urea hydrogen peroxide (UHP) in methanol was chosen as a m odel reaction to provide the corresponding sulfoxide (Scheme 2).

$$\bigcup_{Scheme 2} S \longrightarrow \bigcup_{Scheme 2} \bigcup_{Schem 2} \bigcup_{Sch$$

The obtained results are summarized in Table II. First, a model run was performed with benzyl phenyl sulfide and UHP in the absence of catalyst in methanol at room temperature (Table II, Entries 1 and 2). It was found that the reaction did not go to completion even using a ten-fold excess of UHP and a long reaction time (4 h). Thus, the effect of various activators as promoter or catalyst on the reactivity of UHP for the o xidation of model compound was studied, Scheme 2. The results are summarized in Table II, from which it can be seen that although tungstophosphoric acid ga ve a goo d yield of benzyl phenyl sulfoxide (Table II, entry 8), an excellent yield of the product was obtained in the presence of molybdatophosphoric acid in a shorter reaction time (Table II, entry 3). The other tested catalysts or activators had one or more of the following disadvantages: long reaction time, low yield and selectivity and the use of large amount of activator. Therefore, molybdatophosphoric acid (MPA) is an effective catalyst for the oxidation of sulfide to sulfoxide and it was used as catalyst for all subsequent reactions. In this study, the effects of various am ounts of molybdatophosphoric acid and va rious amounts of UHP were investigated (see, T able II, entries 3-7). The highest yield in an a ppropriate reaction time for the sulfoxidation reaction was obtained when 0.1 mmol MPA was used for the reaction of 1 mmol benzy l phenyl sulfide with 2 mmol UHP in 5 mL CH₃OH at room temperature (Table II, entry 3).

 $310\,{\rm mas}$

ANINEJAD et al.

TABLE II. Oxidation of be nzyl phenyl sulfide (1 mmol) to the corresponding sulfoxide using UHP in the presence of various catalysts/activators in CH_3OH (5 mL) at room temperature

Entry	Catalyst (amount)	UHP, mmol	Time	Yield of sulfoxide, %
1 Abs	b	24	h	trace
2 Abs		10 4	h	30
3	MPA (0.1 mmol)	2	17 min	100
4	MPA (0.2 mmol)	2	10 min	100
5	MPA (0.05 mmol)	2	2 h	97
6	MPA (0.1 mmol)	1	3 h	80
7	MPA (0.1 mmol)	1.5	2 h	86
8 TPA	^c (0.1 mmol)	2	3 h	80
9	TPA (0.3 mmol)	2	2 h	90
10 AlCl	3 (0.5 mmol)	2	3 h	nc ^d
11 Al(HSO	$_{4})_{3}$ (0.5 mmol)	2	3 h	nc
12 Na	$_2$ HPO ₄ (0.5 mmol)	2	3 h	trace
13 ZnCl	₂ (0.3 mmol)	2	3 h	30
14 CaCl	2.2H2O (0.5 mmol)	2	3 h	20
15 Al	$_{2}O_{3}(0.5 \text{ g})$	2	3 h	trace
16 SiO	₂ (0.5 g)	2	3 h	20
17 ZrCl	4 (0.2 mmol)	2	3 h	trace
18 NaHSO	₄ 2		3 h	trace
19	ZnO (0.5 mmol)	2	3 h	trace
20	MgO (0.5 mmol)	2	3 h	trace
21 NH	₂ SO ₃ H 2		3 h	nc

^aIsolated yield; ^bin the absence of catalyst; ^ctungstophosphoric acid; ^dreaction did not go to completion

In the next st ep, the effect of various s olvents on the progress of the re actions was investigated. As illustrated in Table III, methanol was t he solvent of choice for the above-mentioned reaction.

TABLE III. Solvent effect on the oxidation of benzyl phenyl sulfide using UHP in the presence of MPA as catalyst

Entry Solvent		Time	Conversion, %
1 CH	$_2Cl_2 6$	h	0
2 CH	Cl ₃ 5	h	0
3 EtOAc		3 h	70
4 Acetone		6 h	50
5	<i>n</i> -Hexane 5	h	0
6 THF		5 h	45
7 CH	₃ CN 3	h	60
8 DMF		3 h	45
9 CH	₃ OH 17	min	100
10 C	₂ H ₅ OH 2	h	65
11 H	₂ O 2	h	0

311

To determine the scope of this proce dure, the oxidation of other sulfides to sulfoxides was studied. A wide range of substrates, *i.e.*, aryl alkyl, diaryl and dialkyl sulfides were selectively oxidized to their corresponding sulfoxides (Table IV).

TABLE IV. Ch emoselective oxidation of sulfide (1.0 mmol) to the corresp onding sulfoxide using UHP (2.0 mmol) in the presence of MPA (0.10 mmol) as cataly st in CH ₃OH at roo m temperature

Entry Substrate		Time	Yield, % ^a
1	<u> </u>	17 min	100
2	$\overline{\bigcirc}$ s $\overline{\bigcirc}$	10 min	90
3	∕ ^S ∕∕ _{CHO}	18 min	91
4		6.5 h	95°
5	_SOH	15 min	90
6	H	10 min	udp ^b
	N S		
7	S S	3 h	100
8	CH3	13 min	100
9	ССССОН	17 min	92
10	∽∽~ ^S ∽∽∽	40 min	80
11	S OCH ₃	90 min	91
12	но он	20 min	87

^aIsolated yields, UHP (1 mmol), MPA (0.2 mmol), 50 °C; ^bundesired products

It is noteworth y that sulfid es containing functional groups, such as alcohol, aldehyde and ester, were selectively oxidized without any interference from these

312 has

ANINEJAD et al.

groups (Table IV, entries 5, 9 and 11). To further determine the chemoselectivity of the descri bed sy stem, some competitive reactions wer e desig ned. Thus, the competitive oxidation of sulfides in the presence of sulfoxide, aldehyde, oxim e, nitrile, benz ylic alcohol and alkene w as monitored. These observations clearly show that the method is applicable for the chemoselective oxidation of sulfides to sulfoxides in the presence of the previously mentioned functional groups and can be considered as a useful practical method for the oxidation of sulfides to sulfoxides without general oxidation (Scheme 3).

Available online at www.shd.org.rs/JSCS/

In order to assess the capabilit y of the present method with respect to the reported methods for the oxidation of sulfide to sulfoxide, the oxidation of benzyl phenyl sulfide by the present method was compared with oxidat ion by the reported methods (Table V). It is clear fr om Table V that the present method is superior to some previously reported methods in terms of chemoselectivity, yield, reaction time and am ount of the cataly st and reagent required for successful oxidation without having to resort to complex cataly sts, a hazardous and unstable oxidant, microwave heating or toxic metallic compounds.

TABLE V. Comparison of the oxidation of b enzyl phenyl sulfide (1.0 mmol) by UHP/MPA with some reagents reported in the literature

Entwr	Reagent (oxidant/substrate)	Time	Yield, %		Pof
Епиу		Time	Sulfoxide	Sulfone	- Kel.
1 UHP/MPA	/CH ₃ OH/rt (2:0.1)	17 min	100	0	_
2 BT	PPDC/AlCl ₃ /CH ₃ CN/reflux (1.5:1)	90 min	93	nr ^a 14	
3 BT	PPDC/AlCl ₃ /MW (1.2:1)	2 min	94	nr	14
4 NaIO	₄ /wet SiO ₂ /MW (1.7:1)	2.5 min	83	nr	15
5 PhCH	₂ PPh ₃ HSO ₅ /CH ₃ CN/reflux (1.5:1)	12 h	88	nr	16
6 Ba(MnO	4) ₂ /CH ₃ CN/reflux (6:1)	4 h	88	nr	13
7 CAN/	wet SiO ₂ /CH ₂ Cl ₂ /rt (2:1)	45 min	96	nr	17
8 BT	PPDC/AlCl ₃ /MW (2.5:1)	2.5 min	nr	97	14
9 CPCC/Al	Cl ₃ /CH ₃ CN/reflux (1:1)	75 min	93	nr	18
10 CPCC/Al	Cl ₃ /MW (0.8:1)	1.5 min	92	nr	18
11 H ₂ C	D_2 /Silica sulfuric acid/CH ₃ CN/rt (1:0.1 g)	40 min	96	nr	19
12 H	₂ O ₂ /Amberlyst 15/CH ₃ OH/rt (2:0.5)	6.5 h	95	nr	20
13 H	O ₂ /Amberlyst IR-400/CH ₃ OH/rt (3:0.5)	7.5 h	92	nr	20
14 HIO	₃ /wet SiO ₂ / solvent-free 50 °C (1:3)	170 min	93	nr	21
15 H ₂ C	D_2 /Silica-based tungstate/CH ₂ Cl ₂ :CH ₃ OH (4:0 1)	3 h	85	nr	22
16 H	$_{2}O_{2}/NBS/CH_{3}CN (3:0.1)$	15 h	90	nr	22 ^b
17 H	₂ O ₂ /ZrCl ₄ /CH ₃ OH (7:2)	2 min	96	nr	23

^aNot reported

The observation that the oxidatio n of benzy l p henyl sulfide and dibenzy l sulfide y ields the corresponding sulfo xide (Table IV, entries 1 and 2) indicates that the react tion proceeds *via* an oxy gen transfer mechanism. If the reaction n involved electron transfer instead of oxygen transfer, substantial am ounts of benzaldehyde would have been formed.²⁵ According to a literature survey,^{26–33} a reasonable mechanism for the oxidation of sulfide to the corresponding sulfoxide using UHP i n the presence of MPA i s outlined in Scheme 4. This observation

Available online at www.shd.org.rs/JSCS/

ANINEJAD et al.

probably indicates that molybdenum ions generate Mo⁵⁺-peroxo species on interaction with UHP, which is possibly the active intermediate species.²⁶ Then the reaction can proceed *via* the 1,3-dipolar mechanism.

EXPERIMENTAL

General

The employed chemicals were purchased from Fluka, Merck or Aldric h. The quot ed yields refer to isolated pure p roducts. The o xidation products were characterized by comparison of their spectral (IR and ¹H-NMR) and physical data with those of a uthentic samples, which were synthesized by other reported procedures.¹²⁻²³

General procedure for the oxidation of sulfides

A mixture of sulfide (1.0 m mol), UHP (2.0 mmol) and molybdatophosphoric acid (0.10 mmol) in methanol (5.0 mL) was vigorously stirred for the r equired time (see Table III). The progress of the reaction was monitored by TLC. After completion of the reaction, the CH_3OH was evaporated and the crude product was purified by short column chromatography on silica gel with EtOAc/*n*-hexane (1:5 to 1:2) as the eluent.

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

314 HAS

CONCLUSIONS

In summary, it was found that molybdatophosphoric acid efficiently catalyzed the selective oxidation of sulfides to sulfoxides by the urea hydrogen peroxide adduct (UHP) at roo m temperature. This method offers the following a dvantages: a) the procedure is highly efficient, b) the yield of sulfoxide is high, c) the reagent is cheap, safe, and available and d) the selectivity of the method is remarkable with regards to sulfides. Also, its compatibility with sensitive functionalities, such as ester, aldehyde, oxime, nitrile and double bonds, with regards to economic and ecological considerations allows the belief that this method represents a valuable alternative to the exist ing reagents reported in the literature for the oxidation of sulfides to sulfoxides.

Acknowledgements. Financial support for this work b y the C enter of Excell ence of the Development of Chemical Methods, (CEDCM), Bu-Ali Sina University, Hamedan, the Hamedan University of Medical Sci ences, and also the Persian G ulf University, Bushehr, Iran, is gratefully acknowledged.

ИЗВОД

МОЛИБДАТОФОСФОРНА КИСЕЛИНА КАО ЕФИКАСАН КАТАЛИЗАТОР ЗА КАТАЛИТИЧКУ И ХЕМОСЕЛЕКТИВНУ ОКСИДАЦИЈУ СУЛФИДА У СУЛФОКСИДЕ КОРИШЋЕЊЕМ АДУКТА УРЕЕ И ВОДОНИК-ПЕРОКСИДА КАО КОМЕРЦИЈАЛНО ДОСТУПНОГ ОКСИДАНТА

ALIREZA HASANINEJAD¹, MOHAMMAD ALI ZOLFIGOL², GHOLAMABBAS CHEHARDOLI³ $_{\rm H}$ MOHAMMAD MOKHLESI²

¹Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, ²Faculty of Chemistry, Bu-Ali Sina University, P. O. Box 4135, Hamedan 6517838683 u³School of Pharmacy, Hamedan University of Medical Sciences, zip code 65178, Hamedan, Iran

Описан је ефикасан поступак хемоселективне оксидације алкил-(арил)-сулфида до одговарајућих сулфоксида помоћу водоник-пероксида на собној температури у присуству каталитичке количине молибдатофосфорне киселине. Предности описаног поступка, које га чине упоредивим са еколошки чистим методама, јесу општост методе, висок принос, хемоселективност, кратко реакционо време, као и ниска цена поступка.

(Примљено 10. децембра 2008, ревидирано 16. октобра 2009)

REFERENCES

- 1. S. S. Kim, G. Rajagopal, Synth. Commun. 34 (2004) 2237
- 2. D. Choudhary, S. Paul, R. Gupta, J. H. Clark, Green Chem. 8 (2006) 479
- a) R. S. Drago, J. A. Dias, T. Maier, J. Am. Chem. Soc. 119 (1997) 7702; b) A. Cor ma Chem. Rev. 95 (1995) 559
- 4. H. Firouzabadi, N. Iranpoor, F. Nowrouzi, Tetrahedron 60 (2004) 10843
- 5. H. Firouzabadi, N. Iranpoor, A. A. Jafari, Synlett (2005) 299
- 6. H. Firouzabadi, N. Iranpoor, F. Nowrouzi, K. Amani, Green Chem. 3 (2001) 131
- 7. H. Firouzabadi, A. A. Jafari, J. Iran. Chem. Soc. 2 (2005) 85
- 8. C. S. Lu, E. W. Hughes, P. A. Giguere, J. Am. Chem. Soc. 63 (1941) 1507

ANINEJAD et al.

- 9. Aldrich Handbook of Fine Chemicals and Laboratory Equipment, Aldrich, Milwaukee, WI, 2003–2004, p. 1898
- 10. S. Taliansky, Synlett (2005) 1962
- a) I. Fernandez, N. Khiar, *Chem. Rev.* **103** (2003) 3651 and references cited therein; b) A. M. Khenkin, R. Neumann, *J. Am. Chem. Soc.* **124** (2002) 4198
- K. Kaczorowska, Z. Kolarska, K. Mitka, P. K owalski, *Tetrahedron* 61 (2005) 8315, and references cited therein
- 13. H. Firouzabadi, M. Seddighi, Synth. Commun. 21 (1991) 211
- I. Moha mmadpoor-Baltork, H. R. Me marian, K. Bahra mi, K. Esm yilpour, *Phosphorus Sulfur Silicon Relat. Elem.* 180 (2005) 2751
- 15. R. S. Varma, R. K. Saini, H. M. Meshram, Tetrahedron Lett. 38 (1997) 6525
- 16. A. R. Hajipour, S. E. Mallakpour, H. Adibi, J. Org. Chem. 67 (2002) 8666
- 17. M. H. Ali, D. R. Leach, C. E. Schmitz, Synth. Commun. 28 (1998) 2969
- 18. I. Mohammadpoor-Baltork, H. R. Memarian, K. Bahrami, Can. J. Chem. 83 (2005) 115
- 19. A. Shaabani, A. H. Rezayan, Catal. Commun. 8 (2007) 1112
- 20. M. M. Lakouraj, M. Tajbakhsh, H. Tashakkorian, Monatsh. Chem. 138 (2007) 83
- M. M. Lakouraj, M. Tajbakhsh, F. Shirini, M. V. A. Tamami, Synth. Commun. 35 (2005) 775
- (a) B. Karimi, M. Ghoreishi-Nezhad, J. H. Clark, Org. Lett. 7 (2005) 625; (b) B. Karimi, D. Zareyee, J. Iran. Chem. Soc. 5 (2008) 103
- a) K. Bahra mi, *Tetrahedron Lett.* 47 (200 6) 2009; b) M. A. Zol f gol, K. A mani, A. Ghorbani-Choghamarani, M. Haj jami, R. Ayazi-Nasrabadi, S. Jafari, *Catal. Commun.* 9 (2008) 1739
- a) M. A. Zolfigol, M. Shiri, *Mendeleev Commun.* (2005) 165; b) M. A. Zolfigol, G. Chehardoli, M. Shiri, *React. Funct. Polym.* 67 (2007) 723; c) M. A. Zolfigol, F. Shirini, G. Chehardoli, E. Kolvari, *J. Mol. Catal. A: Chem.* 265 (2007) 272; d) M. A. Zolfigol, M. Bagherzadeh, S. Mallakpour, G. Chehardoli, A. Ghorbani-Choghamarani, N. Koukabi, M. Dehghanian, M. Doroudgar, *J. Mol. Catal. A: Chem.* 270 (2007) 219; e) K. Niknam, M. A. Zolfigol, T. Sadabadi, A. Nejati, *J. Iran. Chem. Soc.* 3 (2006) 318; f) A. Bamoniri, B. F. Mirjalili, M. A. Zolfigol, I. Mohammadpoor-Baltork, *J. Iran. Chem. Soc.* 4 (2007) 332
- 25. E. Baciocchi, O. Lanzalunga, S. Malandrucco, J. Am. Chem. Soc. 118 (1996) 8973
- 26. H. Mimoun, S. De Roch, L. Sajus, Tetrahedron 26 (1970) 37
- 27. J. M. Khurana, A. Agrawal, S. Kumar, J. Braz. Chem. Soc. 20 (2009) 1256
- 28. N. K. K. Raj, A. V. Ramaswamy, P. Manikandan, J. Mol. Catal. A: Chem. 227 (2005) 37
- H. Mimoun, L. Saussine, E. Daire, M. Postel, J. Fischer, R. Weiss, J. Am. Chem. Soc. 105 (1983) 3101
- A. E. Gekhman, I. P. Stolarov, N. I. Moiseeva, V. L. Rubaij lo, M. N. Vargaftik, I. I. Moiseev, *Inorg. Chim. Acta* 276 (1998) 453
- 31. K. I. Matveev, I. V. Kozhevnikov, Kinet. Katal. 21 (1980) 1189
- 32. K. Jeyakumar, D. K. Chand, J. Chem. Sci. 121 (2009) 111
- 33. L. Marosi, C. OteroAreán, J. Catal. 213 (2003) 235.

 $316\,\mathrm{has}$

J. Serb. Chem. Soc. 75 (3) 317–322 (2010) JSCS–3963 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 577.15+577.112.4:577.123 Original scientific paper

The role of adenosine triphosphate in the function of human origin recognition complex 4 protein

ALEKSANDRA DIVAC*, BRANKO TOMIĆ and JELENA KUŠIĆ

Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia

(Received 24 July, revised 13 October 2009)

Abstract: Hu man origin recog nition complex 4 (ORC4) protein, a subunit of the origin recognition complex, belongs to the AAA+ superfamily of adenosine triphosphate (ATP) ases. Proteins belonging to this family require ATP for their function and interactions with ATP lead to conformational changes in them or in their partners. Human ORC4 protein induces structural changes in DNA substrates, promoting renaturation and formation of non-canonical structures, as well as conversion of single-stranded into multi-stranded oligo nucleotide structures. The aim of this study was to further investigate the role of ATP in the function of human ORC4 protein. For this purpose, a mutant in the conserved Walker B motif of ORC4, which is able to bind but not to hydrolyze ATP, was constructed and it sactivity in D NA restructuring reactions w as investigated. The obtained results showed that ATP hydrolysis is not necessary for the function of human ORC4. It is proposed that ATP ha s a structural role as a cofactor in the function of human ORC4 as a DNA restructuring agent.

Keywords: origin recognition complex (ORC); adeno sine triphosphate (ATP); DNA structure; origin selection.

INTRODUCTION

The origin recognition complex (ORC) is a universal eukaryotic initiator and an essential complex for the selection of active origins during the cy cle of cells.¹ The ORC consists of six subunits, three of which (ORC1, ORC4 and ORC5) belong to the superfamily of adenosine triphosphate (ATP) ases associated with various cellular activities (AAA+ superfamily).^{2,3} Members of this su perfamily play crucial roles in transforming chemical energy into biological events, from protein remodeling, transport, complex asse mbly and disasse mbly to DNA r eplication, recombination, repair and transcription. They all require ATP for their function and binding and/or hydroly sis of ATP induces structural changes in these pro-

Available online at www.shd.org.rs/JSCS/

^{*} Corresponding author. E-mail: aleksandradivac@imgge.bg.ac.rs doi: 10.2298/JSC090724019D

IVAC, TOMIĆ and KUŠIĆ

teins or in their partners. ⁴ All AA A+ superfamily members have sever al conserved motifs: an $\alpha\beta\alpha$ core do main structure and Walker A and B motifs. The Walker B motif has the consensus se quence hhhhDE (h – hydrophilic am ino acid). The carboxy group of the glutamate residue is believed to act as a catalytic base, abstracting a proton from a molecule of water, thereby prim ing it for nucleophilic attack on the γ -phosphate of bound ATP. The conserved aspartate residue is involved in the co-ordination of Mg^{2+.5}

The human ORC4 subunit, a typical AAA+ superfamily protein, was shown to play a critical role in human ORC assembly and maintenance. ^{6–8} It was demonstrated that human ORC4 has sequence-unspecific DNA binding activity.⁹ In addition, it was previously shown that human ORC4 acts as a DNA restructuring agent; it cataly ses the formation of non-canonical DNA structures in origin DNA.¹⁰ The most intriguing feature of hum an ORC4 is its unique ability of promote the formation of hom oadenine structures, such as duplexes and even larger structures.¹⁰ Human ORC4 belongs to the family of AAA+ ATPases, the aim was to further elucidate the role of ATP in the function of human ORC4 as a DNA restructuring agent.

EXPERIMENTAL

Expression and purification of mutant human ORC4 protein (WB protein)

Site directed mutagenesis of D159A and E160A in the Walker B motif of human ORC4 was perfor med by poly merase chain reaction (PCR) a mplification of the pQE-30 plasmid (Qiagen, Valencia, CA), containing a fragment encoding the full-length human protein (1311 bp), with the mutagenic primer 5 '-GCCCAGTGATCTTCATATTAGCTGCATTTGATC-TTTTTGCTCATC-3' and using the QuikChange Multi Site-directed Mutagenesis kit (Stratagene, La Jolla, CA). The P CR products were treated with DpnI to digest the parental DNA template and u sed to transfor m M15 (pREP4)-competent cells. The presence of the mutated sequence, coding for a protein containing in active Walker B motif (WB protein), was confirmed by direct DNA sequencing.

The recombinant human ORC4 was expressed in *Escherichia coli* and purified over a metal affinity resin as essentially described previously.⁹ To i mprove the yield of the active protein, treat ment of bacterial ly sates with DNase I was a lso included in the purification procedure. In addition, to minimize aggregation during purification and improve the yield, detergents, NP 40 and CHAPS, were used, as well as 1 M N aCl and 100 mM ATP. A n improvement was observed when ATP was used; hence, this step was incorporated into the protocol for the purification of the mutant protein. All ot her steps were the same for the mutant and wild type proteins. To remove insoluble aggregates, the protein was repurified by glycerol gradient centrifugation. The centrifugation was realized in 10 to 30 % gly cerol gradients prepared in buffer A (20 mM HEPES (pH 7.9), 30 mM N aCl, 2 mM Zn Cl₂, 6 mM MgCl₂, 0.1 mM ATP, 0.1 mM EDTA, 1 mM DTT, and 0.1 mM PMSF). The gradients were centrifuged in an SW 41 Beck man rotor at 38000 rpm, for 20 h at 8 ° C. Gradient fractions were collected from the bottom and analyzed using an Agile nt 2100 Bioan alyzer and Protein 200 Plus LabChip kit, in combination with P rotein 200 Plus sassay software. The gly cerol gradient fractions containing human ORC4 were pooled and kept at -80 °C.

Available online at www.shd.org.rs/JSCS/

318 D

ATP AND HUMAN ORC4 FUNCTION

Protein-mediated conversion of single-stranded oligonucleotides into multi-stranded structures

For protein-mediated conversion of sin gle-stranded oligonucleotides into multi-stranded structures, 4 fm ols of end-la beled single-stranded oligon ucleotides $d(A)_{34}$ were dissolved in buffer A1 (20 mM HEPES (pH 7.9), 30 mM NaCl, 2 mM ZnCl₂, 20 mM MgCl₂, 0.1 mM ATP, 0.1 mM EDTA, 1 mM DTT, 0.1 mM PMSF) and incubated for 15 min at 37 °C with 50 ng, 100 ng or 150 ng of an appropriate protein. The typical reaction volume was 25 µL. At the end of the incubation, the reaction mixtures were quickly cooled on ice, adjusted to 1 M NaCl and 1 % SDS, and deproteinized with chloroform and iso amyl alcohol. Alternatively, the protein was digested with 1–5 µg of proteinase K dissolved in 0.1–0.5 % SDS. Protein digestion was performed for 15 min at 37 °C. The deproteinized samples were analyzed by TBM-PAGE in a cold room, followed by autoradiography.

RESULTS AND DISCUSSION

The WB protein, a mutated form of human ORC4 protein, was successfully cloned, expressed and purified from an *E. coli* M15 (pREP4) bacterial strain. The coding gene sequence of human ORC4 was previously cloned in pQE30 vector (Promega) and its sequence was confir med by DNA sequencing. Mutagenesis of the wild type coding sequence was performed using a QuikChange Multi Site-Directed Mutagenesis Kit (S tratagene, USA). The sequence of the mutated gene was confirmed b y direct sequencing and the appropriate vector was used for transformation of *E. coli* M15 (pREP4) competent cells. Purification of the mutated using the same protocol as for the wild type protein, with the addition of 100 mM ATP, and resulted in a single band assayed by Coomassie Blue staining or an Agilent Bioanalyzer 2100 (Fig. 1).¹⁰

Fig. 1. Gel-like image of the purified mutant ORC4 analyzed with an Agilent 2100 Bioanalyzer (Protein 200 Plus assay). The mutant ORC4 was purified by cobalt affinity chromatography (lane 2) and separated by glycerol gradient centrifugation. Glycerol gradient odd fractions are presented in lanes 3–11. Upper and lower marker bands of the protein ladder (lane 1) are seen in all lanes.

Available online at www.shd.org.rs/JSCS/

319

IVAC, TOMIĆ and KUŠIĆ

The WB protein was assay ed for its ability to convert single-stranded oligonucleotides, $d(A)_{34}$, into multi-stranded structures. In these restress ucturing reactions, wild t ype human ORC4 and mutated form of ORC4 (WA protein) were used as controls. The WA protein is a metated form of ORC4 where the Walk er A (GKT) motif of the wild type protein is changed (K73A) so that it cannot bind ATP.¹⁰ In the presence of Walker B mutant protein, there was ale most complete conversion of the single-s tranded substrate into a multi-stranded structure, very similar to the wild type protein (Fig. 2).

320 р

Fig. 2. ATP is not necessary for AA pairing cat alyzed by hu man ORC4. Single strande d oligoadenine (lane 1) incubated with increa sing amounts of WB mutant (lanes 2–3), W A mutant (lanes 4–6) or wild type human ORC4 (lanes 7–9).

Human ORC4 is a typical member of AAA+ protein superfa mily, hence the aim was to investigate the role of ATP in its function in DNA restructuring reactions. The function of ATP could be t wofold, as a source of energ y for the restructuring reactions or as a cofactor for ORC4. It was previously shown that the mutant protein is unable to bind ATP (WA protein) and also does not function in oligonucleotide restructuring.¹⁰ To further elucidate the role of A TP in the function of hum an ORC4, a mutated protein unable to h ydrolyze ATP was constructed and its activity in conversion reactions was tested. The mutant that does not hydrolyze ATP shows similar activity as the wild type protein (Fig. 2).

Binding of ATP is essential for ORC4 function in ORC assembly and maintenance.^{7,8} Mutant ORC4 protein that does not bin d ATP (WA mutant) is also unable to form the complex. Mutant ORC4 protein that does not hydrolyze ATP, but can bind it (WB mutant) shows sim ilar activity to wild t ype protein.⁸ It is postulated that ATP has a structural role, as a cofact or, in the ORC co mplex assembly and that its presence is neces sary for preservation of the integrity of the complex.⁸ Additional experiments with a non-hydrolysable ATP an alog (ATP γ S)

showed that hydrolysis is not necessary for complex formation, because it has the same activity as ATP. The hum an ORC4 subunit seems to play a crucial role in the mediation of the effect of ATP in subunit interactions and complex stability.⁷ Although the binding of the whole complex to DNA is stimulated and stabilized by ATP, it was shown that DNA binding of the recombinant ORC4 is independent of the presence of ATP.^{6,9}

It was shown that recombinant hum an ORC4 protein preferentially binds AT-rich DNA, both do uble-stranded and triple-stranded. Addit ionally, human ORC4 stimulates renaturation of origin fragments and oligonucleotides. For these interactions, it is essential that DNA fragments are able to for m Hoogsteen bonds.¹⁰ Human ORC4 also stimulates intra- and intermolecular *T*AT triplex formation. Also, it has a very intriguing feature that it is able to create homoadenine structures, such as duplexes and even hi gher structures. The action of h uman ORC4 in all of these reactions was dependent on the presence of magnesium ions and ATP.

The role of ATP in the function of O RC4 seems to be structural in bot h complex assembly and actions on DNA. Once bound, ATP could function as a source of energy in some downstream ORC functions. One of these could be the formation of a pre-replicative co mplex (pre-RC), which is a result of ORC--dependent loading of th e Cdc6, Cdt1 and Mcm 2-7 DNA replicative helicase onto DNA. It was shown that ATP hydrol ysis by ORC is required for m ultiple rounds of Mcm2-7 loading and requires the coordinate function of the ORC1 and

CONCLUSIONS

ORC4 subunits.^{11,12}

The results of this study show that ATP play s a role as a cofactor in the function of h uman ORC4. Hu man ORC4 protein does not require ATP hy drolysis for activity in DNA restructuring reactions. Ta king into consideration previous studies, it is concluded that the action of recombinant human ORC4 in DNA restructuring reactions is dependent on the presence of magnesium ions and ATP.

Acknowledgements. This work was supported by the Mini stry of Science a nd Technological Development of the Republic of Serbia, Grant 143051.

ИЗВОД

УЛОГА АТР-а У ФУНКЦИЈИ ХУМАНОГ ПРОТЕИНА ORC4

АЛЕКСАНДРА ДИВАЦ, БРАНКО ТОМИЋ и ЈЕЛЕНА КУШИЋ

Инсииийуш за молекуларну генешику и генешичко инжењерсиво,Универзишеш у Београду, Београд

Хумани протеин ORC4, подјединица ORC комплекса (енг. Origin Recognition Complex), припада фамилији AAA+ аденозин-трифосфат (ATP)-аза повезаних са различитим функцијама у ћелији. За припаднике ове фамилије протеина је карактеристично да је ATP неопходан за њихову функцију и да по везивању ATP-а пролазе кроз конформациону промену или је индукују у својим партнерима. Хумани протеин ORC4 индукује структурне промене у суп-

IVAC, TOMIĆ and KUŠIĆ

стратним ДНК, тако што промовише ренатурацију и формирање неканонских структура, као и конверзију једноланчаних олигонуклеотида у вишеланчане структуре. ATP је неопходан за ове функције ORC4 протеина, што је показано анализом активности мутанта који не може да веже ATP, и који није активан у овим реакцијама. Да бисмо ближе испитали улогу ATP-а у активности ORC4 направљен је протеин са мутацијом у домену за хидролизу ATP-а (Вокер Б мотив), који има очувану ATP-везивну активност. Овај мутант је био активан у реакцијама реструктурирања ДНК, тако да се може закључити да је улога ATP-а структурна, као кофактора, и да његова хидролиза није неопходна за функцију хуманог протеина ORC4.

(Примљено 24. јула, ревидирано 13. октобра 2009)

REFERENCES

- 1. S. P. Bell, B. Stillman, Nature 357 (1992) 114
- 2. T. Ogura, A. J. Wilkinson, Genes Cells 6 (2001) 575
- 3. B. P. Duncker, I. N. Chesnokov, B. J. McConkey, Genome Biol. 10 (2009) 214
- M. J. Davey, D. Jeruzalimi, J. Kariyan, M. O'Donnell, Nat. Rev. Mol. Cell Biol. 3 (2002) 826
- 5. J. Snider, A. Walid, Biochem. Soc. Trans. 36 (2008) 72
- J. Giordano-Coltart, C. Y. Yi ng, J. Gautier, J. Hurwitz, Proc. Natl. Acad. Sci. USA 102 (2005) 69
- 7. A. Ranjan, M. Gossen, Proc. Natl. Acad. Sci. USA 103 (2006) 4864
- 8. K. Siddiqui, B. Stillman, J. Biol. Chem. 282 (2007) 32370
- D. Stefanović, S. Stanojčić, A. Vindigni, A. Ochem, A. Falaschi, J. Biol. Chem. 278 (2003) 42737
- 10. D. Stefanović, J. Kusić, A. Divac, B. Tomić, Biochemistry 47 (2008) 8760
- 11. J. L. Bowers, J. C. Randell, S. Chen, S. P. Bell, Mol. Cell 16 (2004) 967
- 12. J. C. Randell, J. L. Bowers, H. K. Rodríguez, S. P. Bell, Mol. Cell 21 (2006) 29.

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

322 р

J. Serb. Chem. Soc. 75 (3) 323–331 (2010) JSCS–3964 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 633.15–035.23/.25:57.017.6:66.094.1:536.7 Original scientific paper

Introduction of the interdependence between the glutathione half-cell reduction potential and thermodynamic parameters during accelerated aging of maize seeds

VESNA D. DRAGIČEVIĆ1*, SLOBODANKA D. SREDOJEVIĆ1 and MIHAJLO B. SPASIĆ2

¹Maize Research Institute, Slobodana Bajića 1, 11185 Belgrade-Zemun and ²Institute for Biological Research "Siniša Stanković", Bld. Despota Stefana 142, 11060 Belgrade, Serbia

(Received 30 June, revised 16 September 2009)

Abstract: Two maize hybrids with a different ability to maintain seed ger mination were ex amined during the course of a ccelerated aging (AA). Initially, the similar seed reduction p otential of the GSSG/2GSH half-cell increased in H1 (dent hybrid) without influencing the seed germination ability up to the 6 day of AA, wh ile in H2 (sweet corn hy brid), it was not changed up to t he 6^{th} day of AA but with a significant later loss of seed ger mination ability. During the AA course, the amount of free thiol decreased in H1 and increased in H2. Irrespective of the continual increase of the differential Gibbs energy during AA, the chara cteristics of the examined hybrids are possibly connected to the different metabolic pathw ays of the seed s: H1 is ch aracterised by highe r entropy and po sitive enthalpy values, while H2 had negative entropy values and a de creasing trend of ent halpy, indicating a shift of th e sy stem from a relatively ordered to a di sordered state. The different types of nanomolecular switches, result ing in a faster decrease of GSH in the H2 than in the H1 hybrids, indicate that a combination of the GSSG/2GSH half-cell potential and thermodynamics could be a useful tool to quantify plant stress.

Keywords: aging; glutathione; maize seeds; free thiols; se ed germination ability; thermodynamics.

INTRODUCTION

Despite the fact that the g ermination percentage is still the most important parameter that describes and integrates germination ability¹, the seed germination process, by itself, has many different aspects. The trend of loosing viability during long-term storage has two phases: the first is slower and longer lasting and the second, faster and shorter lasting. ^{2,3} Kittock and Law ⁴ and Anderson ⁵ as - certained that seed respirat ion, as the ma in producer of reactive oxy gen species (ROS), could increase during storage, due to exogenous and endogenous factors:

323

^{*} Corresponding author. E-mail: vdragicevic@mrizp.rs doi: 10.2298/JSC090630017D

RAGIČEVIĆ, SREDOJEVIĆ and SPASIĆ

324 р

temperature, air humidity, *etc.*⁶ During oxidative stress, R OS da mage fir st the mitochondria and then the other cell components, leading to respiration reduction and membrane disintegration, ⁷ which could be assumed a s the moment of ir reversible injuring. Accelera ted aging in duces changes in the naturally occurring seed antioxidants, such as glutathione,² which are integrated into the cellular redox status. S ome ROS sp ecies and NO ⁸ are capab le of m odulating trans membrane receptors and c ytoplasmic signal transduction routes.⁹ Molecular sensor s with free thiols mainly react *via* their oxidation, forming disulphides,^{10,11} having different red ox and transcriptional si gnals. Although seeds represent relatively dry systems, the relations are even more complex, including the facts that most of the endosperm and a smaller part of the embryo represent dead cells, made through programmed cell death during seed formation.^{12,13}

The theoretical basis of the energy concept, *i.e.*, thermodynamics, gives the possibility of quantification of biological vitality,^{14,15} considering that a change in the internal energy of a system represents the maximal work available for achievement. The vitality of seeds is maintained by the formation of a glass structure, which is thermodynamically unstable, while aging induces structural changes,² as a consequence of m etabolic unbalance, originating from gradual desiccation and high oxidative activity .¹⁶ Subsequently, the observed equilibri um shift, induce d by oxidative activity during long-term desiccation or ageing, also leads to the breakdown of the antioxidants, *i.e.*, when major parts of the GSH pool are converted into GSSG, the half cell potentia l increases and becomes a signal that initiates programmed cell death.¹⁷

The objective of study was to investig ate the chang es in se ed germination ability during accelerated aging of two maize hybrids (H1 – dent hybrid and H2 – – sugary hybrid) consequently through alterations of the half-cell redox potential of the GSSG/2GSH coupl e, the am ount of free thi ols and the t hermodynamic parameters of differential Gibbs energy, entropy and enthalpy.

EXPERIMENTAL

The seeds of two maize hybrids with different abilities of germination (ZP SC 580 – H1, and ZP SC 504_{su} – H2, originating from the same location and year, stored at 4 °C), were subjected to accelerated ageing treatment¹⁸ at a temperature of 42 °C and a relative air humidity of 100 % for 3, 6 or 9 day s (down to an economical limit of 80 %). Subsequently, the germination capa city was deter mined by ISTA Rul es in four replications of 100 uniform seed s¹ after 7 days, on filter paper towels, used as the medium.

The contents of free thiol (PSH), reduced (GSH) and oxidised glutathione (GSSG) in the seeds were determined according to the method of de Kok *et al.*¹⁹ After homogenisation of 1 g of a sample with 10 mL of 0.15 % Na-a scorbate, the sample was centrifuged at 20,000 g for 20 min. Then, the free thiol co ntent was determined: 1.5 ml of 0.20 M pota ssium phosphate buffer (pH 8.0) and 0.20 ml of 10 mM DTNB reagent (5,5'-dithio(2-nitrobenzoic acid) solved into 0.020 M potassium phosphate buffer (pH 7.0)) were ad ded to 1.5 ml of the extract. The absorbance was measured at 4 15 n m. Then, the supernat ant was deprotei nised in the water

bath at 95 ° C for 3 min. After repeated centrifugation at 150 00 g for 15 min, the content of total glutathione from the supernatant was analysed. After repeated c entrifugation at 15000 g for 15 min, the content of to tal glutathione in the supernatant was analy zed as d escribed above: to 1.5 ml of supernatant, 1.5 mL of 0.20 M potassiu m phosphate buffer (pH 8.0) and 0.20 mL of 10 mM DTNB reagent (pH 7.0) were added. The absorba nce was read at 415 n m. In the other 1.5 mL of supernatant, 0.5 mL of 0.25 M potassi um phosphate buffer (pH 6.8), 0.3 mL of albumin, 0.020 mL of glyoxalase I (Sigma grade IV) and 0.08 mL of 0.10 M methylglyoxal are added. After incubation at 30 °C for 15 min, the content of reduced glutathione (GHS) was determined in the abov e described manner. GSH (Sigma Ultra 98–100 %) was used as the standard. The content of oxidised glutathione (GSSG) was calculated as the difference between the total and reduced glutathione.

The redox capacity of the GSSG/2GSH c ouple was estimated by the method of Schafer and Buettner: $^{\rm 20}$

$$E_{\rm hc} = -240 - \frac{59.1}{2} \log \frac{[\rm GSH]^2}{[\rm GSSG]}$$
(1)

The thermodynamic parameters were c alculated from the water content, which was determined after drying at 130 $^{\circ}$ C,²¹ by a modified model proposed by Davies¹⁴ and Sun:^{22,23}

$$G^{0} = -RT \ln Wc (2)$$

$$\Delta G = -G^{0} + RT \ln \frac{Wc_{1}}{Wc_{2}} (3)$$

$$\Delta H = \frac{RT_{1}T_{2}}{T_{2} - T_{1}} \ln \frac{Wc_{1}}{Wc_{2}} (4)$$

$$\Delta S = \frac{\Delta H - \Delta G}{T} (5)$$

where G^0 is the starting Gibbs energy, *R* is the universal gas constant (8.314 J K⁻¹ mol⁻¹), *T* is the sum of the average daily temperatures, in K, *Wc* is the water content (where by, 1 g = 1 mL), ΔG is the Gibbs energy change, ΔH is the enthalpy change and ΔS is the entropy change.

It is important to stress that the time factor is insignificant in thermodynamics, while it is important for living systems; this paradox w as surpassed by the introduction of daily te mperature sums (obtained on the d ays of AA). The result s of g ermination test, the GSH, G SSG and PSH cont ents were statistically calculated with the Anova T-test (LSD = 5 %); the E_{hc} , ΔG , ΔH and ΔS values were calculated with SD value; the depende nce between the ger mination percentage, E_{hc} , ΔG , ΔH and ΔS were expressed by multiple regressions and correlation coefficients, calculated with Statistica 7.0 software (StatSoft Inc.).

RESULTS AND DISCUSSION

Redox signals are key regulators of va rious plant m etabolic processes, including morphogenesis and growth. Glutathione is the major redox regulating substance in seeds. More tolerant genotypes have higher quantities of total glutathione, with different relations between reduced and oxidised glutathione (2GSH/GSSG).^{24,25} During the AA treatment, similar and significant decreases of GSH were found in the seeds of both hybrids, down to 55 and 56 % in H1 and H2, respectively (Table I), while the percentage ger mination was significantly decreased by 11 %

RAGIČEVIĆ, SREDOJEVIĆ and SPASIĆ

in H1 and by 19 % in H2. The decreas ed GSH amount correlates with the si gnificant increase in GSSG amount, which is in agreement with the results of De Paula *et al.*²⁶ and Torres *et al.*,²⁷ although their ratio was shifted to a greater extent in H2. Generally, the relationship between seed viability and GSH decrease does not coincide with a GSSG increase, with the values increasing by only to 28 % in H1 and over 3.6 times in H2 (Table I), signifying an irreversible loss of GSH from the system.²⁸ This is an indication of its reaction with other seed biomolecules, which could, moreover, be linked to a reaction shift to necrotic processes²⁹ *i.e.*, to programmed cell death. ^{13,17} It see ms that the protective role of GSSG,³⁰ was emphasized in H2, having a 3.5 times higher GSSG content after 9 days of AA, with only a 7.6 % loss of total glutathione.

TABLE I. Changes in the germination percentage, GSH, GSSG and PSH in maize seeds (H1 – – dent hybrid, H2 – sugary hybrid) during accelerated (AA) aging treatment for 3, 6 and 9 days

Property Hy	brid	AA / days				
		036			9 ^a	- LSD 0.05
Germination, %	H1	98.0 97.7 96.0 87.7				5.74
H2		95.5	95.0	83.0 ^a 77.	5	1.97
GSH / nmol	H1	296.8	277.1	232.4	132.4	73.37
H2		265.4	260.9	246.5	116.0	71.45
GSSG / nmol	H1	154.9	159.6	165.2	216.0	36.22
	H2	49.0 50.9 57.3 174			174.1	60.67
PSH / nmol	H1	91.3 87.8 80.4 25.9			30.61	
	H2	78.4 88.9 98.1 133			133.2	23.88

^aLeast significant difference, Student's *T*-test, P = 0.05

326 р

Seeds contain m ost of the thiols and di sulphides in proteins, ^{31,32} which are liable to aging changes owing to their role in the regulation of the cell redox environment. Pukacka³³ found a decrease in PSH during the aging of *Acer platanoides* seeds, which is in agreement with the changes in the H1 s eeds (decrease of 72 %, Table I). The significant incr ease in the PSH content was accompanied by a considerable decrease in GSH a nd germination ability during AA treatment in H2, compared to H1, which may develop from proteins undergoing dethiolation, although the similar changes were already established by Seres and co-workers.³⁴ The observed mechanism was suggested by Grant *et al.*,³⁵ as the last defence in the irreversible oxidation of cysteine residues, the occurrence of which would otherwise lead to polypeptide agg regation. It is also possible that two different types of nanomolecular switches:²⁰

$$GSSG + PSH \implies PSSG + GSH (Type I)$$
(6)

$$GSSG + P(SH)_2 \implies PSS + 2GSH (Type II)$$
(7)

are present in H1 and H2, resulting in different alterations of the GSH/PSH ratio, which had a sig moid trend in H1, decreasing from 3.2 to 2.9 (up to 6th day of

AA) and the n increasing, up to 5.1, underlining intensive PSH consumption to GSH, while in H2, the ratio had a more continual decrease to the 6 th day of AA (from 3.4 to 2.5) and then a steeper red uction to 0.9, emphasising intensive GSH expenditure.

However, Schafer and Bu ettner²⁰ used the GSSG/2GSH half-cel 1 potential $(E_{\rm hc})$, which gave the opportunity to quantify the physiological status influencing plant growth. The changes in the E_{hc} of the maize seeds shown in Fig. 1 clearly illustrate the changes developed during the course of AA. In the seeds of both hybrids, the GSSG incre ased due to GS H oxidation, as wa s al so evidenced in other seeds. 26,27 In the i nitial maize hybrid seeds, the value of E_{hc} was si milar, i.e., -158.2 and -157.8 mV in H2 and H1, respectively, with negligible changes after 9 days of AA, i.e., -119.1 and -118.5 mV, respectively. The slight variation in E_{hc} accompanied with intensive changes in GSH and GSSG (Table I), as well as a decrease in the total glutathione to 55 and 56 % in H1 and H2, respectively, were similar to the results obtained by De Vos et al., ²⁸ indicating that the gl utathione redox system is not a closed one and that GSH reacts with other m acromolecules in the seeds during aging. Dean and Devar enne³⁶ suggested conjugation of GSH with soluble phenolic co mpounds as the mechanism of its elimination from cells, while the significant amount of GSH in H2 may serve for disulphide dethiolation.^{34,35}

Fig. 1. Changes of the GSSG/2GSH half cell potential (E_{hc}) and Gibbs energy change (ΔG), as a result of accelerated aging for 3, 6 or 9 days (H1 – dent hybrid, H2 – sugary hybrid); vertical bars represent the *SD* values.

The found E_{hc} values were higher than the results obtained by Kranner *et al.*,¹⁷ which could be connected to the level of the Gibbs energy change (ΔG , Fig. 1). Thus, ΔG negatively correlates with the germination decrease (R = -0.66) to a higher d egree than the E_{hc} increase (R = -0.59). The thermal treat ment (aging

RAGIČEVIĆ, SREDOJEVIĆ and SPASIĆ

328 р

mode)⁶ elevated the Gibbs energy, but to a higher degree in H1 (8 1 J mol⁻¹) than in H2 (66 J mol⁻¹). The relatively parallel changes in the ΔG and E_{hc} of the seeds (R = 0.90) are indicative of an intensification of endergonic reactions and a larger energy expenditure.^{14,23} Furthermore, the ΔG increase does not correspond with the ΔS change, which was decreased by a maxi mum of 0.06 J m ol⁻¹ in H1 (Fig. 2). Considering that entropy presents c apacity, *i.e.*, the presence of energy unavailable for work, the system is under conditions of restricted energetic capacity (thermodynamic equilibrium, $\Delta S \approx 0$) and lower m olecular mobility,^{23,37} from the 3rd day of AA. It is necess ary to emphasise that the lower entropy values of the H1 seeds indicate an enhanced capacity to tolerate change with respect to H2 seeds. Only for the ΔH , *i.e.*, m easurement of the total energy change, were significant alterations observed, which had a sig moid shape with the H1 see ds and a maximum ($\Delta H > 0$) on the 3–6th day of accelerated aging, while for H2, ΔH had general decreasing trend, with the negative values indicating a shift of the system from a relatively ordered to a disordered state.^{14,23}

Fig. 2. Changes of entropy (ΔS) and enthalpy (ΔH) due to accelerated aging for 3, 6 or 9 days (H1 – dent hybrid, H2 – sugary hybrid); vertical bars represent the *SD* values.

The observed dynamics could be connected to a possible melting of the glass matrix and irreversible metabolic changes, attributed to desiccation.^{16,22,38} Additionally, the trends of the ΔH and ΔS changes indicate a different organisation structure of the dent and sugary hybrids, irrespective of their positive correlation with germination reduction (Fig. 3) and the observed correlation between them (R = 0.71 for ΔH ; R = 0.38 for ΔS). Namely, the rapid increase in enthalpy, followed by a negligible increase in entropy for the H 1 seeds could be related t o glass relaxation,³⁹ followed by a later dom ination of stronger bo nds, as consequence of desiccation²³ and furthermore impairment of metabolism by free radicals.¹⁶ Moreover, the H2 seeds could be characterised by weaker molecule move-

ments and stronger bonds, hence the system is above the edge of enthalpy equilibrium, with a relatively weak relaxati on, character istic for s eeds with a low er germination abilit y.³⁹ It could be assumed that desiccation tolerance and prolonged seed longevity in the desiccated state depend on the abilit y of the system to scavenge free radicals. The failure of the antioxidant system during long-term desiccation appears to trigger programmed cell de ath, causing ageing and eventual death of the organism.^{13,16}

Fig. 3. Correlation between the maintenance of germination (percentage) ability; a) changes of the redox potential, E_{hc} , and Gibbs energy change, ΔG , and b) changes in enthalpy, ΔH , and entropy ΔS .

Available online at www.shd.org.rs/JSCS/

329

RAGIČEVIĆ, SREDOJEVIĆ and SPASIĆ

CONCLUSIONS

The genotypic characteristics of the two examined hybrids indicated possible different metabolic pathways of the seeds, which is connected to different trends of the changes in the therm odynamic parameters (ΔG , ΔH and ΔS) and different types of nanom olecular switches, resulting in relative faster de crease of GSH in the H2 hybrid than in the H1 hybrid, emphasising that the GSSG/2GSH half cell potential is a useful tool for quantifying plant stress, but it cannot be alone a measure for seed ger mination ability. The observed changes in the seeds could be described from the viewpoint of thermodynamics by the enthalpy: $\Delta H = 0$ J mol⁻¹ might be considered as the border betw een reversible and irreversible injuries i n seeds. The c ombination of the GSSG/ 2GSH half-c ell potential with ther modynamic parameters may possibly be a more effective tool for determination of seed germination ability and the physiological status of seeds.

Acknowledgments. This work was sup ported by the scientific project "Development of Maize Cropping Technology with an Ecological Approach" (Ev. No. TR-20007) of the Min istry of Science and Technological Development of the Republic of Serbia.

ИЗВОД

УВОД У МЕЂУСОБНУ ЗАВИСНОСТ ЋЕЛИЈСКОГ РЕДОКС ПОТЕНЦИЈАЛА ГЛУТАТИОНА И ТЕРМОДИНАМИКЕ ТОКОМ УБРЗАНОГ СТАРЕЊА СЕМЕНА КУКУРУЗА

ВЕСНА Д. ДРАГИЧЕВИЋ¹, СЛОБОДАНКА Д. СРЕДОЈЕВИЋ¹ и МИХАЈЛО Б. СПАСИЋ²

¹Инс*йийуй за кукуруз, Слободана Бајића 1, 11185 Београд-Земун и²Инсйийуй за биолошка исйраживања* "Синиша Сйанковић", Булевар Десйойа Сйефана 142, 11060 Бео*град*

Проучавано је убрзано старење семена два хибрида кукруза која имају другачију способност очувања клијавости. Сличан почетни редукциони потенцијал G SSG/2GSH пара је код H1(зубан) растао без утицаја на способност клијања до шестог дана убрзаног старења, док се код H2 (шећерац) није мењао до шестог дана старења, уз каснији значајан пад клијавости. Количина PSH се смањивала код H1, док је расла код H2 током третмана старења. Без обзира на континуиран пад слободне енергије током убрзаног старења, особине семена испитиваних хибрида су можда биле везане за другачије метаболичке путеве: H1 карактерише висока ентропија и позитивне вредности енталпије, док је за H2 карактеристична релативно ниска ентропија, уз негативне вредности енталпије, указујући на померање система из релативно уређеног у неуређено стање. Другачији типови наномолекулских прекидача, утичући на бржи пад GSH код H2 у односу на H1, истичу да се комбинација GSSG/2GSH ћелијског потенцијала и термодинамике могу користити при квантификацији биљног стреса.

(Примљено 30. јуна, ревидирано 16. септембра 2009)

REFERENCES

- 1. ISTA, International rules for seed testing, ISTA, Bassersdorf, 2007, p. 5A
- 2. C. Walters, Seed Sci. Res. 8 (1998) 223
- 3. M. R. Munamava, A. S. Goggi, L. Pollak, Crop Sci. 44 (2004) 542

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

330 d
331

- 4. D. L. Kittock, A. G. Law, Agron. J. 60 (1968) 286
- 5. J. D. Anderson, Crop Sci. 10 (1970) 36
- 6. S. Tang, D. M. Tekrony, D. B. Egli, P. L. Cornelius, Crop Sci. 40 (2000) 463
- 7. A. Benamar, C. Tallon, D. Macherel, Seed Sci. Res. 13 (2003) 35
- 8. Z. Giba, D. Grubišić, R. Konjević Seed Sci. Res. 13 (2003) 187
- 9. D. Pavlović, V. Djordjević, G. Kocić, Facta Universit. Med. Biol. 9 (2002) 131
- 10. L. Xiong, J. K. Zhu, Plant Cell Environ. 25 (2002) 131
- 11. M. S. B. Paget, M. J. Buttner, Annu. Rev. Genet. 37 (2003) 91
- 12. C. Giuliani, G. Consoni, G. Gavazzi, M. Colombo, S. Dolfini, Ann. Bot. 90 (2002) 287
- 13. H. El-Maarouf-Bouteau, C. Bailly, Plant Signal. Behavior 3 (2008) 175
- 14. D. D. Davie s, *Intermediary metabolism in plants*, Ca mbridge Univer sity Press, Canbridge, 1961, p. 35
- 15. J. S. Boyer, Annu. Rev. Plant Physiol. 20 (1969) 35
- 16. C. Bailly, H. El-Maarouf-Bouteau, F. Corbineau CR Biol. 331 (2008) 806
- 17. I. Kranner, S. Birtic, K. M. Anderson, H. W. Pritchard, *Free Rad. Biol. Med.* **40** (2006) 2155
- 18. J. M. Woltz, D. M. TeKrony, Seed Technol. 23 (2001) 21
- 19. L. J. de Kok, P. J. L. de Kan, G. Tanczos, J. C. Kupier, Physiol. Plant. 53 (1981) 435
- 20. F. Q. Schafer, G. R. Buettner, Free Rad. Biol. Med. 30 (2001) 1191
- 21. ISTA, Seed Sci. Technol. 27, Suppl. 47–59 and Annexe, 1999, Zürich, p. 271
- 22. W. Q. Sun, Plant Physiol. 124 (2000) 1203
- 23. W. Q. Sun, *Desiccation and survival in plants: drying without dying*, M. Black, H. W. Pritchard, Eds., CABI Publishing, Wallingford, 2002, p. 47
- 24. G. Kocsy, M. Brunner, A. Rüegsegger, P. Stamp, C. Brunold, Planta 198 (1996) 365
- 25. L. Xiong, K. S. Schumaker, J. K. Zhu, Plant Cell 14 (2002) s165
- M. De Paula, M. Pérez-Otaol a, M. Darder, M. Torres, G. Frutos, C. J. Martínez-Hon duvilla, *Physiol. Plant.* 96 (1996) 543
- M. Torres, M. De Paula, M. Pérez-Otaola, M. Darder, G. Frutos, C. J. Martínez-Hon duvilla, *Physiol. Plant.* 101 (1997) 807
- 28. C. H. R. De Vos, H. L. Kraak, R.J. Bino, Physiol. Plant. 92 (1994) 131
- C. Ju, K. N. Yoon, Y. K. Oh, H. C. Kim, C. Y. Shin, J. R. Ryu, K. H. Ko, W. K. Kim, J. Neurochem. 74 (2000) 1989
- 30. I. Kranner, G. Grill, Bot. Acta 109 (1996) 8
- T. Leustek, M. N. Martin, J. A. Bick, J. P. Davies, Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 (2000) 141
- 32. P. Schürmann, J.P. Jacquot, Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 (2000) 371
- 33. S. Pukacka, Physiol. Plant. 8 (1991) 306
- T. Seres, V. Ravichandran, T. Moriguchi, T. Rokutan, J. A. Thomas, R. B. Johnston, J. Immunol. 156 (1996) 1973
- 35. C. M. Grant, K. A. Quinn, I. W. Dawes, Mol. Cell. Biol. 19 (1999) 2650
- 36. J. V. Dean, T. P. Devarenne, Physiol. Plant. 99 (1997) 271
- 37. J. Buitink, C. Walters-Vertucci, F. A. Hoekstra, O. Leprince, Plant Physiol. 111 (1996) 235
- 38. O. Leprince, F. A. Hoekstra, Plant Physiol. 118 (1998) 1253
- P. Krishnan, D. K. Jo shi, M. Mahe swari, S. Nagarajan, A. V. Moharir, *Biol. Plant.* 48 (2004) 117.

J. Serb. Chem. Soc. 75 (3) 333–341 (2010) JSCS–3965 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 547.979.733–36+542.943–188:535.379 Original scientific paper

Evaluation of the oxidative activity of some free base porphyrins by a chemiluminescence method

MARIANA VOICESCU1*, RODICA ION2 and AURELIA MEGHEA3

¹Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, ²Research and Development National Institute for Chemistry and Petrochemistry –ICECHIM, 202 Splaiul Independentei, 060021, Bucharest and ³University Politehnica of Bucharest, Department of Applied Physical Chemistry and Electrochemistry, Polizu 1, 78126 Bucharest, Romania

(Received 9 August, revised 16 September 2009)

Abstract: Due t o their spe ctral characteri stics, phototoxicity and high affinit y for tumour tissues, porphyrins and their derivatives are widely used in modern medicine as contrast agents for cancer diagno stics and as sensitizers in photodynamic therapy, where they kill tumours *via* enhancement of tumour oxidative stress. The aim of this work was to simulate *in vitro* the effects caused by oxidation of two free base porphyrins, 5,10,15,20-tetraphenylporphyrin (TPP) and 5,10,15,20-tetra(4-methoxyphenyl)porphyrin (TMOPP). The kinetic study was monitored using spectral techniques and chemiluminescence. The effect of both porphyrins on an oxidation process was evidenced using the chemiluminescent system, luminal–hydrogen peroxide, in a phosph ate buffer at pH 7. It was found that at low concentration, TPP exerts the anti-oxidative effect in the employed chemiluminescent system, while at higher concentrations, its effect is pro-oxidative. TMOPP ex erts a pro-oxida nt effect, which was more pronounced than TPP. The results are discussed with respect to oxidative stress.

Keywords: free base porphyrins; chemiluminescence; oxidative activity; luminol.

INTRODUCTION

Porphyrins, free bas e and metallocomplexes,^{1,2} play an im portant role in many energy transfer processes from photochemistry,³ photobiology⁴ and photomedicine.^{5,6} Porphyrins can be ox idized chemically, electrochemically, photochemically (photosensitization) to form porphyrin-ring centred oxidized products.⁷

Recently, importance was granted to oxidative stress (a co mmon state in most pathological conditions, such as cancer, diabetes, radiation injury and disorders of the central nervous system), especially regarding the role of synthetic antioxidants, such as Mn por phyrins, in the treatment of oxidative stress.^{8,9} Chemi-

333

^{*}Corresponding author. E-mail: voicescu@icf.ro

doi: 10.2298/JSC090809021V

VOICESCU, ION and MEGHEA

luminescence detection reactions have become popular in analy tical biochemistry, essentially due to their high sensitivity . In this w ay, a s ynthetic chemiluminescent system (luminol/porphyrin) was conveniently employed to measure serum oxalate by determination of the hydrogen peroxide generated through oxalate oxidase.^{10–12} In order to use metalloporphyrins as labels in immunoassays or in nucleic probes, a detection method based on luminol chemiluminescence (CL) at alkaline pH was developed.¹³ The generation of the free radicals HO[•] and $O_2^{•-}$ was found to be the result of l uminol oxidation by metalloporphyrins. In these respects, using 5,5' -dimethyl-1-pyrroline-N-oxide as a spin trap agent, electro n spin resonance (ESR) evidenced the production of HO[•] and O 2^{•-}. The role o f $\dot{O_2}^{\bullet-}$ was confirmed by the almost complete inhibition of light emission when superoxide dismutase was added to the CL reaction. The contribution of oxy gen was also confirmed by the large decrease in the CL emission when deaerated so lutions were used.^{7,13} Owing to their redox properties, FMN and NAD enhancers could act at this level through an incr ease of the exchange rate between Fe²⁺ and Fe³⁺. In the presence of FMN, a significant red shift and shape change of the luminol emission spectrum was observed, which arise from an energy transfer phenomenon in the final luminescent step of the reaction.¹³

It is known that several synthetic metalloporphyrins associated with oxygen atom donors are potent cat alysts for the chem iluminescent oxidation of lum inol or isoluminol. In these respects, the lumi nescence produced at pH 7.5 in the presence of isoluminol, H_2O_2 and metalated water – soluble porphyrins (Fe³⁺ or Mg²⁺ tetra-sodium *meso*-tetrakis(*p*-sulphonatophenyl)porphyrin and derivatives of meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin] te traacetate was of the sa me order of m agnitude as that produced by horseradish peroxidase under the same conditions.^{14,15} Many porphy rins cataly ze lu minol chemiluminescence at pH 13 without addition of peroxide. The most active catalyst was Mn- meso-tetrakis(psulphonatophenyl)porphyrin. It was fou nd that Tween-20 enhance d the activit y of this cataly st best at a Tween-20 to lum inol ratio of 74:1. D odecyl sulp hate enhanced best at the opti mum dodecyl sulphate to l uminol ratio of over 10 00:1 and both detergents enhanced the r eaction when present below their critical micelle concentrations. Moreover, n egatively charged aliph atic compounds, su ch as fatty acids, enhanced the reaction but positively charged aliphatic co mpounds inhibited it.11

The Mn and Fe porphyrins that were shown to have broad antio xidant properties are, in effect, analogues of naturally occurring haeme (iron protoporphyrin IX). It was shown that the reactivities of the synthetic metalloporphyrins were not constrained by the microenvironment of protein-bound haeme.¹⁶ Moreover, Ferrer-Sueta *et al.*¹⁷ and Crow¹⁸ reported that so me metalloporphyrins appear to be capable of scavenging the CO₂ adduct of perox ynitrite. In addition, metalloporphyrins were shown to be protective in a number of cell and animal models of

oxidative injury¹⁹ and models of stroke. ²⁰ Such evidence that these redox active porphyrins were effective *via* peroxynitrite scavenging was provided by showing that protein nitration was prevented. ^{21,22} In these r egards, prevention of protein nitration strongly suggests that other de leterious reactions of pero xynitrite were also prevented. However, new evidence suggests that m etalloporphyrins have protective effects independent of antioxi dant activities, nam ely that they are potent inducers of haeme oxy genases and other heat shock proteins – proteins which are known to enhance survivability to oxidative stress.

Recently, the lipophilicity of potent porphyrin-based antioxidants, by a comparison between *ortho-* and *meta-*isomers of Mn³⁺–*N*-alkylpyridylporphyrins was studied.²³

This work follows a previous stud y^{24} and deals with the effects of two free base porphyrins (5,10,15,20-tetra-*p*-phenylporphyrin (TPP) and 5, 10,15,20-tetra--(*p*-methoxyphenyl)porphyrin (TMOPP)) in an oxidation process studied by a chemiluminescence method using the c hemiluminescent system luminal-hydrogen peroxide in phosphate buffer at pH 7. It was found that at low concentrations, TPP exerted an anti-oxidat ive effect in the employed CL system, while its effect was pro-oxidative at higher concentrations. TMOPP exerted a pro-oxidant effect, which was more pronounced than TPP. These findings could be important regarding oxidative stress as a function of concentration. The studied free base porphyrins could have a protective effect against reactive oxygen species.

EXPERIMENTAL

Materials

The system luminol (LH₂) (8.80×10⁻⁵ M)–h ydrogen peroxide (H ₂O₂) (30 m M) in 50 mM phosphate buffer at pH 7 was considered the reference system. LH₂ and H₂O₂ were from Merck and the phosphate buffer from Sigma. TPP, in which R = C₆H₅ (5,10,15,20-tetraphenylporphyrin) and TMOPP, in which R = C ₆H₅–OCH₃ (5,10,15,20-tetra(4-m ethoxyphenyl)-porphyrin) (Fig. 1) were synthesized by Prof. Ion's team and the solutions for this study were prepared in dimethyl sulphoxide (DMSO).²⁵

Fig. 1. Chemical structure of the studied porphyrins.

Methods and apparatus

The chemiluminescence (CL) me asurements were realised with a c hemiluminescence instrument TD 20/20 Turner Design, USA. The points on the plot were obtained by in tegrating the light signal at periods of 4 s. Five m easurements were made and an average value

calculated, obtaining a maximum 10 % relative scattering of the results from the mean value. The working volume was 1000 μ l.

The extinction of the CL emission, S, was calculated according to the equation:

$$S = 100 \frac{I_0 - I}{I_0}$$

where I_0 and I represent the CL intens ity measured for the reference s ystem and for the reference system in the pre sence of antipy rine, respectively; both value s were measured 5 s after the beginning of the reaction.

The $I_{CL} = f(t)$ variation enable the determination of the rate constant of the reaction, for the up ward part of the plot, $-k_2$ (attributed t o the consumption of free ra dicals reaction), as well as for the downward part of the curve, k_1 (attributed to the for mation of free radicals reaction), considering that the CL reaction is first order. The value s of k_1 and k_2 were determined using the following equation:

$$k = \frac{1}{\Delta t} \ln \frac{I_i}{I_0}, \ \Delta t = t_i - t_0$$

in which t_i represents the time at the moment *i*, t_0 represents the initial time, I_i is the intensity of CL signal at the moment *i* and I_0 is the intensity of the CL signal at the initial moment. The value of the rate constants were calculated in time range 5–60 s ($-k_2$) for the LH₂/phosphate at pH 7/H₂O₂, at pH 7/H₂O₂/TPP and TMOPP systems.

The visible absorption spectra were recorded on a SPECORD M400 Carl Zeiss Jena spectrophotometer. The mass spectra were obtained with an HP 5985 spectrometer (Hewlett––Packard), using a silica column. The final product of the photodegradation reaction of T TP was identified with a Perkin Elmer spectrometer, from CCl_4 solution.

The FTIR spec tra were acquir ed using a Jasco FT/IR-470 plus or a FT/IR-4200 spe c-trometer as KBr pellets.

Carlo Erba FTV 4160 gas chromatograph, incorporating Grob-type split/splitless and oncolumn injectors, was employed throughout this work. The same type of instrument was also linked to an AEI MS 30 magnetic sector mass spectrometer. A flexible sili ca interface was employed to prevent adsorption and decomposition of the porphyrins.

Several WCOT capillary columns, coated with apolar phases, were employed. A 20 m×0.34 mm i.d. glass capillary column coated with CP Sil 5 (Chrompak) was adequate for the analysis of the porphyrin derivatives. The less volatile porphyrin derivatives were analysed on a 6 m×0.3 mm i.d. Hewlett–Packard flexible fused silica capillary column coated with OV-1 stationary phase. Hydrogen was usually employed as the carrier gas, typically at an inlet pressure of 0.2 kg c m⁻², producing an a verage gas velocity of approximately 100 c m s⁻¹. All analyses were temperature programmed.

The ketone and peroxide concentrations were determined by colorimetric methods as indicated in the literature.²⁶

RESULTS AND DISCUSSION

The chemiluminescence (CL) technique is based on generating free radical s (HO[•], $O_2^{\bullet-}$, 1O_2 , ROO[•]) in a lum inescence system and is followed by the study of pro- and anti-oxidati ve actions on a specific molecule.^{13,14} CL is a concerted chemical and phy sical process which occurs after an exergonic chemical reaction, releasing the energy as light. In this way, a molecule in the excited state un-

Available online at www.shd.org.rs/JSCS/

336

dergoes a structural arrangement process of an electronic level, showing physical and chemical properties that are different compared to those of the ground state. It is well kn own that LH $_2$ -H $_2O_2$ in al kaline solution yields an excited am inophthalate dianion species, which leads t o the appearance of oxygen free radicals, such as: the superoxide ani on, singlet ox ygen and h ydroxyl radical.^{13,14} The result of the multiple interactions is light emission, as luminol is consumed. In the presence of an antioxidant compound (which consumes free radicals), the CL intensity decreases, while the effect of a pro-oxidant compound (which increases the concentration of free radicals) is an increase in the CL intensity.

The CL measurements were recorded in order to evaluate the anti-oxidative ability of TPP and TMOPP in various sy stems. Chemiluminescence, already evidenced for some porphyrins by Wasser and Fuhrhop²⁷ was evaluated at 430–440 nm in this stud y. Usually, the degrada tion of p orphyrins involves a macrocycle break with an energy release of 60–70 kcal/mol, sufficient for light em ission. In DMSO and hydrogen peroxide, the proton from inside the porph yrin macrocycle can leave the macrocycle and the porphyrin becomes an anion with a strong electronic density at the methine carbon position.^{28–30} Under such conditions, the anionic form of the porph yrin could aggregate (Fig. 2, 2), in good agreement with literature data,³¹ Fig. 2.

Fig. 2. UV–Vi s spectra of TPP in the monomeric for m (1) and the aggregated form (2).

The variation of the CL intensity as a function of time (Fig. 3) allows the determination of the quenching of the CL reaction for systems that contain porphyrins. It was found that the profiles of the CL in the presence of TPP and TMOPP porphyrins were almost the same and the peak intensities of the CL increased with increasing concentration of the employed porphyrin. At small concentrations, TPP

VOICESCU, ION and MEGHEA

acts as a trap for free radicals produced in the system LH₂–H₂O₂. At higher concentrations, 0.50–1.5 μ M, TPP leads to a strong increase of the CL intensity, which in fact could be the result of a process of aggregation of porphyrins in DMSO and in the presence of H₂O₂. An oxidation of lum inol by the por phyrin occurs. This is a consequence of the photo generation of h ydrogen peroxide by the p orphyrins.³²

Fig. 3. The effect of TPP concentration on the CL intensity of the LH₂ (8.80×10^{-5} M)–H₂O₂ (30 mM) system in 50 mM phosphate buffer at pH 7 (reference system).

Similarly, in the case of T MOPP (the results are not shown), an i ncrease in the CL intensity, more pronounced than in the case of TPP, was evidenced. These are according to the efficiency of CL quenching (S / %) and reaction rate values, Table I. Moreover, it can be observed that the results also corroborate with the concentration of ketones and peroxides.

The responsible species f or chem iluminescence are dioxetane species, *via* ketone and peroxide species evidently, as determined by IR spectroscopy, the stretching vibrational bands v(C=O) at 1600 and 980 cm⁻¹ (Fig. 4), and by mass spectrometry (Fig. 5).

TABLE I. The kinetic parameters of the CL process (efficiency of CL quenching, reaction rate and rate constants) in the $LH_2-H_2O_2$ -phosphate buffer at pH 7 system (reference system, RS), in the presence of TPP and TMOPP, 5 s after the beginning of the chemiluminescence reaction

System	S / %	v / s ⁻¹	$k \times 10^2 / s^{-1}$	Ketone concen- tration, $\mu l m l^{-1}$	Peroxide concen- tration, µl ml ⁻¹
RS	- 150		3.1	_	_
RS + 1.50 µM TPP	-93.8	306	4.2	5.12	3.13
$RS + 1.50 \ \mu M \ TMOPP$	-130.1	364	4.0	23.46	17.45

Available online at www.shd.org.rs/JSCS/

338

Fig. 4. IR spectra of TPP, initial (1) and final (2).

It was possible to deter mine the ket one and peroxide concentrations, as a proof for the above-mentioned porphyrin degradation, Table I. It can be observed that, in the case of TMOPP, the found concentration of ketone, 23.5 μ M/ml was higher than t hat in the case of TPP porphy rin, 5.12 μ M/ml. With regards to the peroxide concentration, a higher value was also found, 17.4 μ M/ml in the case of TMOPP compared with 3.13 μ M/ml in the case of TPP.

Fig. 5. The fragmentation diagram for TPP degradation.

Available online at www.shd.org.rs/JSCS/

339

VOICESCU, ION and MEGHEA

CONCLUSIONS

The study was aimed at simulating *in vitro* the effects of 5,10,15,20-tetraphenylporphyrin (TPP) and 5,10,15,20-tetra(4-methoxyphenyl)porphyrin (TMOPP) in the oxidative system luminal–hydrogen peroxide, in phosp hate buffer at pH 7. The kinetic study was monitored by the evolution of the chem iluminescence intensity as a function of time. It was found that at a low concentration (0.25 μ M) TPP exerted an anti-oxidative effect in the em ployed chem iluminescent system while at higher concentrations (0.50–1.5 μ M), its effect was pro-oxidant. TMOPP, for the same range of concentrations, exerted a pro-oxidant effect, which was more pronounced than that of TPP.

The ketone and peroxi de concentrations were found to be higher in the case of TMOPP than in the case of TPP.

These aspects are important and could be an indication in future investigations with regard to the oxidative stress process. Moreover, the results are an additional tool to predict a possible protective effect of free base porphyrins in an oxidation process. These free base porphy rins may have a protective effect that could work independently of anti-oxidant activities.

ИЗВОД

ОДРЕЂИВАЊЕ ОКСИДАТИВНЕ АКТИВНОСТИ НЕКИХ СЛОБОДНИХ БАЗА ПОРФИРИНА ХЕМИЛУМИНЕСЦЕНТНОМ МЕТОДОМ

MARIANA VOICESCU¹, RODICA ION² и AURELIA MEGHEA³

¹Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, ²Research and Development National Institute for Chemistry and Petrochemistry –ICECHIM, 202 Splaiul Independentei, 060021, Bucharest u ³University Politehnica of Bucharest, Department of Applied Physical Chemistry and Electrochemistry, Polizu 1, 78126 Bucharest, Romania

Порфирини и њихови деривати се, захваљујући својим спектралним карактеристикама, фототоксичности и великом афинитету према ткиву тумора, широко користе у модерној медицини као контрастни агенси у дијагнози тумора и терапији. Они убијају туморе повећавајући оксидативни стрес у њима. Циљ овог рада је да *in vitro* симулира ефекте које изазивају две слободне базе порфирина, 5,10,15,20-тетрафенилпорфирин (ТРР) и 5,10,15,20-тетра(4-метоксифенил)порфирин (ТМОРР). Кинетичка студија је праћена спектралним и хемилуминесцентним методама. Ефекат порфирина у процесу оксидације је одређиван у хемилуминесцентном систему, луминол-водоник-пероксид, у фосфатном пуферу, рН 7. При ниским концентрацијама ТРР има антиоксидативни ефекат, док при вишим концентрацијама има прооксидативно дејство. ТМОРР испољава прооксидативни ефекат и то израженије него ТРР. Резултати су дискутовани у односу на оксидативни стрес.

(Примљено 9. августа, ревидирано 16. септембра 2009)

REFERENCES

- 1. P. Hambright, Coord. Chem. Rev. 6 (1971) 247
- D. Frackowiak, A. Planner, R. M. Ion, in *Near-infrared dyes for high technology applications*, S. Daehne, U. Resch-Genger, O. Wolfbeis, Eds., NATO ASI Serie s, Vol. 3/52, Kluwer Academic Publishers, Dordrecht/Boston/London, 1998, p. 87

Available online at www.shd.org.rs/JSCS/

340

OXIDATIVE ACTIVITY OF FREE BASE PORPHYRINS

- 3. R. M. Ion, in *Porfirinele si terapia fotodinamica a cancerului*, FMR, Ed., Bucuresti, Ch. 8, 2003, p. 113 (In Romanian)
- 4. G. Barrett, Nature 215 (1967) 533
- 5. M. S. Rana, Saudi Pharm. J. 13 (2005) 97
- 6. M. S. Rana, K. Tomagake, Chim. Pharm. Bull. 53 (2005) 604
- 7. C. Poupon-Fleuret, J.-P. Steghens, J.-C. Bernengo, Analyst 121 (1969) 1539
- 8. B. Halli well, J. Gutteridge, *Free Radical Biology and Medicine*, 4th Ed., O xford Univ. Press, London, 2007
- I. Batinic-Haberle, L. Benov, I. Spasojevic, P. Hambright, A. L. Fridovich, *Inorg. Chem.* 38 (1999) 4011
- 10. Y. Adam, J. Bernadou, B. Meunier, New J. Chem. 16 (1992) 525
- 11. M. A. Motsenbocker, K. Oda, Y. Ichimori, J. Biolumin. Chemilum. 9 (1994) 7
- 12. K. Komagoe, T. Katsu, Anal. Sci. 22 (2006) 255
- 13. R. Olinescu, M. Greabu, *Chemiluminescenta si bioluminescenta*, Ed. Tehnica, Bucuresti, 1987 (in Romanian)
- 14. A. K. Campbell, *Chemiluminescence Principle and applications in biology and medicine*, Ellis Horwood Ltd., Chichester, 1988
- 15. G. Merenyi, J. Lind, T. E. Ericksen, J. Biolumin. Chemilumin. 5 (1990) 53
- J. P. Crow, in *Neurodegenerative Diseases*, M. Flint Beal, A. E. Lang, A. Ludolph, Eds., Cambridge University press, Cambridge, 2005
- 17. G. Ferrer-Sueta, I. B atinic-Haberle, I. Spasoj evic, I. Fridov ich, R. Rodi, *Chem. Res. Toxicol.* **12** (1999) 442
- 18. J. P. Crow, Arch. Biochem. Biophys. 371 (1999) 41
- X. Liu, J. M. Miller, M. S. Joshi, D. D. Thomas, J. R. Lancaster Jr., Proc. Natl. Acad. Sci. USA 95 (1998) 2175
- G. B. Mackensen, M. Patel, H. Sheng, C. L. Calvi, I. Batini ć-Haberle, B. J. Day , L. P. Liang, I. Frido vich, J. D. Cra po, R. D. Pearltein, D.S. Warner, J. Neurosci. 21 (2001) 4582
- D. Salvemini, D. P. Riley, P. J. Lennon, Z.-Q. Wang, M. G. Currie, H. Macarthur, T. P. Misko, Br. J. Pharmacol. 127 (1999) 685
- T. P. Misko, M. K. Highkim, A. W. Veenhulzen, P. T. Manning, M. K. St ern, M. G. Currie, D. Salvemini, J. Biol. Chem. 273 (1998) 15646
- 23. I. Kos, J. S. Rebouças, G. De Freitas-Silva, D. Salve mini, Z. Vuj askovic, M. W. Dewhirst, I. Spasojević, I. Batinić-Haberle, *Free Rad. Biol. Med.* 47 (2009) 72
- 24. R. M. Ion, A. Planner, K. Wiktorowicz, D. Frackowiak, Acta Biochim. Pol. 45 (1998) 833
- 25. R. M. Ion, C. Mandravel, South. Braz. J. Chem. 5 (1996) 111
- F. Snell, C. Snell, *Colorimetric methods of analysis*, Vol. III, D. Van Nostrand Company Inc., Princeton, New York, 1953.
- 27. P. K. W. Wasser, J.-H. Fuhrhop, Ann. N.Y. Acad. Sci. 206 (1973) 533
- 28. H. Fuhrhop, D. Mauzerall, Photochem. Photobiol. 13 (1971) 453
- 29. R. M. Ion, Rev. Chim. 9 (1994) 789
- 30. R. M. Ion, L. Teodorescu, C. Mandravel, E. Volan schi, M. Hillebrand, *Rev. Chim.* 41 (1990) 129
- 31. L. Teodorescu, R. M. Ion, Rev. Chim. 41 (1990) 312
- 32. R. M. Ion, Rev. Chim. 44 (1993) 431.

J. Serb. Chem. Soc. 75 (3) 343–348 (2010) JSCS–3966 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 665.52/.54:582.949.26(540uttarakhand) Short communication

SHORT COMMUNICATION Essential oil composition of *Lavandula angustifolia* Mill. cultivated in the mid hills of Uttarakhand, India

RAM S. VERMA^{1*}, LAIQ U. RAHMAN², CHANDAN S. CHANOTIYA², RAJESH K. VERMA¹, AMIT CHAUHAN¹, ANJU YADAV², ANAND SINGH¹ and AJAI K. YADAV¹

¹Central Institute of Medicinal and Aromatic Plants, Resource Centre, Purara, P.O. – Gagrigole, Bageshwar, Uttarakhand – 263688 and ²Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow – 226015, India

(Received 16 June, revised 28 August 2009)

Abstract: The essential oil content in the inflorescence of lavender (*Lavandula angustifolia* Mill.) cultivated in the mid hills of Uttarakhand was found to be 2.8 % based on the fresh weight. The oil was an alysed by capillary GC and GC–MS. Thirty seven constituents, representing 97.81 % of the oil were identified. The major components of the oil were linally acetate (47.56 %), linalool (28.06 %), lavanduly 1 acetate (4.34 %) and α -terpineol (3.75 %). The quality of lavender oil produced in India was found to b e comparable to that produced in Hungary, France, China, Bulgaria, Russia and the USA.

Keyword: Lavandula angustifolia; Lamiaceae; inflorescence; essential oil; GC-MS.

INTRODUCTION

True lavender (*Lavandula angustifolia* Mill. syn. *L. officinalis* Chaix) is a perennial shrub of the family Lamiaceae. It is native to southern Europe and the Mediterranean area and is commercially cultivated in France, Spain, Portugal, Hungary, the UK, Bulgaria, Australia, China and the USA. ¹ In India, it was introduced in the Kash mir Valley in 1983, where its commercial cultivation was found to be successful. ² This plant is cultivated primarily for its aromatic inflorescence from which the essential oil is isolated, although its fresh and dried flowers are also marketed. ³ Lavender oil is known for its excellent aroma and is extensively used in the perfumery, flav our and cosmetic industries. The oil is known to possess sedative, carminative, anti-depressive and anti-inflammatory properties. ⁴ It was also found to be active against many species of bacteria, including those resistant to antibiotics, such as methicillin-resistant *Staphylococcus*

343

Available online at www.shd.org.rs/JSCS/

^{*} Corresponding author. E-mail: rswaroop1979@yahoo.com doi: 10.2298/JSC090616015V

$344\,{\rm ver}$

aureus and vanco mycin-resistant Entero coccus.⁴ Lavender oil was also reported to be an effective antifungal agent against *Aspergillus nidulans* and *Trichophyton mentagrophytes*.⁵ The essential oil compositions of lavender grown in different countries were investigated.^{6–8}

Oil from lavender cultivated in India may become a significant competitor with historical sources of 1 avender oil due to the favourable climatic conditions for commercial cultivation in the hill y tracks of northern India. ⁸ At present, the cultivation of lavender is mainly confined to Jammu and Kash mir. However, the possibilities of commercial cultivation of lavender in other states of North a nd Northeast India have not yet been explored. Therefore, with the ai m of exploring new ecological areas for cultivation of lavender, the crop was introduced in the Kumaon region of the western Himalaya during 2002. The purpose of this study was to investigate the essential oil composition of lavender produced in this region.

EXPERIMENTAL

Plant material

The fresh inflorescen ce (spike s) of *L. angustifolia* was colle cted from an experimental field of the Central Institute of Medicinal and Aromatic plants, Resource Centre Bageshwer, Uttarakhand in the month of June when the c rop was in full bloo m. The experimental site is located in the Kattyur Valley at an altitude of 1250 m, where a sub-temperate mild climate prevails. The voucher specimen of the plant was submitted to the Herbarium division of the Centre.

Essential oil isolation

Freshly harvested plant material (100 g) was i mmediately subjected to hydrodistillation in a Clevenger's apparatus for 3 h for the extraction of the essential oil. The oil was dried over anhydrous sodium sulphate and stored in a refrigerator at 5 $^{\circ}$ C prior to analysis.

Gas chromatography (GC)

The GC an alyses of the oil sample were realised on a P erkin-Elmer Auto XL GC and a Nucon gas chromatograph model 5765, both equipped with an FID using two different stationary phases, PE-5 (60 m ×0.25 mm; 0.25 μ m film coating) and BP-20 (coat ed with a Carb owax 20M, 30 m×0.32 mm×0.25 μ m film thickness), fused silica columns, respectively. Hydrogen was the carrier gas at 1.0 ml/min. The column temperature programming was from 70–250 °C at 3 °C/min (for PE-5) and from 70–230 °C at 4 °C/min (for BP-20). The injector and detector temperatures were 200 and 230 °C on BP-20 and 220 and 300 °C on PE-5 column, respectively. The injection volume was 0.02 μ L neat and the split ratio was 1:30.

Gas chromatography-mass spectrometry (GC-MS)

The GC–MS analysis of the oil was perfor med on a Perkin-Elmer Turbomass Quadrupole mass spectrometer fitted with an Equity-5 (Perkin-Elmer) fused silica capillary column (60 m×0.32 mm; 0.25 µm film coating). The column temperature was programmed 70 °C, initial hold time of 2 min, to 250 °C at 3 °C/min with a final hold time of 3 min, using helium as the carrier gas at a flow rate of 1 ml/min. The injector and source temperatures were 250 °C. The injection volume was 0.06 µL neat with a split ratio 1:30 . The MS were taken at 70 eV with an EI source with mass range of m/z 40–400. The identification was realised based on the retention indices, an MS Library search (NIST and W ILEY), *n*-alkane (C₉–C₂₂) hydrocarbon series (Nile, Italy) and by comparing the mass spectra with MS literature data⁸⁻¹⁰. The relative

amount of the individual components was calculated from the peak area without applying an FID response factor correction.

RESULTS AND DISCUSSION

The essential oil content in the fresh inflorescence of *L. angustifolia* cultivated in the sub-temperate region, the Kumaon region of the western Him alaya was found to be 2.8 %. However, the essential oil content in the inflorescence of different accessions of lavender grown in temperate parts of Kash mir was only 0.80 to 1.3 %.¹¹ These v ariations could either be due to difference of the plant genotype³ or to the altitude and microclimate of the cultivation area.

The results of GC and GC–MS analyses of the essential oil together with the European Pharmacopoeia 5.0 standards (EP 5) are g iven in Table I. The major constituents (> 1.0 %) of t he oil were linalyl acetate (47.56 %), linalool (28.06 %), lavandul yl acetate (4.34 %), α -terpineol (3.75 %), geranyl acetate (1.94 %), caryophyllene oxide (1.38 %) and 1,8-cineole (1.14 %). Other minor components (< 1.0 and > 0.10 %) identified in the oil were β -caryophyllene (0.93 %), borneol (0.85 %), *epi-\alpha*-cadinol (0.70 %), nerol (0.59 %), terpinen-4-ol (0.56 %), β -myrcene (0.55 %), limonene (0.55 %) and 1-octen-3-ol (0.53 %). However, the major components reported in t he lavender oi 1 from different countries were linalool (27.3–42.2 %), linalyl acet ate (27.2–46.6 %), (*Z*)- β -ocimene (0.2–11.6 %), terpinen-4-ol (0.70–4.6 %), lavandul yl acetate (0.50–4.8 %), β -caryophyllene (1.8–5.1 %), (*E*)- β -ocimene (0.30–3.8 %), α -terpineol (0.30–2.0 %) and 1,8-cineole (0.10–1.2 %).⁸

Compound	KI ^a	KI ^b	Area, %	EP 5 [°] , %
Tricyclene 924		921	0.03	_
α-Pinene 935		932	0.09	_
Camphene	951	946	0.23	_
Sabinene 974		969	0.04	_
1-Octen-3-ol 995		974	0.53	_
β-Myrcene 998		988	0.55	_
1-Hexyl acetate	1015	1007	0.11	_
<i>p</i> -Cymene 1025		1020	0.09	_
Limonene	1030	1024	0.55	< 1.0
1,8-Cineole 1035		1026	1.14	< 2.5
(<i>E</i>)- β -Ocimene 1047		1044	0.08	_
(Z)-Linalool oxide (furanoid)	1072	1067	0.22	_
(E)-Linalool oxide (furanoid)	1090	1084	0.24	_
Linalool	1098	1095	28.06	20-45
1-Octen-3-yl acetate	1106	1110	0.35	_
Camphor 1146		1141	0.11	< 1.2
Lavandulol	1162	1165	0.25	> 0.1

TABLE I. GC-MS analy sis of the essential o il of *Lavandula angustifolia* from Uttarakhand, India

 $346\,{\rm ver}$

MA et al.

TADIEI	Continu	u a d
IADLE I.	Commu	eu

Compound	KI ^a	KI ^b	Area, %	EP 5 [°] , %
Borneol	1165	1165	0.85	_
Terpinen-4-ol 1177		1174	0.56	0.1–6
<i>p</i> -Cymen-8-ol 1183		1179	0.06	_
α-Terpineol 1189		1186	3.75	< 2.0
Myrtenol 1195		1194	0.13	_
Nerol	1225	_	0.59	_
Geraniol 1237		1254	0.21	_
Linalyl acetate	1257	1257	47.56	25-46
Lavandulyl acetate	1285	1288	4.34	> 0.2
<i>p</i> -Menthyl-8-acetate 1346		_	0.42	_
Thymol acetate	1355	_	0.13	_
Neryl acetate	1356	1359	1.07	_
Geranyl acetate	1373	1379	1.94	_
β -Cadinene 1416		_	0.11	_
β -Caryophyllene 1419		1417	0.93	_
(E)-Isoeugenol	1449	_	0.17	_
γ-Cadinene 1511		1513	0.12	_
Elemol	1552	_	0.12	_
Caryophyllene oxide	1584	1582	1.38	_
<i>epi-α</i> -Cadinol 1639		1638	0.70	_
Total identified %		9′	7 81	

^aKovats index experimental (PE-5 column; relative to *n*-alkane); ^bKovats index, literature^{8,10}; ^cEuropean Pharmacopoeia 5.0

On comparison of the present results with those reported from other parts of India, it is quite evident that the concentrations of 1,8 cineole, camphor, β -caryophyllene and cary ophyllene oxide were slightly higher, whereas the concentrations of α -terpineol, linally acetate, ger anyl acetate, nerv l acetate and lavanduly l acetate were relatively lower in the K ashmir oil than in the pre sent oil.¹² However, the lavender oil reported from the Kashmir valley contained large amounts of limonene (11.0 %), citronellol (10.0 %) and α -terpineol (7.6 %) and low contents of linalool (10. 0 %).² Furtherm ore, the concentrations of (E)- β -ocimene, 1-octen-3-yl acetate, α -terpineol and β -caryophyllene were slightly higher in the oil produced in Kodaikanal when compared to the present oil.¹³ These variations could be due to differences in location, e levation, genetic makeup of the plant or due to an adaptive process to particular ecological conditions. Lawrence also observed a wide variation in the quantitative composition of lavender oil depending on plant genot ype and cultivation area, and the co mposition of the oil from lavenders were recognized to vary significantly according to altitude, microclimate and region.14-16

CONCLUSIONS

In the oil from *L. angustifolia* growing in Uttarakhand, the com ponents linalool, lim onene, 1,8-cineole, cam phor, lavandulol, lavandulyl acetate and terpinen-4-ol were found to be well within the desired lim it mentioned in EP 5, while the concentration of linaly l acetate and α -terpineol slightly exceeded the EP 5 specifications. However, 3-octanone was not detected in the present oil (0.10–2.5 % in EP 5). Thus, the composition of the lavender oil produced in Uttarakhand was comparable to the oils produced in Hungary, France, China, Bulgaria, Russia and the US A.⁸ Finally, this study suggested that the agro-climatic conditions of Uttarakhand are ideal for growing lavender of international standards, and can be exploited by giving proper opportunities to the farmers.

Acknowledgements. The authors are thankful to CSIR for providing the financial support. We would also like to express our special thanks to the Director, CIMAP Lucknow for providing the necessary facilities and encouragement.

извод

САСТАВ ЕТАРСКОГ УЈЪА БИЉКЕ Lavandula angustifolia Mill. ГАЈЕНЕ У ПЛАНИНСКОМ ПОДРУЧЈУ УТАРАКАНДА, ИНДИЈА

RAM S. VERMA¹, LAIQ U. RAHMAN², CHANDAN S. CHANOTIYA², RAJESH K. VERMA¹, AMIT CHAUHAN¹, ANJU YADAV², ANAND SINGH¹ 14 AJAI K. YADAV¹

¹Central Institute of Medicinal and Aromatic Plants, Resource Centre, Purara, P.O. – Gagrigole, Bageshwar, Uttarakhand – 263688 u²Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow – 226015, India

Етарско уље лаванде (*Lavandula angustifolia* Mill.), гајене у планинском подручју Утараканда, чини 2,8 % свеже масе биљке. Уље је анализирано методама капиларне GC и GC-MS. Идентификовано је тридесет седам састојака, који су чинили 97,81 % уља. Главни састојци уља су линалил-ацетат (47,56 %) , линалол (28,06 %), лавандул-ацетат (4,34 %) и *α*-терпинеол (3,75 %). Квалитет овог лавандиног уља је сличан квалитету уља произведеног у Мађарској, Француској, Кини, Бугарској, Русији и САД.

REFERENCES

- 1. A. S. Shawl, S. Kumar, J. Med. Arom. Plant Sci. 22 (2000) 319
- 2. Tajuddin, A. S. Shawl, M. C. Nigam, A. Hussain, Indian Perf. 41 (1983) 56
- 3. E. N. C Renaud, D. J. Charles, J. Essent. Oil Res. 13 (2001) 269
- 4. H. M. A. Cavanagh, Aust. Infect. Control 10 (2005) 35
- 5. T. Moon, Y. F. Chan, J. M. Wilkinson, H. M. A. Cavana gh, in *Proceeding of AICA National Conference*, Adelaide, Australia, 2004, 46
- 6. A. Tucker, M. J. Maciarello, J. T. Howell, Perf. Flav. 9 (1984) 49
- 7. B. M. Lawrence, Essential Oils, 1995-2000, Allured Publishing, Carol Stream, IL, 2003
- 8. R. P. Adams, T. Yanke, Perf. Flav. 32 (2007) 40
- 9. W. Jennings, T. Shibamoto, *Qualitative analysis of flavour and fragrance volatile by glass capillary gas chromatography*, Academic Press, New York, 1980
- 10. R. P. Adams, Identification of essential oil components by Gas chromatograph/quadrupole mass spectroscopy, Allured Publishing Corp., Carol Stream, IL, 2001

$348\,{\rm ver}$

MA et al.

- 11. A. K. Dhar, D. Sharma, B. K. Bhat, C. K. Atal, Pafai J. 4 (1982) 20
- 12. A. S. Shawl, T. Kumar, S. Shabir, N. Chishti, Z. A. Kaloo, Indian Perf. 49 (2005) 235
- G. R. Mallavarapu, V. K., Mehta, K. P. Sastry, R. K. Krishnan, S. Ramesh, S. Kumar, J. Med. Arom. Plant Sci. 22 (2000) 768
- 14. B. M. Lawrence, *Essential Oils, 1991–1994*, Allured Publishing Corp., W heaton, IL, 1994
- 15. B. M. Lawrence, Perf. Flav. 18 (1993) 58
- 16. B. M. Lawrence, Perf. Flav. 19 (1994) 33.

J. Serb. Chem. Soc. 75 (3) 349–359 (2010) JSCS–3967 542.9+547.571 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 546.562'742'732'712'723+542.913: +547.551:543.57 Original scientific paper

Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

ACHUT S. MUNDE¹, AMARNATH N. JAGDALE², SARIKA M. JADHAV³ and TRIMBAK K. CHONDHEKAR^{3*}

¹Department of Chemistry, Milind College of Science, Aurangabad-431 004, Maharashtra, ²Department of Chemistry, D. P. College, Karjat, Dist. Ahemdnager, Maharashtra and ³Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004, Maharashtra, India

(Received 8 April, revised 16 October 2009)

Abstract: Complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, ¹H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screen ed for antim icrobial activity. The IR spectral dat a suggested that the ligand beha ves as a diba sic tetadentate ligand toward s the central metal ion with an O NNO donor ato ms sequence. From the microanalytical data, the stoichio metry of the co mplexes 1:1 (metal:ligand) was foun d. The physico-chemical data suggested square planar geometry for the Cu(II) and Ni(II) complexes and octahe dral geo metry for the Co(II), Mn(II) and Fe(III) complexes. The thermal behaviour (TGA/DTA) of the co mplexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II), M n(II) and Fe(III) complexes. The ligand and their metal complexes were screen ed for antibacterial activity a gainst Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

Keywords: dehydroacetic acid; asymmetrical tetradentate Schiff base; transition metal complexes; thermal analysis; powder X-ray diffraction; antimicrobial activity.

* Corresponding author. E-mail: as_munde@yahoo.com doi: 10.2298/JSC090408009M

349

Available online at www.shd.org.rs/JSCS/

350 munde

INTRODUCTION

et al.

Schiff bases are most widely used as chelating ligands in coordination chemistry.¹ They are also us eful in cataly sis and in medicine as antibiotics, antiallergic and antitum or agents.² The metal complexes of Schiff bases derived from heterocyclic compounds have been the centre of attraction for many workers in recent years.^{3–7} Tetradentate Schiff bases are well known for their coordination with various metal ions, form ing stable compounds.⁸ Many symmetrical bis tetradentate Sc hiff bases of 1,2-diam ines with *o*-hydroxyaldehydes/ketones have been prepared and studied intensively . However, much less attention has been focused on unsy mmetrical tetradentate Schiff bases derived from 1,2-diam ines and different aldehydes/ketones. In particular those derived from aromatic 1,2-diamines have been under-investigated.⁹ It is worthwhile to mention that as ymmetrical Schiff bases of this type are difficult to obtain and not easy to isolate.¹⁰

One of the oxy gen heterocyclic compounds 3-acety 1-6-methyl-2*H*-pyran-2,4(3*H*)-dione (dehy droacetic acid or DHA) was reported to be an excellen t chelating agent and to possess pro mising fungicidal, bactericidal, herbicidal and insecticidal activities.^{11–14} It is also a versatile st arting material for the synthesis of a wide v ariety of heterocy clic ring sy stems.¹⁵ A search o f the literatu re revealed that no work has been done on transition metal complexes of the asymmetrical Schiff base s derived from aromatic 1,2-diam ine, dehy droacetic acid and salicylic aldehyde. The synthesis of an asymmetrical tetradentate Schiff base formed by the condensation of 4-methyl-*o*-phenylenediamine, dehydroacetic acid and salicylic aldehyde (Fig. 1) is reported. The com plexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with this ligand were al so prepared in the solid stat e and characterized by different physico-chemical methods.

EXPERIMENTAL

Dehydroacetic acid (purity \geq 99 %) for sy nthesis was obtained from Merck, Germany, and used a s su pplied. 4-Meth yl-*o*-phenylenediamine and sa licylic aldehy de of A.R. grade, obtained from Acros Organics and Si sco, respectively, were used for the synthesis of t he li-

gand. A.R. grade hydrated metal chlorides from S. D. Fine Chemicals were used for the preparation of the complexes. The C, H and N contents were determined on a Perkin Elmer (2400) CNS analyzer. The IR spectra were recorded on an FTIR spectrometer, Perkin Elmer Company using KBr pellets. The ¹H-NMR spectrum of the ligan d was measured in CDCl 3 using TMS as t he internal stan dard. The TG/DTA curves and XRD patterns were recorded on a Perkin El mer TA/SDT-2960 and a Phili ps 3701, respectively. The UV–Vis spectra of the complexes were recorded on a Shimadzu UV-1601 spectrometer. The magnetic susceptibility measurements of the metal chelates were determined on a G ouy balance at roo m temperature using Hg[Co(SCN)4] as the calibrant. The molar conductance of the complexes was measured on an Elico CM 180 cond uctivity meter using 10^{-3} M solutions in D MF. The microorganisms were collected from the Biotechnology Department, Milind College of Scie nce, Aurangabad and the strains were maintained on nutrient agar at 4 °C.

Synthesis

The asy mmetric tetradentate Schiff base lig and was synthesized *via* a st epwise approach.¹⁶ In the first step, the mono-Schiff base compound was prepared by refluxing 50 mL solution of 1.0 mmol (0.168 g) of dehydroacetic acid and 1.0 mmol (0.12 g) 4-methyl-*o*-phenylenediamine in super dry ethanol for about 3 h. The thus-formed mono-Schiff base was then refluxed with 1.0 mmol (0.12 g) salicylic aldehyde to prepare the asymmetric ligand *viz*. 4-hydroxy-3-(1-{ $2-[(2-hydroxybenzylidene)amino]-4-methylphenyl}imino}ethyl)-6-methyl-2$ *H*-pyran-2-one (H₂L). The thus-formed asymmetric Schiff base was cooled to room temperature and collected by filtration, followed by recrystallization in ethanol (yield: 70 %).

To a hot methanolic solution (25 ml) containing 1.0 mmol (0.38 g) of the lig and, a methanolic solution (25 ml) of a metal chloride (hydrate) (1.0 mmol) was added under constant stirring. The p H of the reaction mixture was adjusted to 7.5–8.5 by adding 10 % alcoholic ammonia solution and reflux ed for about 3 h. The precipitat ed solid metal complex was filtered off under hot conditions and washed with hot methanol, petroleum ether (40–60 °C) and dried over anhydrous CaCl₂ in a vacuum desiccator(yield: 50–60 %).

Antimicrobial activity

The antimicrobial activity of the ligand and metal complexes were tested *in vitro* against bacteria *Staphylococcus aureus* and *Escherichia coli* by the paper disc pl ate method.¹⁷ The compounds were tested at the concentration 0.50 and 1.0 mg mL⁻¹ in DMF and compared with known antibiotics *viz.* ciprofloxacin. For fungicidal activity, the compounds were screened *in vitro* against *Aspergillus niger* and *Trichoderma viride* by the mycelia dry weight method,¹⁸ using glu cose nitrate media. The compounds were tested at the concentration 250 and 50 0 ppm in DMF and compared with the control.

RESULTS AND DISCUSSION

The physical characteristics, microanalytical, and molar conductance data of the ligand and its metal complexes are given in Table I. The analytical data of the complexes revealed 1:1 mole ratio (met al:ligand) and corresponds well with the general for mula [ML] (M = Cu(II) and Ni(II)) and [ML(H₂O)₂] (M = Co(II), Mn(II) or Fe (III)). The magnetic susceptibilities of the Cu(II) and Ni(II) complexes at roo m temperature were found to be consistent with square-planar geometry and those of the Co(II), Mn(II) and Fe(III) com plexes with high-spin octahedral structures having t wo water molecules coordinated to the metal ion. The

$352\,{\rm munde}$

presence of two coordinated water molecules was confirmed by TG/DT analysis. The metal ch elate solutions in DMF sh owed low co nductance, supporting the non-electrolyte nature of the complexes.

et al.

TABLE I. Physical characterization and analytical and molar conductance data of the prepared compounds

Compound F	w	M.p.	Colour	Λ	F	ound (C	Calcd.), 9	%
Compound F.	vv.	°C	Colour	$S cm^2 mol$	CH		Ν	М
[C ₂₂ H ₂₀ N ₂ O ₄] (H ₂ L) 376.4	42	178	Yellow	-	70.12	5.40	7.38	-
					(70.20)	(5.36)	(7.44)	
[Cu(C ₂₂ H ₁₈ N ₂ O ₄)] 437.97	4	>300	Green	20.13	60.58	3.90	6.50	14.23
					(60.28)	(4.11)	(6.39)	(14.51)
$[Ni(C_{22}H_{18}N_2O_4)]$ 433.13		>300	Red	28.70	61.24	4.52	6.20	13.60
					(60.95)	(4.16)	(6.46)	(13.55)
$[CoC_{22}H_{18}N_2O_4(H_2O)_2] 40$	69.35	245	Reddish	18.20 5	6.50	4.88	6.25	12.95
			brown		(56.25)	(4.69)	(5.97)	(12.56)
$[MnC_{22}H_{18}N_2O_4(H_2O)_2] 4$	65.36	255	Brown	17.55	56.25	5.00	6.35	12.04
					(56.73)	(4.73)	(6.02)	(11.81)
$[FeC_{22}H_{18}N_2O_4(H_2O)_2] 46$	6.27	>300	Brown	42.63	56.30	4.26	5.75	12.00
					(56.62)	(4.72)	(6.01)	(11.98)

¹*H*-*NMR* spectrum of the ligand

The ¹H-NMR spectra of the free ligand in CDCl₃ at room temperature showed the following signals at δ (ppm): 2.15 (3H, *s*, C₆–CH₃), 2.45 (3H, *s*, phenyl– –CH₃), 2.55 (3H, s, N=C–CH₃), 5.82 (1H, *s*, C₅–H), 6.9–7.4 (8H, *m*, phenyl), 11.1 (1H, *s*, phenolic OH), 8.60 (1H, *s*, N=C–H) and 15.80 (1H, s, enolic OH of the DHA moiety).

IR spectra

The IR spectrum of the free ligand showed charact eristic bands at 3100– -3400, 1703, 1662, 1362, and 122 3 cm⁻¹, assignable to v(OH) (intram olecular hydrogen bonded), v(C=O) (lactone carbonyl), v(C=N) (azomethine), v(C–N) (aryl azomethine) and v(C–O) (phenolic) stretching modes, respectively.¹⁹ The ab sence of a weak broad band in t he 3100–3400 cm⁻¹ region, noted in the spectr a of the metal complexes, indicates deprotonation of the intramolecular hydrogen bonded OH group on co mplexation and subsequent coordination of pheno lic oxygen to the metal ion. This is further supported by the upward shift of v(C–O) (phenollic)¹⁸ by 35–70 cm⁻¹. On complexation, the v(C=N) band is shifted to lower wave numbers with respect to the free ligand, suggest ing that the nitrogen of t he azomethine group is coordinated to the metal ion. This is supported by the upward shift in v(C–N) by 15–55 cm⁻¹.²⁰ The IR sp ectra of the metal chelates showed new bands in the 542–580 and 460–513 cm⁻¹ regions, which can be assigned to v(M–O) and v(M–N) vibrations, respectively.²¹ The IR spectra of Co(II),

Mn(II) and Fe(III) complexes show a strong band in the 3200–3600 cm⁻¹ region, indicating the presence of coordinated water in these complexes. The presence of coordinated water was further confirmed by the appearance of a non-ligand band in the 830–840 cm⁻¹ region, assignable to the rocking mode of water.²² The presence of coordinated water was also established and supported b y TG/DT analysis of these complexes. Hence, coordination occurred *via* the phenolic oxy gen and the azomethine nitrogen of the ligand molecule.

Magnetic measurements and electronic absorption spectra

The magnetic and electronic spectral data are given in Table II. The electronic absorption spectrum of the Cu(II) complex in DMSO solution shows three bands at 17813, 26525 and 30487 cm⁻¹, assignable to the transition ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ and two intra-ligand charge transfer bands. These data and the magnetic moment value of 1. 72 μ_{B} suggest square-planar geometry around Cu(II). 21,23 The electronic absorption spectrum of the Ni(II) complex in DMSO solution consisted o f two bands at about 17985 and 26 595 cm⁻¹ assignable to the transition ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ and a charge transfer transition, respectively. These data, the diamagnetic nature and red colour of the com plex are in accordance with square-planar ge ometry for the Ni(II) complex.^{24,25} The electronic absorption s pectrum of the Co(II) complex in DMSO solution had three bands at 10869, 19157 and 26954 cm⁻¹, which may be attributed to the transitions ${}^{4}T_{1g} \rightarrow T_{2g}(F)$, ${}^{4}T_{1g} \rightarrow {}^{4}A_{2g}(F)$ and charge transfer, respe ctively. Toge ther with the magnetic moment value of 4.70 μ_{B} , a high-spin octahedral geometry for the Co(II) com plex^{26,27} was proposed. The octahedral geometry was further supported by the ratio $v_2/v_1 = 1.762$,

Compound	$\mu_{ m eff}$ / $\mu_{ m B}$	$\nu/ \mathrm{cm}^{-1} \mathrm{B}$	and assignment	Geometry
$[C_{22}H_{20}N_2O_4](H_2L) -$		31347	INCT ^a	_
		40816	INCT	
[Cu(C ₂₂ H ₁₈ N ₂ O ₄)] 1.72		17813	$^{2}B_{1g} \rightarrow ^{2}A_{1g}$	Square-planar
		26525	ĬNCT	
		30487	INCT	
$[Ni(C_{22}H_{18}N_2O_4)]$ Dia	magnetic	17985	${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$	Square-planar
	-	26595	ĬNCT	
$[CoC_{22}H_{18}N_2O_4(H_2O)_2]$	4.70	10869	${}^{4}T_{1g} \rightarrow T_{2g}(F)$	Octahedral
		19157	${}^{4}T_{1g} \rightarrow {}^{4}A_{2g}(F)$	
		26954	INCT	
[MnC ₂₂ H ₁₈ N ₂ O ₄ (H ₂ O) ₂] 5.77	16051	${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$	Octahedral
		23640	${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}$	
		29411	INCT	
$[FeC_{22}H_{18}N_2O_4(H_2O_2)]$	5.79	12694	${}^{6}A_{1g} \rightarrow {}^{4}T_{1g} ({}^{4}D)$	Octahedral
		18761	${}^{6}A_{1g} \rightarrow {}^{4}T1_{g}$	
		31250	ĬNCT [°]	

TABLE II. Magnetic and electronic absorption spectral data (in DMSO) of the compounds

"Intra-ligand charge transfer band

$354\,\mathrm{MUNDE}$

which is close to the value expected for octahedral geometry. The electronic absorption spectrum of the Mn(II) com plex in DMSO solution c ontained thre e bands at 160 51, 23 640 and 2941 1 cm⁻¹, assignable to the transi tions ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$, ${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}$ and charge tran sfer, respectively. The electronic transitions together with a magnetic moment value 5.77 μ_{B} , which is close to the spin-only value (5.92 μ_{B}) suggests high spin octahedral geometry for the Mn(II) complex.^{26,28} The electronic absorption spectrum of Fe(III) co mplex shows three weak bands at 12694 , 18 761 and 31250 cm⁻¹, which may be assigned to the transitions ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}({}^{4}D)$, ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$ and charge transfer, respectively. The electronic transitions toget her with the magnetic moment value of 5.79 μ_{B} suggested high-spin octahedral geometry for the Fe(III) complex.^{26,29}

et al.

Thermal analysis

The simultaneous TG/DT analysis of the Cu(II), Ni (II), Co(II) and Mn(II) metal complexes was studied from ambient temperature to 1 000 °C under a nitrogen atmosphere using α -Al₂O₃ as the reference. T he TG curve of the Cu(II) and Ni(II) complexes exhibited no mass loss up to 270 °C, indicating the absence of coordinated water ²⁰ and the high therm al stability of the complexes. On the TG curve of Cu(II) complex, the first step of decomposition from 295 to 352 °C, with a mass loss 21.75 % (calcd. 22.83 %), accompanied by an exothermic peak with $t_{max} = 3.09$ °C on the DTA curve, may be attributed to the removal of the non-coordinated part of the ligand. The second step, from 485 to 650 °C with mass loss 49.30 % (calcd. 49. 10 %), corresponds to the decomposition of the DTA curve was observe d for this step. The mass of the final residue corresponded to stable CuO, 20.85 % (calcd. 18.37 %).

The TG curve of the Ni(II) complex shows a two-st ep decomposition. The first step from 360 to 410 °C with a mass loss of 24. 50 % (c alcd. 23.08%), accompanied by an endothermic peak with $t_{max} = 319$ °C on the DTA curve, may be attributed to the decomposition of the non-coordinated part of the ligand. T he second step, from 460 to 835 °C with a mass loss of 50.24 % (calcd. 49.43 %), corresponds to the rem oval of the coord inated part of the ligand. F or this step, a broad endothermic peak in the DTA was observed. The mass of the final residue 12 % (calcd. 17.05 %) does not correspond to an y stoichiometry of the end pr oduct, as the residue obtained is not close to that expected for metal oxide.

The thermogram of the Co(II) co mplex shows a mass loss of 7.5 % (calcd. 7.6 %) in the temperature range 190–216 °C and an endothermic DTA peak in this region, $t_{\rm min} = 207$ °C, indicates the loss of two coordinated water molecules.^{30,31} The anhy drous co mplex first showed deco mposition from 240–55 0 °C, with a 21 % (calcd. 21.32 %) m ass loss and a broad ex othermic peak with $t_{\rm max} = 255$ °C in the DTA, which may be attributed to the removal of the n on-coordinated part of the ligand. The second step of the decomposition from 545–

355

-860 °C, with a mass loss of 54.0 % (calcd. 54.58%) corresponds to the decomposition of the coordinated part of the li gand. A broad endotherm ic peak in the DTA was observed for this step. The mass of the final residue corresponded t o stable CoO, 13.85 % (calcd. 15.09 %).

The TG curve for the Mn(II) complex showed a first mass loss of 7.30 % (calcd. 7.73 %) in the temperature range 190–200 °C and an endothermic peak in this region with $t_{\rm min} = 195.7$ °C, indicating the removal of two coordinated water molecules. The anhydrous complex exhibited a single-step decomposition from 240 to 900 °C, with a 62 % mass loss and a broad endothermic peak in the DTA.

Kinetic calculations

The kinetic and therm odynamic parameters *viz*. the order of the reaction (n), the energy of activation (E_a) , the pre-exponential factor (Z), the entropy of activation $(\Delta S^{\#})$ and the Gibbs energy change $(\Delta G^{\#})$, together with the correlation coefficient (r) for the no n-isothermal decomposition of the m etal complexes, were determined by the Horowitz–Metzer (HM) approximation method³² and the Coats–Redfern integral method.³³ The obtained data are given in Table III. The results showed that the v alues obtained b y two methods are comparable. The calculated values of the a ctivation energy of the com plexes are relatively low, indicating the autocatalytic effect of the metal ion on the thermal decomposition of the complex.^{34,35} The negative acti vation entropy value indicates that the activated complexes were more ordered than the reactant and that the reactions were slow. The more ordered nature may be due to the polarization of bon ds in the activated state, which might occur through charge transfer electronic transitions.

TABLE III. The kinetic parameter of degradati on of the metal complexes calculated by the Horowitz–Metzger (HM) and Coats–Redfern (CR) methods

M(II) complex	Stop 10	Mathad	E_{a}	Ζ	$\Delta S^{\#}$	$\Delta G^{\#}$	
	step n	Method	kJ mol ⁻¹	s^{-1}	J K ⁻¹ mol ⁻¹	kJ mol ⁻¹	r
Cu(II) I	1.01	HM	267.95	1.8×10^{27}	271.67	248.67	0.9948
		CR	264.73	1.94×10^{23}	195.28	250.86	0.9948
	II 1.42	HM	97.15	1.9×10^{6}	-133.07	110.39	0.9982
		CR	93.34	6.06×10^{5}	-142.73	113.55	0.9951
Ni(II) I	0.85	HM	136.36	8.7×10^{11}	-22.99	138.18	0.9909
		CR	132.82	2.1×10^{9}	-73.47	138.68	0.9890
	II 1.05	HM	47.17	68.1	-219.38	71.92	0.9977
		CR	46.37	41.04	-223.60	71.59	0.9892
Co(II) I	1.1	HM	12.53	0.7368	-253.36	30.90	0.9855
		CR	12.52	0.8983	-251.71	30.77	0.9912
	II 0.95	HM	37.16	4.290	-242.78	65.91	0.9995
		CR	33.34	4.756	-241.93	62.93	0.9995
Mn(II) –	0.65	HM	16.13	0.325	-263.26	43.83	0.9982
		CR	18.87	1.090	-253.16	45.51	0.9836

$356\,\mathrm{MUNDE}$

Powder X-ray diffraction analysis

The X-ray diffractograms of the Co(II), Mn(II) and Fe(III) complexes were scanned in the range 5-100° at a wavelength of 1.543 Å. The diffractograms and associated data depict the 2θ value for each peak, the relative intensity and inter--planar spacing (d-values). The X-ray diffraction pattern of these complexes with respect to major peaks of relative intensity greater than 10 % were indexed using a computer programme.³⁶ This indexing method also y ields the Miller indices (*hkl*), the unit cell parameters and the unit cell volume. The unit cell of Co(II) complex yielded values of lattice constants: a = 8.9706 Å, b = 8.6441 Å and c == 4.7755 Å, and a unit cell volum e V = 369.2291 Å³. The unit cell of the Mn(II) complex yielded values of lattice const ants: a = 24.5882 Å, b = 4.4656 Å, c == 5.8676 Å, and a unit cell volum e V = 627.2087Å³. The unit cell of the Fe(III) complex yielded values of lattice const ants: a = 7.0696 Å, b = 1.4.8954 Å, c == 5.3504 Å, and a unit cell volum e V = 830.4539 Å³. In concurrence with the se cell parameters, conditions such as $a \neq b \neq c$ and $\alpha = \gamma = 90^{\circ} \neq \beta$ required for a monoclinic sample were tested and found to be satisfactory. Hence, it can be concluded that the Co(II), Mn(II) and Fe(III) complexes were monoclinic crystal systems. The experimental density values of the complexes were determined using the specific gravity method³⁷ and found to be 2.1908, 2.5002, and 2.0522 g cm⁻³ for the Co(II), Mn(II) and Fe(III) complexes, respectively. Using the experimen tal density values, ρ , the m olecular weight of the complexes, M, Avogadro's number, N, and the volume of the unit cell, V, the number of molecules per unit cell, n, were calculated using the equation $\rho = nM/NV$ and they were found to be one for Co(II) and two for the Mn(II) and Fe(III) complexes. With these values, the theoretical densities were computed and found to be 2 .1824, 2.4637 and 2.0645 g cm $^{-3}$ for the respective complexes. Comparison of experimental and theoretical density value shows good agreement within the limits of experimental error.³⁸

et al.

Antimicrobial activity

The results of the *in vitro* antimicrobial activity of the ligand and metal complexes against the bacteria *Staphylococcus aureus* and *Escherichia coli*, determined by the paper disc plate method,¹⁷ are presented in Table IV, in which th e activity of a known antibiotic *viz*. ciprofloxacin is in cluded for comparison. The results of the *in vitro* fungicidal activity of the compounds against *Aspergillus niger* and *Trichoderma viride* determined by the mycelia dry weight method¹⁸ with glucose nitrate media, are given in Table V, in which the results of the control are also presented. From Tables IV and V, it is clear that the inhibition by the metal chelates was higher than that of the free ligand and results are in good agreement with previous findings with respect to comparative activity of free ligand and its complexes.^{17,18} The inhibition of growt h (%) of both fungi due t o metal com-

357

plexes decreased in the order Cu (II) > Ni (II) > Co (II) > Mn (II) > Fe (II). Such enhanced activity of m etal chelates is due to the li pophilic nature of the metal ions in the complexes.³⁹ The increase in activity with concentration is due to the effect of metal ions on the normal metabolic function of the cell. The action of compounds may involve the formation of hydrogen bonds with the active centre of cell constituents, resulting in i nterference with the norm al function of the cell.⁴⁰

TABLE IV.	Antibacterial	activity of	the	compounds
		2		1

	Inhibition zone, mm					
Test compound	E. coli		E. coli		S. a	ureus
	500 ppm	1000 ppm	500 ppm	1000 ppm		
Ciprofloxin	29 32 31 35					
$[C_{22}H_{20}N_2O_4](H_2L)$	10 12 12 15					
$[CuC_{22}H_{18}N_2O_4]$	15 18 16 19					
$[NiC_{22}H_{18}N_2O_4]$	12 16 14 16					
$[CoC_{22}H_{18}N_2O_4(H_2O)_2]$	13 16 15 17					
$[MnC_{22}H_{18}N_2O_4(H_2O)_2]$	11 12 12 15					
$[FeC_{22}H_{18}N_2O_4(H_2O)_2]$	11 13 14	15				

TABLE V. Yield of mycelial dry weight in mg and inhibition in % (in parentheses)

T	A. n	iger	T. viride	
l est compound	250 ppm	500 ppm	250 ppm	500 ppm
Control	79 79 70	0 70		
$[C_{22}H_{20}N_2O_4](H_2L)$	60 (24)	22 (72)	38 (46)	17 (76)
$[CuC_{22}H_{18}N_2O_4]$	38 (52)	09 (89)	19 (73)	01 (99)
$[NiC_{22}H_{18}N_2O_4]$	40 (49)	12 (85)	20 (71)	02 (97)
$[CoC_{22}H_{18}N_2O_4(H_2O)_2]$	49 (38)	14 (82)	25 (64)	04 (94)
$[MnC_{22}H_{18}N_2O_4(H_2O)_2]$	45 (43)	16 (80)	28 (60)	07 (90)
$[FeC_{22}H_{18}N_2O_4(H_2O)_2]$	52 (34)	17 (78)	32 (54)	09 (87)

CONCLUSIONS

Based on the physicochemical and spectral data discussed above, square-planar geometry for Cu(II) and Ni(II) complexes and octahedral geometry for Co(II), Mn(II) and Fe(III) complexes are proposed. It is assumed that the ligand behaves as dibasic, ONNO tetradentate, coordinating *via* the phenolic oxygen and the imino nitrogen a s illustrated i n Fig. 2. The complexes are biologically active and showed enhanced antimicrobial activities compared to the free ligand. A thermal study revealed that the complexes are thermally stable. An XRD study suggested the monoclinic crystal system for the Co(II), Mn(II) and Fe(III) complexes.

et al.

ИЗВОД

СИНТЕЗА, КАРАКТЕРИЗАЦИЈА И ТЕРМИЧКА СТУДИЈА НЕКИХ ПРЕЛАЗНИХ МЕТАЛНИХ КОМПЛЕКСА СА АСИМЕТРИЧНИМ ТЕТРАДЕНТАТНИМ ШИФОВИМ БАЗАМА

ACHUT S. MUNDE¹, AMARNATH N. JAGDALE², SARIKA M. JADHAV³ H TRIMBAK K. CHONDHEKAR³

¹Department of Chemistry, Milind College of Science, Aurangabad-431 004(M.S), ²Department of Chemistry, D.P.College, Karjat, Dist.: Ahemdnager, (M.S) u³Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004, Maharashtra, India

Синтетисани су комплекси Cu(II), Ni(II), Co(II), Mn(II) и Fe(III) са асиметричним тетрадентатним Шифовим базама изведеним из дехидросирћетне киселине, 4- метил-о-фенилендиамина и салицил-алдехида и окарактерисани елементалном анализом, кондуктометријом, магнетном сусцептибилношћу, UV–Vis, IR, ¹H-NMR спектрима, рендгенском дифракционом анализом праха, термичком анализом и тестирани на антимикробну активност. IR спектрални подаци сугерисали су да се лиганд понаша као двобазни тетрадентатни лиганд према централном металном јону са ONNO секвенцијом донорних атома. Из микроанализе нађена је стехиометрија комплекса 1 :1 (метал:лиганд). Физичко-хемијски подаци сугерисали су квадратно-планарну геометрију за Cu(II) и Ni(II) комплексе и октаедарску геометрију за комплексе Co(II), Mn(II) и Fe(III). Термичко понашање (TGA/DTA) комплекса је проучавано и кинетички параметри су одређени Ногоwitz–Metzger и Coats–Redfern методама. Лиганд и његови метални комплекси су тестирани на антибактеријску активност према *Staphylococcus аигеиs* и *Escherichia coli* и антифунгалну активност према *Aspergillus niger* и *Trichoderma viride*. Рендгенски дифракциони подаци праха указали су на моноклинични кристални систем за Co(II), Mn(II) и Fe(III) комплексе.

(Примљено 4. априла, ревидирано 16. октобра 2009)

REFERENCES

- Y. Shibuy a, K. Nabari, M. Kondo. S. Yasu e, K. Maeeda, F. Uchida, H. Kawag uchi, Chem. Lett. 37 (2008) 78
- 2. B. J. Gangani, P. H. Parsania, Spectrosc. Lett. 40 (2007) 97

Available online at www.shd.org.rs/JSCS/

METAL COMPLEXES OF A TETRADENTATE SCHIFF BASE

- 3. B. Sindhuku mari, G. Rij uulal, K. Mohanan , Synth. React. Inorg., Met.-Org. Nano--Met. Chem. 39 (2009) 24
- 4. M. Thankamony, K. Mohanan, Indian J. Chem. 46A (2007) 247
- 5. N. Raman, J. Dhaveethu Raju, A. Sakthivel, J. Chem. Sci. 119 (2007) 303
- D. Wang, Y. Yang, Y. Yang, T. Zhao, X. Wu, S. Wang, Y. Hou, W. Chen, *Chin. Sci. Bull.* 51 (2006) 785
- 7. K. Shivakumar, Shashidhar, M. B. Halli, Russ. J. Phys. Chem. 82 (2008) 2269
- 8. S. A. Sadeek, M. S. Refat, J. Korean Chem. Soc. 50 (2006) 107
- N. T. S. Pan, D. H. Brown, H. Adams, S. E. Spey, P. St yring, J. Chem. Soc. Dalton Trans. 9 (2004) 1348
- 10. S. F. Tan, K. P. Ang, Transition Met. Chem. 13 (1988) 64
- 11. D. Sury a Rao, B. L. Subha Rao, V. T. John, M. C. Ganork ar. *Nat. Acad. Sci. Lett.* **1** (1978) 402
- 12. D. Surya Rao, C. Sadasiva Reddy, V. T. John, M. C. Ganorkar. Curr. Sci. 49 (1980) 511
- 13. B. Schleiffenbaum, O. Spertini, F. Tedder Thomas, J. Cell. Biol. 119 (1992) 229
- 14. V. G. Stanley, S. Woldesenbet, G. Cassandra, Poult. Sci. 75 (1996) 42
- 15. A. Levai, J. Jeko, Monatsh. Chem. 137 (2006) 339
- 16. M. A. Qayyoom, P. Hanumanthu, C. V. Ratnam, Indian J. Chem. 21B (1982) 883
- 17. P. S. Mane, S. G. Shirodkar, B. R. Arbad, T. K. Chondhekar, Indian J. Chem. 40 (2001) 648
- 18. S. F. Tan, K. P. Ang, H. L. Jatchandran, Transition Met. Chem. 9 (1984) 390
- 19. P. Venketeswar Rao, A. Venkata Narasaiah, Indian J. Chem. 42A (2003) 896
- D. C. Dash, A. K. Panda, P. Jena, S. B. Patj oshi, A. Mahapatra, J. Indian Chem. Soc. 79 (2002) 48
- 21. R. Natrajan, K. Antonysamy, C. Thangaraja, Transition Met. Chem. 28 (2003) 29
- 22. K. Nakamoto, *Infrared Spectra of Inorganic and Coordination Compounds*, 3rd ed., Wiley Interscience, New York, 1970, pp. 159, 167, 214
- N. Raman, Y. Pitchaikaniraja, A. Kulandaisamy, Proc. Indian Acad. Sci. (Chem. Sci.) 113 (2001) 183
- 24. K. M. Reddy, M. B. Halli, A. C. Hiremath, J. Indian Chem. Soc. 17 (1994) 118
- 25. M. Mokhles Abd-Elzaher, J. Chin. Chem. Soc. 48 (2001) 153
- 26. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968, p. 275
- 27. K. C. Satpathy, A. K. Panda, R. Mishra, I. Pande, Transition Met. Chem. 16 (1991) 410
- 28. L. Sacconi, Transition Met. Chem. 61 (1968) 943
- 29. M. N. Patel, V. J. Patel, Synth. React. Inorg., Met.-Org. Chem. 19 (1989) 137
- 30. N. S. Bhave, R. B. Kharat, J. Inorg. Nucl. Chem. 42 (1980) 977
- 31. V. K. Revankar, V. B. Mahale, Indian J. Chem. 28A (1979) 683
- 32. H. H. Horowitz, G. Metzger Anal. Chem. 35 (1963) 1464
- 33. A. W. Coats, I. P. Redfern, Nature 20 (1964) 68
- 34. A.M. El-Awad, J. Therm. Anal. Calorim. 61 (2000) 197
- 35. A. Impura, Y. Inoue, I. Yasumori, Bull. Chem. Soc. Jpn. 56 (1983) 2203
- 36. J. R. Carvajal, T. Roisnel, *Winplotr, A Graphic Tool for Powder Diffraction*, Laboratoire Leon Brillouin (ceal/cnrs) 91191 Gif sur Yvette Cedex, France, 2004
- D. P. Shoemaker, C. W. Garland, *Experiments in Physical Chemistry*, 5th ed., McGraw-Hill International Edition, New York, 1989
- 38. M. B. Deshmukh, S. Dhongade-Desai, S. S. Chavan, Indian J. Chem. 44 (2005) 1659
- 39. L. Mishra, V. K. Singh, Indian J. Chem. 32A (1993) 446
- 40. N. Dharamraj, P. Viswanathamurthi, K. Natarajan, Transition Met. Chem. 26 (2001) 105.

J. Serb. Chem. Soc. 75 (3) 361–368 (2010) JSCS–3968 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 541.3:546.26:532.74:519.17–124 Original scientific paper

Enumeration of a class of IPR hetero-fullerenes

ALI REZA ASHRAFI and MODJTABA GHORBANI*

Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I. R. Iran

(Received 30 July, revised 20 August 2009)

Abstract: Het ero-fullerenes are fullerenes i n which some of the carbon atoms are replaced by other atoms. This paper u ses the Pólya theorem to count the number of their possible positional isomers and chiral isomers. To do this, the computer algebra system GAP was applied to compute this number for a class of IPR hetero-fullerenes with I_h point group symmetry. These fullerenes we re constructed by means of the leapfrog principle.

Keywords: fullerene; hetero-fullerene; Pólya theorem; cycle index.

INTRODUCTION

Carbon exists in several forms in nature. One is the so-called fullerenes, which were discovered for the first time in 1985.¹ Fullerenes are carbon-cage molecules in which a large number of carbon atoms are bonded in a nearly spherically symmetric configuration. Let p, h, n and m be the nu mber of pent agons, hexagons, carbon atoms and bonds between them, respectively, in a given fullerene F. Since each atom lies in exa ctly 3 face s and each edge li es in 2 fac es, the number of atoms n = (5 p + 6 h)/3, the number of edges m = (5 p + 6 h)/2 = 3 n/2 and t he number of faces f = p + h. By the Euler formula, n - m + f = 2, it can be deduced that (5p + 6h)/3 - (5p + 6h)/2 + p + h = 2 and, therefore, p = 12, v = 2h + 20 and e = 3h + 30. This implies that such molecules made up entirely of n carbon atoms and having 12 pentagonal and (n/2 - 10) hexagonal faces, where $n \neq 22$, is a natural number or more carbon atoms are replaced by hetero-atoms, such as boron or nitrogen, the formation of which is a kind of "on-ball" doping of the fullerene cage.

Detecting symmet ry of molecules is a well-studied problem with applications in a large number of areas. Randic,^{3,4} and then Balasubramanian,^{5–11} considered the Euclidean matrix of a che mical graph to find its symmetry. Here t he Euclidean matrix of a molecular graph G is a matrix $\mathbf{D}(G) = [d_{ii}]$, where for $i \neq j$,

^{*} Corresponding author. E-mail: ghorbani@kashanu.ac.ir doi: 10.2298/JSC090730020A

ASHRAFI and GHORBAN

 d_{ij} is the Euclidean distance between the nuclei *i* and *j*. In this matrix, d_{ii} can be taken as zero if all the nuclei are equivalent. Otherwise, different weights for different nuclei may be introduced.

Suppose σ is a permutation on *n* atoms of the molecule under consideration. Then the permutation matrix \mathbf{P}_{σ} is defined as $\mathbf{P}_{\sigma} = [x_{ij}]$, where $x_{ij} = 1$ if $i = \sigma(j)$ and 0 otherwise. It is easy to see that $\mathbf{P}_{\sigma}\mathbf{P}_{\tau} = \mathbf{P}_{\sigma\tau}$, for any two permutations σ and τ on *n* objects, and hence the set of all $n \times n$ permutation matrices is a group isomorphic to the symmetric group S_n on *n* symbols. It is a well-known fact that a permutation σ of the vertices of a graph *G* belongs to its auto morphism group if it satisfies $\mathbf{P}_{\sigma}^{t}A\mathbf{P}_{\sigma} = \mathbf{A}$, where **A** is the adjacency matrix of **G**. Thus, for computing the symmetry of a molecule, it is sufficient to solve the matrix equation $P^{t}EP = \mathbf{E}$, where **E** is the Euclidean matrix of the molecule under consideration and *P* varies on the set of all permutation matrices with the same dimension as **E**.

A method^{12,13} has been described on how to construct a fullerene C_{3n} from a fullerene C_n having the same or even a bigger s ymmetry group as C_n . This method is called the Leapfrog principle. If one starts with a C $_n$ cluster with icosahedral symmetry, all the new clusters will be of the same symmetry, since this is the biggest symmetry group in 3-dimen sional space. In the first step, an extra v ertex has to be put into the centre of each face of C_n . Then, these new vertices have to be connected with all the vertices surrounding the corresponding face. Then, the dual polyhedron is again a fullerene having 3_n vertices, 12 pentagonal and (3n/2) - 10 hexagonal faces. Knowing the 3-dimensional cycle index of $S(C_n)$ acting on the sets of vertices, edges and faces, it is very easy to compute the cycle index for the induced action of $S(C_n)$ on the set of vertices of C_{3n} . ¹⁴ From Fig. 1, it can be seen that Le(C_{20}) = C_{60} .

Fig. 1. The fullerene C_{20} (a) and $Le(C_{20})$ (b).

Available online at www.shd.org.rs/JSCS/

Balasubramanian¹¹ has realized a lot of work on methods for isomer counting of hetero-fullerenes and of pol y-substituted fullerenes, especially, using the generalized character cycle index. Mathematically the isomer counting of poly-substituted fullerene is essentially the same as that of hetero-fullerene. Shao and Ji ang¹⁵ discussed hy drogenated C₆₀. Furthermore, Zhang¹⁶ also studied fullerene cages. In this paper, the com pute number of hetero-fullerenes, C_{3ⁿ×20}, is computed.

MAIN RESULT AND DISCUSSION

Groups are often used to describe symmetries of objects. This is formalized by the notion of a group action. Let G be a group and X a non-empty set. An action of G on X is denoted by G_X and X is called a G-set. It induces a group homomorphism φ from G into the symmetric group S_X on X, where $\varphi(g)x = gx$ for all $x \in X$. The orbit of x will be denoted by G_X , which defines as a set all $\varphi(g)x$, $g \in G$. The set of all G-orbits will be denoted by $G \setminus X := \{Gx \mid x \in X\}$. Suppose g is a permutation of n symbols with exactly λ_1 orbits of size 1, λ_2 orbits of size 2,..., and λ_n orbits of size n. Then the cycle type of g is defined as $1^{\lambda_1}, 2^{\lambda_2}, ..., n^{\lambda_n}$.

Now, the no tion of a c ycle index is introduced. L et G be a perm utation group. The cy cle in dex of G acting on X is the pol ynomial Z(G,X) over Q in terms of the indeterminates $x_1, x_2, \dots, x_t, t = |X|$, defined by:

$$Z(G,X) = \frac{1}{|G|} \sum_{p \in G} \prod_{i=1}^{t} x_i^{c_i(p)}$$

in which $(c_1(p),...,c_t(p))$ is the cy cle type of the permutation $p \in G$. The generalized character cycle index is defined as:

$$P_{G}^{\chi}(x_{1}, x_{2}, ..., x_{t}) = \frac{1}{|G|} \sum_{p \in G} \prod_{i=1}^{t} \chi(g) x_{i}^{c_{i}(p)}$$

where $\chi(g)$ is the linear character of the irreducible r epresentation of G. In this paper, two special cases are used: one is the anti-symmetric representation, that is:

$$\chi(g) = \begin{cases} 1 & \text{if } g \text{ is a proper rotation,} \\ -1 & \text{if } g \text{ is an improper rotation,} \end{cases}$$

and the other when χ is 1 for all g. Since, all elements of a conjugacy class of a permutation group have the same cycle type, the cycle index and the generalized character cycle index can be rephrased in the following way:

$$Z(G, x_1, ..., x_t) = \frac{1}{|G|} \sum_{C \in \text{Conj}(G)} |C| \prod_{i=1}^t x_i^{c_i(g_C)}$$

Available online at www.shd.org.rs/JSCS/

ASHRAFI and GHORBANI

$$P_{G}^{\chi}(x_{1}, x_{2}, ..., x_{t}) = \frac{1}{|G|} \sum_{C \in \operatorname{Conj}(G)} |C| \prod_{i=1}^{t} \chi(g_{C}) x_{i}^{c_{i}(g_{C})}$$

Enumeration of chemical compounds has been accomplished by various methods. The Pólya–Redfield theorem is a standard method for combinatorial enumerations of graphs, polyhedra, chemical compounds, *etc.* Combinatorial enumerations have found wide-ranging application in chemistry, since chemical structural formulas can be regarded as graphs or three-dimensional objects.

Denote by $C_{m,n}$ the set of all functions $f: \{1,2,...,m\} \rightarrow \{x_1,x_2,...,x_n\}$. The action of $p \in S_m$ induced on $C_{m,n}$ is defined by $\hat{p}(f) = fop^{-1}, f \in C_{m,n}$. Treating the colors $x_1, x_2, ..., x_n$ that comprise the range of $f \in C_{m,n}$ as independent variables, the weight of f is:

$$W(f) = \prod_{i=1}^{m} f(i)$$

Evidently, W(f) is a monomial of the (total) degree *m*. Suppose *G* is a permutation group of degree $m, \hat{G} = \{ \hat{p} : p \in G \}, \hat{p}$ is as defined above. Let p_1, p_2, \dots, p_t be representatives of the distinct orbits of \hat{G} . The weight of p_i is the common value of $W(f), f \in p_i$. The sum of the weights of the orbits is the pattern inventory:

$$W_G(x_1, x_2, \dots, x_n) = \sum_{i=1}^{r} W(p_i)$$

Theorem 1 (the Pólya Theorem¹⁷). If G is a subgroup of S_m , the symmetry group on m symbols, then the pattern inventory for the orbits of the $C_{m,n}$ modula \hat{G} is:

$$W_G(x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{p \in G} M_1^{C_1(p)} M_2^{C_2(p)} \cdots M_m^{C_m(p)}$$

where $M_k = x_1^k + x_2^k + \ldots + x_n^k$ is the *k*th power sum of the *x*-es.

Theorem 2 (generalization of the Pólya Theorem¹⁶). Substituting M_i for x_i and in the generalized cha racter cycle index, i = 1, 2, ..., t, one obtains the chiral generating function $CGF = P_G^{\chi}(M_1,...,M_k)$. To enumerate all possibili ties of the he tero-fullerene structures, one has to

To enumerate all possibili ties of the he tero-fullerene structures, one has to consider the rotation group of the fullerene, and its whole automorphism group to enumerate the number of chiral isomers. Fripertinger¹⁸ computed the symmetry of so me fullerenes and t hen applied Symmetrica¹⁹ to cal culate the number of $C_{60}H_kCl_{60-k}$ molecules and Balasubra manian computed the number of C $_{60}H_{36}$ isomers F. Z hang *et al.*¹⁶ used the Pó lya counting theorem for calculating the possibilities of different positional isomers. He also applied the generalization of the Pólya theorem to compute the number of chiral isomers.

Available online at www.shd.org.rs/JSCS/

364

365

Now is the time to enumerate the number of hetero-fullerenes in a series of fullerenes constructed by leapfrog. From the above discussion, the problem is reduced to the coloring of t he corresponding fullerene graph with $3^n \times 20$ vertices. Consider the molecular graph of the fullerene $C_{3^n \times 20}$, Fig. 2. From the leapfrog principle, it can be seen that the symmetry group G of these fullerenes is isom orphic to the group $\mathbf{I}_h = \mathbf{Z}_2 \times \mathbf{A}_5$ of order 1 20 and the cycle types of elements of G are as given:

Fullerene	Cycle type	No. of permutations
$C_{3^n \times 20}$	$1^{3^{n} \times 20}$	20
5 ~20	$2^{3^n \times 10}$	
	$1^{3^{n-1}\times 4}2^{3^{n-1}\times 28}$	
	$3^{3^{n-1} \times 20}$	
	$5^{3^{n} \times 4}$	
	$6^{3^{n-1} \times 10}$	
	$10^{3^{n} \times 2}$	

Fig. 2. The fullerene C_{60} .

Thus the cycle index of *G* is computed as:

 $Z(G,X) = x_1^{20\times3^n} + 20(x_3^{20\times3^{n-1}} + x_6^{10\times3^{n-1}}) + 24(x_5^{4\times3^n} + x_{10}^{2\times3^n}) +$ +15 $x_1^{4\times3^{n-1}}x_2^{28\times3^{n-1}} + 16x_2^{20\times3^n}$

However, from the cycle indices, the number of possible positional iso mers, the number of chiral isom ers and the number of orbits under the whole point

Available online at www.shd.org.rs/JSCS/

group I_h can be computed. For the number of orbits under the whole point group I_h , it should simply be noted that:

$$Z_{\mathbf{I}_{h}} - P_{\mathbf{I}_{h}}^{\mathcal{X}} = P_{\mathbf{I}_{h}}^{1}$$

In what follows, a GAP program is prepared to compute the num ber of hetero-fullerenes for $C_{3^n \times 20}$. It should be mentioned here that the present computations of the symmetry properties and cycle indices of the fullerenes were realized with the use of GAP. ²⁰ This software was constructed by the GAP team in Aachen. In Table I, this program is applied to compute the number of hetero-fullerenes for the case of n = 1.

TABLE 1. The number of $C_{60-k}B_k$ molecules

1.60 h	Number of C ₆₀₋	Number of $C_{60-k}B_k$ molecules for		
к,00-к	Rotational group	Symmetry group	whole point group \mathbf{I}_{h}	
0,60	1	1	0	
1,59	1	1	0	
2,58	23	37	14	
3,57	303	577	274	
4,56	4190	8236	4046	
5,55	45718	91030	45312	
6,54	418470	835476	417006	
7,53	3220218	6436782	3216564	
8,52	21330558	42650532	21319974	
9,51	123204921	246386091	123181170	
10,50	628330629	1256602779	628272150	
11,49	2855893755	5711668755	2855775000	
12,48	11661527055	23322797475	11661270420	
13,47	43057432740	86114390460	43056957720	
14,46	144549869700	289098819780	144548950080	
15,45	443284859624	886568158468	443283298844	
16,44	1246738569480	2493474394140	1246735824660	
17,43	3226849468425	6453694644705	3226845176280	
18,42	7708584971055	15417163018725	7708578047670	
19,41	17040023323785	34080036632565	17040013308780	
20,40	34932048763560	69864082608210	34932033844650	
21,39	66537224405790	133074428781570	66537204375780	
22,38	117952355252550	235904682814710	117952327562160	
23,37	194877787472550	389755540347810	194877752875260	
24,36	300436595453640	600873146368170	300436550914530	
25,35	432628675734195	865257299572455	432628623838260	
26,34	582384767014701	1164769471671687	582384704656986	
27,33	733373386161407	1466746704458899	733373318297492	
28,32	864332935668892	1728665795116244	864332859447352	
29,31	953746664302456	1907493251046152	953746586743696	
30,30	985538239868528	1971076398255692	985538158387164	

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

366
367

A gap program for counting the number of hetero-fullerene for $C_{3^n \times 20}$

```
f:=function(n)
local s,i,f,x,t,tt,g;
x:=Indeterminate(Rationals,"x");
f := ((1 + x)^{(20*3^{n})} + 20*((1 + x^{3})^{(20*(3^{(n-1)}))} + (1 + x^{6})^{(10*(3^{(n-1)}))} 
1)))) + 24*((1 + x^{5})^{(4*3^n)} + (1 + x^{10})^{(2*3^n)} + 15*(1 + x)^{(4*(3^n) - 1)^{(2*3^n)}}) + 15*(1 + x)^{(4*(3^n) - 1)^{(2*3^n)}})
1)))*(1 + x^2)^{(28*(3^{(n-1)})) + 16*(1 + x^2)^{(10*(3^n)))/120;}
g := ((1 + x)^{2})^{3}
                                                    n) + 20*(1 + x^3)^(20*(3^(n
                                                                                                                                      (-1))) + 15*(1 +
x^{2}^{(10*(3^{(n))})} + 24^{(1 + x^{5})^{(4*(3^{n})))/60};
t := CoefficientsOfLaurentPolynomial(f);
tt := CoefficientsOfLaurentPolynomial(g);
Print("\n");
Print("THIS FULLERENE IS C ",3<sup>n</sup>*20,"\n");
Print("\n");
Print("Number of Molecules for Symmetry Group =","\n");
for i in t[1] do
Print(i,"\n");
od;
Print("Number of Molecules for Rotation Group=","\n");
for i in tt[1] do
Print(i,"\n");
od;
Print("Number of Orbits underWhole Point Group Sn=","\n");
for i in [1..Length(t[1])] do
Print("[",i-1);Print(",",Length(t[1])-i);Print("]=");Print(tt[1][i]-t[1][i],"\n");
od:
return;
end;
```

CONCLUSIONS

In this paper, an efficient method is presented which is useful for computing permutational isomers of h etero-fullerenes. The method was applied on a buck - minster fullerene and the number of such isomers was computed. From the cycle index of leap frog of a series of fullerenes with I_h point gro up s ymmetry, such numbers for all elements of the series can be computed. A GAP program for such calculations is also presented.

ASHRAFI and GHORBANI

ИЗВОД

ПРЕБРОЈАВАЊЕ ЈЕДНЕ КЛАСЕ ХЕТЕРО-ФУЛЕРЕНА СА ИЗОЛОВАНИМ ПЕНТАГОНИМА

ALI REZA ASHRAFI и MODJTABA GHORBANI

Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I. R. Iran

Хетеро-фулерени су фулерени у којима су неки угљеникови атоми замењени другим атомима. У раду је примењена Појина (Pólya) теорема за пребројавање могућих како позиционих тако и хиралних изомера. Да би се то постигло, коришћена је компјутерска алгебра система GAP и он примењен за одређивање броја изомера за једну класу хетеро-фулерена са изолованим пентагонима (IPR), чије су групе симетрије **I**_h. Ови фулерени су конструисани применом "липфрог" методе.

(Примљено 30. јула, ревидирано 20. августа 2009)

REFERENCES

- 1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162
- P. W. Fowler, D. E. Manol opoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995
- 3. M. Randić, Chem. Phys. Lett. 42 (1976) 283
- 4. M. Randić, J. Chem. Phys. 60 (1974) 3920
- 5. K. Balasubramanian, J. Chem. Phys. 72 (1980) 665
- 6. K. Balasubramanian, Int. J. Quantum Chem. 21 (1982) 411
- 7. K. Balasubramanian, Chem. Rev. 85 (1985) 599
- 8. K. Balasubramanian, J. Chem. Phys. 75 (1981) 4572
- 9. K. Balasubramanian, Chem. Phys. Lett. 232 (1995) 415
- 10. K. Balasubramanian, J. Phys. Chem. 108 5527 (2004)
- 11. K. Balasubramanian, Chem. Phys. Lett. 391 (2004) 69
- 12. P. W. Fowler. Chem. Phys. Lett. 131 (1986) 444
- 13. P. W. Fowler, J. I. Steer, J. Chem. Soc. Chem. Commun. (1987) 1403
- 14. M. Ghorbani, A. R. Ashrafi, Asian J. Chem. 19 (2006) 1109
- 15. Y. Shao, Y. Jiang. Chem. Phys. Lett. 242 (1995)191
- 16. F. Zhang, R. Li, G. Lin, J. Mol. Struct. (THEOCHEM) 453 (1998) 1
- 17. G. Pólya, R. C. Read, *Combinatorial Enumeration of Groups and Chemical Compounds*, Springer, New York, 1987
- 18. H. Fripertinger, MATCH Commun. Math. Comput. Chem. 33 (1996) 121
- 19. Symmetrica, A program system devoted to representation theory, invariant theory and combinatorics of finite symmetric groups and related classes of groups, c opyright by Lehrstuhl II für Mathematik, Universität Bayreuth, 95440 Bayreuth, distributed via ano-nymous, ftp//132.180.16.20, in dist/SYM.tar.Z.
- The GAP Team : GAP, Groups, Algorithms and Programming, R WTH, Aachen, Germany, 1995
- 21. A. R. Ashrafi, M. Ghorbani, MATCH Commun. Math. Comput. Chem. 60 (2008) 359
- 22. A. R. Ashrafi, M. Jalali, M. Ghorbani, M. V. Diudea, MATCH Commun. Math. Comput. Chem. 60 (2008) 905
- 23. A. R. Ashrafi, M. Ghorbani, MATCH Commun. Math. Comput. Chem. 59 (2008) 595
- 24. M. Ghorbani, M. Jalali, MATCH Commun. Math. Comput. Chem. 62 (2009) 353
- 25. M. Ghorbani, A. R. Ashrafi, J. Comput. Theor. Nanosci. 3 (2006) 803
- 26. A. R. Ashrafi, M. Ghorbani, M. Jalali, Dig. J. Nanomater. Bios. 3 (2008) 245.

J. Serb. Chem. Soc. 75 (3) 369–376 (2010) JSCS–3969 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 678.674+546.173:678:539.24 Original scientific paper

An SEM and EDS study of the microstructure of nitrate ester plasticized polyether propellants

YONG LIU^{1,2*}, LUOXIN WANG¹, XINLIN TUO¹ and SONGNIAN LI^{1,2}

¹Institute of Polymers, Department of Chemical Engineering, Tsinghua University, Beijing 100084 and ²College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

(Received 26 March, revised 15 July 2009)

Abstract: To p robe the microstructures of ni trate est er pla sticized p olyether (NEPE) composite propellants and observe th e morphology of each constit ute in the propellant, the microstructure and elemental constitutes of NEPE propellants were investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. The ammonium perchlorate (AP) grains had a scraggy surface and were difficult to disperse uniformly. The compatibility between the AP grain s and the poly mer binder was poor, espe cially for large grains. T he size distribution range of the AP and o ctogen (HMX) grai ns in prop ellants varied from several to several hundreds μ m for the for mer while for the latter from s everal to s everal tens μ m. Contrast ing i mages be fore and after dissolution the propellant in trichloro methane sho wed th at the degree of crosslinking of the polymer binder was low since non-crosslinked binder on the surface areas was easily removed by the solvent, and that the plasticizer was near the HMX grains and contributed more O to the element analysis of HMX.

Keywords: composite solid propellants; scanning electron microscopy; microstructure; element analysis.

INTRODUCTION

NEPE (nitrate est er plasti cized poly ether) propellants are a ty pe of highl y energetic, composite solid propellant.^{1–3} This type of propellant uses a polyether polymer binder, such as p olyethylene glycol (PEG) or eth ylene oxide (tetrahydrofuran-co-polyether), and a plasticizer of mixed nitrate (BG), usu ally using nitroglycerin (NG) and 1,2,4 -butanetriol trinitrate (BTTN).^{4–6} The balance of the propellant consists of large am ounts of solid grains, including aluminum powder (Al), octogen (HMX), amm onium perchlorate (AP), *etc.* The interactions between the polymer binder and the other c onstituents, which are mostly inorganic, are not good . However, after crosslinking, the p olymer binder can wrap all the

369

^{*} Corresponding author. E-mail: yongsd@iccas.ac.cn doi: 10.2298/JSC090326007L

 $370\,\text{LI}$

solid grains as shown in a previous study.⁷ This type of propellant integrates the advantages of doub le-base propellants and composite propellants, and adds ex - cellent low temperature mechanical properties.^{8,9} Therefore, this type of pr opellant has been studied extensively and a pplied broadly in many countries since its first development in the USA in the 1970s. ^{10–12} However, the microstructure of the propellant, which decisively affects its performance, has hitherto not been clearly investigated.^{13–15} In this study, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to directly observe the micro-morphology and distribution of the constituents in the propellant, whereby a detailed understanding of its special microstructure was obtained.

EXPERIMENTAL

The microstructure of NEPE solid propellant, which wa s tak en from a rock et, was observed using Hitachi S-4500 and S-6301 scanning electron microscopes (Japan). The grains in the SEM figure s were measured using t he measuring to ol in corporated into I magenet 2 000 software. The elemental constitutes of a small area were analyzed using an Inca energy dispersive X-ray spectrometer (The Netherland s) combined with the S-6301 microscope. The samples were sprayed with gold for 5 minutes before observation.

The main constitutes of the NEPE propellants by mass percentage were: PEG, 6 to 9; BG, 15 to 21; Al, 19; HMX, 43 and AP, 8. The content of some other auxiliary agents were about 1-2 %. The analytical reagent trichloromethane was used to extract the plasticizer from the NEPE propellants.

RESULTS AND DISCUSSION

SEM Analyzes for Al and AP in NEPE propellants

In the NEPE propellants, the polymer binder PEG is the continuous phase while solid grains, such as Al, AP and HMX, are dispersed in the PEG. By the process of elimination, if the morphologies of any two among three kinds of solid grains are determ ined then the remaining kind of s olid grain is also identified. Hence, first the microstructure of two raw materials, AP and Al, were observed, as shown by the images in Fig. 1. HMX was not selected for direct observation since these grains in the propellant are covered closely by bonding agent, making it difficult to obtain their real morphology.

An SEM image of several AP grains is shown in Fig. 1a. This image clearly shows that most of AP grains are anomaly shaped with a size from approximately 100–300 μ m, with a few even smaller grains. The SEM image in Fig. 1b is zoomed in on a single AP grain which exhibits a dense, small protuberance on its surface. This grain has the characteristic of a scraggy morphology. Elemental analysis using EDS was performed on this same grain to determine its composition: N:O:Cl is 17:56:15 (t he element H cannot be determined), which basically conforms to the molecular composition of AP (NH₄ClO₄). The SEM image in Fig. 1c shows several Al grains with not only ellipsoid shapes but also spherical shapes.¹⁵

The microstructure of the NEPE propellant was observed using SEM (Fig. 2). The wide-angle SEM im age of the NEPE propellant sam ple in Fig. 2a clearly shows that the large grains are AP due to both their scraggy morphological characteristic and their relatively large size. The spatial distribution of this kind of grain is uneven since four can be seen locat ed close to the top le ft corner of the image while none is seen in the middle. Two AP grains, the top left and the bottom ones, are obviously cracked. This cracking likely occurred during cutting the propellant using a knife to obtain the SEM samples. From the distribution of AP grains in this image, it can be inferred that the large AP grains are difficult to disperse evenly. The SEM i mage in Fig. 2b is zoomed in to show a s maller area of propellant. Almost all the solid grains (no bigger than approximately 30 µm) are covered with polymer binder. Only one solid grain, in the lower part of the Fig. 2b, is exposed and its surface is scraggy - perhaps a small AP grain or a corner of large one. An SEM picture of a single AP grain in the propellant is shown in Fig. 2c. Obviousl y the surface of this AP grain has two kinds of morphology: grooves on the left and protuberances on the right. The right morphology, grooves, is the same as those of the raw AP material. The possible reason for the two

$372\,\text{LI}$

U et al.

kinds of morphology appearing simultaneously is that an AP grain, as a crystal, has several surfaces of which two of them appeared in this observation area. Different observation angles showed different morphologies. The three im ages in Fig. 2 show the poor compatibility of AP (especially the large grains) with the polymer binder in this propellant, since only AP grains were visible, the other solid grains being covered with binder. A further easy deduction is that the bad compatibility will result in the AP grains being the point of stress concentration within the propellant. Thus, the mechanical performance of the propellants could be improved by improving the compatibility between the AP grains and the polymer binder, possibly by using a bonding agent.

(b)

Fig. 2. SEM Images of the original NEPE propellant: a) image of a large area of the propellant, b) image of a small area of propellant and c) image of a partial AP grain in the propel - lant.

SEM and EDS analyses of NEPE propellants

According to the formulation of NEPE propellants, most of the s olid grains in Fig. 2b should be HMX. However, the ellipsoid Al and small AP grains could possibly be covered with polymer binder, which is an additional difficulty in ascertaining whether or not a certain grain is HMX. In order to assure the material attributes of a grain in NEPE propellants and to determine the dimension distri-

bution of HMX grains, elemental analysis using EDS combined with the S-6 301 SEM was performed on a few of the solid grains and some polymer binder areas.

First, a planar area to make element analysis was selected where the polymer binder seemed to be the main component, Fig. 3a. The mini cross in the image is the center of the area selected for spectrum analysis. The EDS results are listed in Table 1 and shown by Fig. 3b. Al and AP grains were possibly located under the binder area, explaining the s mall content of the elements Al and Cl in thes e results. In this area, the constitute ratio of C:O was about 69:25, which is larger than expected for the PEG polymer, the segment molecular formula of which is C_2H_4O . The deviation in the element C content possibly arises from SEM instrumental error, as about 12 % C, was also measured in the element constitute results for pure AP and Al grains.

Fig. 3. SEM Im age of the N EPE propellant for EDS ele ment analysis: a) binder area; b) spectrum of the analysis.

TABLE I. Element content of	f the	binder	determined	by	EDS	anal	ys	i
-----------------------------	-------	--------	------------	----	-----	------	----	---

Element	Content, mass %	Content, at. %
С	59.18	69.44
0	28.69	25.27
Al	3.74	1.95
Cl	8.39	3.34

Second, a medium-sized grain having an anomalous shape, as shown in Fig. 4a, was analyzed. Elemental composition was approximately C:N:O = 10:7:8. The molecular formula of HM X is C $_4H_8N_8O_8$, while the form ula of NG and BTTN are C $_3H_5O_9N_3$ and C $_4H_7O_9N_3$, respectively. With no Cl or Al evidenced and further with the ratio of the elements N and O nearly 1:1, this soli d grain can be confirmed to be HMX. The content of element O is slightly high in the results, possibly because liquid plasticizer near the HMX grain contributed more elemental O. To confirm the ab ove hypothesis, a NEPE propellant sample was left in CHCl₃ for 10 days in order to extract the plasticizer. Then another EDS analysis performed on a solid grain , as shown in Fig. 4b . The elemental composition re-

 $374\,\mathrm{LI}$

U et al.

sults for C:N:O was approxim ately 43:27:27. The elem ent C content was very high. Possible reasons are the SEM instrument and the bonding agent which contains a relatively large amount of element C, coating the HMX grains. The ratio of N:O was 1:1 in these elemental composition results, proving the correctness of the above hypothesis. The plasticizer w ould be near the HMX grain and would contribute a large amount of element O to EDS analysis results. Comparing images in Figs. 4a and 4b, clearly the polymer binder covering the solid grains was lower in Fig. 4b, indicating that the degree of crosslinking of the polymer binder was low and that some uncrosslinked polymer binder was dissolve by the CHCl₃.

Fig. 4. SEM Images of middle size grains for EDS element analysis: a) NEPE propellant; b) after soaking in CHCl₃.

In Fig. 5, the large grain and the small white one below it were con firmed to be HMX usi ng EDS element analysis. Cracks on the surface of the large HM X grain were the result of the high veloci ty electron i mpulse when observing the microstructure. The dimensions of the large and sm all HMX grains can be estimated as about 30 and 4 μ m, respectively, illustrating that the size distribution of the HMX grains was broad, from several to several tens of μ m.

Fig. 5. SEM Im age of one large grain in the NEPE propellant.

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

MICROSTRUCTURE OF NEPE PROPELLANTS

Using the same element analysis method, the sm all grain marked in Fig. 6 and the other small grain, close to the left of the marked one, were determined to be HMX and AP, respectively. The three sp ikelet in the left part of the image were the result of image distortion because when observing microstructure the polymer binder tended to flow under the action of the high velocity electrons or the electrical conductivity was bad in this area. Contrasting this image with those in Figs. 2 and 3, it is apparent that the polymer binder covered the small grains more easily than the large ones, especi ally the large AP grains. Another con clusion is that the size r ange of the AP gr ains was larger than that for the HM X grains, being from several to several hundreds μ m in size.

Fig. 6. SEM Image of a small grain in the NEPE propellant.

CONCLUSIONS

The microstructure morphology of AP grains observed using SEM was either dense, s mall protuberances or groove anomalies on the grain surface. The si ze distribution range of the grains was wide, from several tens to about 300 μ m. The shape of the Al grains varied widely and their size was predominately less than 15 μ m, with a broad distribution. Observations of the NEPE propellant using SEM evidenced that the distribution of the large AP grains was not uniform or regular, and that compatibility between the AP grains and the pol ymer binder was poor, making the AP grains points of stress con centration if the propellant were to be subjected to stress.

The elemental composition of the material in the NEPE propellants was determined using EDS element analysis, enabling the material attributes of the grains and binder to be established. The size r ange of the HMX grains in these propellants, confirmed using EDS, was from several to several tens of μ m. By using CHCl₃ to extract the plasticizer from the NEP E propellants, with before and after element analysis, the plasticizer was shown to lie very close to the HMX grains. The contrasted microstructure images allowed the deduction that the degree of cros slinking of the polymer binder in the NEPE propellants is low and that the uncross-linked binder on surface parts can be readily dissolved by solvents.

Available online at www.shd.org.rs/JSCS/

375

2010 Copyright (CC) SCS

 $376\,\text{LI}$

U et al.

Acknowledgements. This work was supported by the China Post-doctor Sci ence Foundation (No. 20060390431).

ИЗВОД

SEM И EDS СТУДИЈА МИКРОСТРУКТУРЕ ЕКСПЛОЗИВА НА БАЗИ НИТРАТНИХ ЕСТАРА ПЛАСТИФИКОВАНИХ ПОЛИЕТРИМА

YONG LIU 1,2 , LUOXIN WANG 1 , XINLIN TUO 1 и SONGNIAN LI 1,2

¹Institute of polymer, Department of Chemical Engineering of Tsinghua University, Beijing 100084 u²College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

За анализу микроструктуре композитних експлозива на бази нитратних естара пластификованих полиетрима (NEP E) као и морфологије и елементарног састава појединачних компоненти, коришћене су скенирајућа електронска микроскопија (SEM) и спектроскопска анализа карактеристичног рентгенског енергетског зрачења (EDS). Анализа је показала да зрна амонијум-перхлората (AP) имају неравну површину и да нису равномерно распоређена по узорку. Компатибилност између AP зрна и полимерне матрице је веома лоша што је нарочито изражено код већих зрна. Ширина расподеле величине зрна је била за AP и (HMX, експлозиви високе температуре топљења) у опсегу од неколико до неколико стотина µm, односно од неколико до неколино десетина µm. Анализа слике пре и после растварања експлозива у трихлорметану је показала да су брзина и степен реакције умрежавања полимерног везива мали, и то на основу чињенице да је неумрежено полимерно везиво лако уклоњено са површине зрна. На основу елементарне анализе и повећаног садржаја кисеоника закључено је да се полиетарско везиво налази на површини HMX зрна експлозива.

(Примљено 26. марта, ревидирано 15. јула 2009)

REFERENCES

- 1. D. K. Davis, in *Proceeding of AIAA-1984-1441, 20th SAE and ASME Joint Propulsion Conference*, Cincinnati, OH, USA, 1984, p. 125
- 2. J. C. Hinshaw, US Patent 4804424 (1989)
- 3. T. H. Zhang, Y. L. Bai, S. Y. Wang, P. D. Liu, Acta Mech. Sin. 17 (2001) 348
- 4. S. N. Li, Y. Liu, X. L. Tuo, X. G. Wang, Polymer 49 (2008) 2775
- X. G. Wei, G. Q. He, P. J. Liu, X. Z. Li, in Proceeding of 57th International Astronautical Congress, Valencia, Spain, 2006, paper No. IAC-06-C4.P.2.5
- 6. A. Davenas, J. Propuls. Power. 11 (1995) 285
- 7. Y. Liu, L. X. Wang, X. L. Tuo, S. N. Li, X. G. Wang, Chin. J. Explos. Propel. 30 (2007) 53
- 8. A. Davenas, J. Propuls. Power. 19 (2003) 1108
- 9. M. Kearns, Mater. Sci. Eng. A. 375 (2004) 120
- 10. W. S. Kennedy, S. M. Kovacic, E. C. Rea, T. C. Lin, J. Spacecr. Rockets 36 (1999) 890
- 11. S. W. Beckwith, H. B. Carroll, J. Spacecr. Rockets 22 (1985) 156
- F. T. Chen, Y. Q. Duo, S. G. Luo, Y. J. Luo, H. M. Tan, Propellants Explos. Pyrotech. 28 (2003) 7
- 13. P. D. Peterson, D. J. Idar, Propellants Explos. Pyrotech. 30 (2005) 88
- 14. C. L. Gallic, R. Belmas, P. Lambert, Propellants Explos. Pyrotech. 29 (2004) 339
- 15. L. Meda, G. Marra, L. Galfetti, F. Severini, L. De Luca, Mater. Sci. Eng. C 27 (2007) 1393.

J. Serb. Chem. Soc. 75 (3) 377-383 (2010)

JSCS-3970 036.7:541.182.64

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 678.744+541.183.1:544.6.018.47-

Short communication

SHORT COMMUNICATION Surface-charged polyacrylonitrile/poly(vinyl alcohol) (PAN/PVA) colloids used to prepare proton conducting materials

JIANDONG GAO^{1,2}, ZHIGANG MA^{1,2}, JING GUO^{1,2}, YONGJIAN HUAI^{1,2}, ZHENGHUA DENG^{1*} and JISHUAN SUO¹

¹Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu Sichuan 610041 and ²Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China

(Received 9 March, revised 20 August 2009)

Abstract: Proton exchang e membranes e xhibiting a well-org anized structure were successfully prepared by a novel self-assembling technique using surface-charged latex nanoparticles as building blocks. The nanoparticles were synthesized in water by free-radical copolymerization. Free-standing membranes were obtained by casting the poly mer e mulsions followed by a cross-linking reaction. The acquired membrane exhibited a hig h proton conductivity of 0.04 S cm⁻¹ with an ion exchange c apacity (*IEC*) as low as 0.48 mmol g⁻¹. The enhanced proton conductivity is thought to be derived from the formation of a co-continuous ionic network for i on channels by the closely packed surface-charged latex nanoparticles, facilitating proton transportation in the membranes.

Keywords: polyacrylonitrile; poly(vinyl alcohol); proton conductivity ; ion exchange capacity; fuel cell.

INTRODUCTION

Proton-conducting poly mer electroly te me mbranes (PEM) are one of the most critical components for polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Most of the PEMs are ionom ers consisting of a h ydrophobic backbone with pe ndant cation exchange sites, such as $-SO_3^-$. The ionic aggregation and the nanoscale phase s eparation of ionic and nonionic components resulted in the formation of bi-continuous structures for membranes exhibiting proton conductivity.^{1,2} However, the long-range patterned organization of hydrophilic clusters into a hy drophobic phase does not exist in PEMs,³ which suggests that a low content of clusters does not induce the formation of percolation paths. Increasing the content of cation exchange site faci -

377

^{*} Corresponding author. E-mail: zhdeng@cioc.ac.cn

doi: 10.2298/JSC090309005G

$378\,\mathrm{Gao}$

litates the transformation from insulator to ion conductor (percolation threshold) for the polymers, which is as cribed to the formation of interconn ected ionic domains. However, a continuous increment in the content of ionic sites may result in a deterioration of mechanical properties of the membranes because of the high hydrophilic property of the polymer. Therefore, it is essential to reasonably control the am ount of ionic group in order to avoid a sh arp decrease of the proton conductivity or a deterioration of the mechanical properties of the membranes.

Although there are many archetypal structures to choose from in order to design a polymer with a particular molecular structure which would promote phase separation, the synthetic pathways available are not quite so rich. ⁴ Furthermore, membranes casting from ionomer solutions usually did not lead to a precisely controlled structure (Fig. 1) to im prove proton transport by optimizing the connectivity of the ionic domains.

Fig. 1. Schematic diagram showing the surface-charged latex nanoparticles and membrane formation *via* the self-assembly of the nanoparticles.

Self-assembling of latex n anoparticles were applied for the preparation of templating sem iconductors or conduct ing polymers. The pol ystyrene particl es used to tem plate doped π -conjugated polymers were found t o decrease the per - colation threshold for electrical conductivity.⁵ Surf ace-charged latex nanoparticles were used to builed blocks for P EMs exhibiting a linear relationship b e-tween conductivity and ion exchange capacity (*IEC*) values even at low *IEC* values, probably due to the disappearance or shifting to very low of percolation thresholds for membranes with bi-continuous structures.^{6,7} In this work, the efforts were mainly focused on the preparation and characterization of novel proton exchange membranes, increasing the co-continuous ionic network for ion channels and facilitating proton transportation. A novel method to prepare proton-conducting membranes *via* surface-charged polymer colloids self-assembling te-

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

chniques, followed by a cross-linking reaction, is demonstrated. A schematic diagram showing the surface-charged late x nanoparticles and the mem brane formation is shown in Fi g. 1. The surface- charged latex nanoparticles were packed and linked to gether as building blocks medium for proton conductive membranes. In this way, a proton conductive membrane with controlled micro/nanoscale structure and optimized connectivity of the ionic domains was formed.

EXPERIMENTAL

Sample preparation

A hy drophobic monomer, a crylonitrile (AN), a cross-linker , *N*,*N*⁻methylenebisacrylamide (BIS), and a charged monomer, sodium vinylsulfonate (SVS, 25 % c ontent in distill ed water), were chosen for the nanoparticle sy ntheses by free-radical emulsion copolymerization in an a queous poly(vinyl alcohol) (PVA, deg ree of poly merization and saponif cation wer e 1700 and 98–99%, respectively) solution. During the nanoparticle synthesis reaction, the PVA served as a poly meric dispersant, preventing the colloi dal particles from ag gregation. The PVA chains assembled the spheres to form latex films and the hydroxyl groups (–OH) in PVA were cross-linked in the following membrane preparation process, constraining the swelling of the membrane and providing mechanical strength. The synthesis in aqueous emulsions should re sult in charged groups b eing att ached to the surface of the particles.⁸ Vario us amounts of SVS were introduced into the system to obtain particles with different contents of charges for different membranes. AN (14.0 g), BIS (1.0 g) and SVS (1.0–4.0 g) were add ed into 80.0 g of a n aqueous PVA solution containing 4.0 g of P VA under vigorous stirring and then heated under a nitrogen at mosphere to the incubation temperature of 65 °C. The reaction was initiated by adding dropwise an ammonium persulfate (APS) solution.

The free-standing membranes were prepared by direct ca sting of the emulsion onto a clean glass slide, followed by drying under normal pressure at ambient temperature. Then the membrane with a thickness of about 120 μ m was immersed into an acetone solution containing 5 wt. % glutaradehy de (GA) and 0.5 % HCl (volu me fraction). The reaction was smaintained at 40 °C for 4 h, whereby cross-linked membranes were subsequently obtained. In addition, the as-received membranes were treated with a 1.0 M H₂SO₄ solution overnight and then washed three tim es with distill ed water before measurements of the proton conductivity and ionic content. Naf on[®] 117 (1100 EW, 177.8 μ m thickness, commercially extruded film) was purchased from Aldrich and used as received without any further purification.

Measurements

The FTIR anal ysis was p erformed on a Nico let MX-1E FTIR spectro meter. The m orphology of the particle membrane was studied by scanning electron microscopy (SEM), using a Jeol JSM-5900LV electron microscope.

The proton conductivities of the particle membranes were evaluated by measuring the ac impedance spectra using a So lartron ac i mpedance system (1260 i mpedance analyzer, 1287 electrochemical interface, Zplot software) in the frequen cy range of 1 MHz to 1 Hz. The membranes of 0.59 cm² in are a were sandwiched between two platinum blocking electrodes. All membranes were pre-hy drated in wat er for at least 2 4 h and then qui ckly enclosed in a sealable cell to maintain hy dration during i mpedance measurements. The *IEC* values of the membranes were measured by the classical titration method.

 $380 \, \text{gao}$

RESULTS AND DISCUSSION

et al.

The FTIR spectra of the membranes before and after the cross-linking reaction are shown in Fig. 2. With respect to the membrane after cross-linking with GA, the membrane showed different absorption bands in the spectra as compared with the pristine membrane. The bands at 1000 and 1038 cm⁻¹ correspond to the vibration of C–O and C–O–C bonds due to acetal or semi-acetal formation after the cross-linking reaction, respectively. The band at 1717 cm⁻¹ was assigned to the absorption of the carbon yl groups of non-conjugated aldehydes.⁹ In addition, two important peaks at 2934 and 2862 cm⁻¹ were ascribed to the absorptions of the stretch vibration of C– H bonds related to aldeh ydes.¹⁰ These FTIR spectral changes shown in Fig. 2 confirm the acetalization that occurred inter molecular between PVA and GA.

Fig. 2. FTIR Spectra of particle membranes obtained before and after the cross-linking reaction.

Before the cross-linking reaction, cohesion of the spheres was achieved mainly through intersphere chain entanglement of PVA. The water solubility of the PVA chains enabled the film to swell excessively in water, preventing measurement of the conductivity and *IEC*. After the cross-linking reaction, the films showed constrained swelling and adequate mechanical strength.

An SEM cross-section im age of a cross-linked m embrane obtained from the surface-charged polymer colloids is shown in Fig. 3. It may be observed that the particles are individually well disperse d and packed closely within the m embrane, suggesting that the structure of the particles remained after the preparation and cross-linking reaction of the m embrane. The well dispersed structure of the particles is believed to facilitate the formation of network for ion channels.

PAN/PVA PROTON CONDUCTING MEMBRANES

Fig. 3. SEM Cross-sectional image of a particle membrane with an IEC value of 0.28 mmol g⁻¹.

Proton con ductivity can vary with diff erent experimental approaches and instruments. For comparison, the proton conductivity of Nafion [®] 117 was measured under the same conditions and resulted in a value of 0.020 S cm⁻¹ at 20 °C. As shown in Table I, the proton con ductivity of the particle membranes was high even for an *IEC* as low as 0.18 mm ol g⁻¹. The values of the proton conductivit y increased al most linearly with *IEC*, reaching 0.040 S cm⁻¹ for an *IEC* of 0.48 mmol g⁻¹. It is generally accepted that a higher value of the *IEC* is desirable to achieve higher proton con ductivity in p olymer electrolyte membranes. A s compared with Nafion [®] 117 (*IEC* of 0.91 mmol g⁻¹) under the same condition, t he particle membrane had a comparative proton conductivity, in addition to an *IEC* of 0.28 mmol g⁻¹, which is much lower than that of a Nafion 117 membrane of 0.91 mmol g⁻¹.

TABLE I. <i>IEC</i> and proton co	nductivity (δ) of the membranes
-----------------------------------	--

Membrane sample	SVS content ^a , wt. %	$IEC / \text{mmol g}^{-1}$	δ^{b} / S cm ⁻¹
Membrane-1 5		0.18	0.010
Membrane-2 8		0.28	0.020
Membrane-3 12		0.36	0.028
Membrane-4 17		0.48	0.040
Nafion [®] 117	—	0.91	0.020

^aSVS contents in feed; ^bmeasured at 20 °C

It is believed that the difference be tween the conductivit y of the particle membranes and the Nafion $^{\mathbb{R}}$ 117 membrane lies in the connectivity of the conduction pathways. In a mem brane made from random or graft copol ymers, the charges are uniformly distributed resulting in a lack of phase separation. The high conductivity only occurs where there is sufficient connection between the

 $382\,{\rm gao}$

charged regions for a conti nuous pathway to exist, often associated with a high *IEC*. For the surface-charged latex m embranes, the particles packed closely and the cation exchange sites ($-SO_{3}^{-}$) are spread am ong adjacent particles, facili tating phase separation during m embrane drying. When the thin film swells in water, the localized charge clusters may diffuse to form a co-continuous ionic network and so provide continu ous pathways, even at a low charge content. In this case, the percolation threshold shifts to much lower values. In effect, the low percolation threshold can be attributed to an efficient organization of the charges within the membrane. It is known that the proton conductivit y of an ordered arrangement of proton conductive nanodomains is higher than that of a rando mly arranged one. ^{11–13} Thus, the particle membranes have the advant age of improving proton conductivity by the formation of a continuous conduction pathway.

CONCLUSIONS

Proton exchange membranes exhibiting well-organized structures were successfully prepared by self-assembling and cross-linking reaction of surfac e-charged polymer colloids. The well-organized structure as revealed by SEM faciletated the formation of continuo us conduction pathways, thus improving the proton conductivity of the particle membranes. The novel method for preparing membranes with an ordered microstructure is recognized to be u seful in the d esign of both PEMs and ion-conducting membranes for use in battery applications, electrosynthesis and water purification.

извод

ПРИМЕНА ПОВРШИНСКИ НАЕЛЕКТРИСАНИХ КОЛОИДНИХ ЧЕСТИЦА ПОЛИ(АКРИЛОНИТРИЛ)/ПОЛИ(ВИНИЛАЛКОХОЛА) (PAN/PVA) У ПРОТОН ПРОВОДНИМ МАТЕРИЈАЛИМА

JIANDONG GAO^{1,2}, ZHIGANG MA^{1,2}, JING GUO^{1,2}, YONGJIAN HUAI^{1,2}, ZHENGHUA DENG¹ 1/2 JISHUAN SUO¹

¹Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu Sichuan 610041 u ²Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China

У овоме раду је приказана израда протон проводних мембрана добро дефинисане структуре применом нове технике "само-организације" површински наелектрисаних наночестица. Наночестице су синтетисане емулзионом кополимеризацијом у присутву слободних радикала као иницијатора. Полимерне мембране су добијене поступком извливања латекса и накнадним умрежавањем колоидних честица. Добијене полимерне мембране су показивале велику протонску проводљивост од око 0,0 4 S cm⁻¹ при релативно ниском јоноизмењивачком капацитету (*IEC*) од 0,48 mmol g⁻¹. Претпоставља се да је повећана протонска проводљивост мембрана последица континуалне мреже јонских канала, настале густим паковањем површински наелектрисаних наночестица, чиме је олакшан транспорт протона кроз мембрану.

(Примљено 9. марта, ревидирано 20. августа 2009)

REFERENCES

- 1. L. Rubatat, A. L. Rollet, G. Gebel, O. Diat, Macromolecules 35 (2002) 4050
- 2. Y. A. Elabd, E. Napadensky, C. W. Walker, K. I. Winey, Macromolecules 39 (2006) 399
- 3. K. A. Mauritz, R. B. Moore, Chem. Rev. 104 (2004) 4535
- 4. Y. Yang, S. Holdcroft, Fuel Cells 5 (2005) 171
- R. Mezzenga, J. Ruokolainen, G. H. Fredrickson, E. J. Kra mer, D. Moses, A. J. Heeger, O. Ikkala, *Science* 299 (2003) 1872
- 6. J. Gao, D. Lee, Y. S. Yang, S. Holdcroft, B. J. Frisken, Macromolecules 38 (2005) 5854
- 7. J. Gao, D. Lee, Y. S. Yang, S. Holdcroft, B. J. Frisken, Macromolecules 39 (2006) 8060
- J. H. Kim, M. Chainey, M. S. El-Aasser, J. W. Vanderhoff, J. Polym. Sci., Part A: Polym. Chem. 30 (1992) 171
- 9. W. M. de Azevedo, J. M. de Souza, J. V. de Melo, Synth. Met. 100 (1999) 241
- 10. H. S. Mansur, R. L. Oréfice, A. A. P. Mansur, Polymer 45 (2004) 7193
- E. M. W. Tsang, Z. B. Zhang, Z. Q. Shi, T. Soboleva, S. Holdcroft, J. Am. Chem. Soc. 129 (2007) 15106
- 12. R. Maki-Ontto, K. de Moel, E. Polushki n, G. A. van Ekenstein, G. ten Brink e, O. Ikkala, *Adv. Mater.* **14** (2002) 357
- 13. T. Tezuke, K. Tadanage, A. Hay ashi, M. Tatsu misago, J. Am. Chem. Soc. 128 (2006) 16470.

J. Serb. Chem. Soc. 75 (3) 385–394 (2010) JSCS–3971 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 666.3–127.001:539.24:544.773.42/43 Original scientific paper

Preparation and morphology of porous SiO₂ ceramics derived from fir flour templates

ZHONG LI^{1,2}, TIEJUN SHI^{1*} and LIYING GUO¹

¹School of Chemical Engineering, Hefei University of Technology, Hefei 230009 and ²School of Chemical Engineering, Anhui University of Science & Technology, Huainan 232001, China

(Received 10 April, revised 25 November 2009)

Abstract: The p reparation of Si O₂ ceramics with controllable porous structur e from fir flour t emplates via sol-gel processing was inve stigated. The specifi c size the fir flour, which was tr eated with 20 % NaOH solution, was infiltrated with a low viscous silica sol and subsequently calcined in air, which resulted in the formation of highly porous SiO₂ ceramics. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field e mission scanning electron microscopy (FESEM) were employed to investigate the microstructure and phase formation during processing as well as of the SiO₂ ceramics. N₂ adsorption measurements were used to analy ze the pore size di stributions (PSD) of the final ceramics. The results indicated that the surface topography was changed and the pr oportion of the a morphous material was in creased in N aOH--treated fir flou r. The final ox ide product s re tained ord ered structures of th e pores and showed unique pore sizes and distributions with hierarchy on the nanoscale derived from the fir flour.

Keywords: porous silicon ceramics; microstructure; sol-gel process; calcination.

INTRODUCTION

Over the last decade, oxide cer amics with special structure and morphology have aroused widespread interest, one of which is SiO₂ with unique porous structures.^{1–5} Porous silicas have attracted c onsiderable attention because of their distinguished performance in adsorption te chnology, catalysis, and medical applications. In general, biotemplating techniques, in which biological materials are used directly as template structures for high-temperature conversion into technical ceramic materials, is an ideal method to fabricate these materials.^{6–8} In recent years, different biotemplating routes have been developed for the conversion of biological materials into biomorphous SiO₂ ceramics. Shin *et al.*⁹ reported the fabrication of hierarchical porous SiO ₂ ceramics from wood by a surfactant-tem plated

385

^{*} Corresponding author. E-mails: zhongli-91@163.com; stjhfut@163.com doi: 10.2298/JSC090410010Z

LI, SHI and GUO

sol–gel process. Davis *et al.*¹⁰ produced ordered mesoporous silica by infiltration of bacteria with an SiO₂ gel. Cook *et al.*¹¹ exactly replicated butterfly structures by chemical vapor deposition of silica. However, for the application of bio-templates, how to control the pores shape and size distribution is still a challenge.

Wood is a bi odegradable, recyclable, abundant and natural composite with cellulose, hemicellulose, and lignin as the major biopolymeric constituents with additional macromolecular compounds, such as different kinds of fat, oil, wax, resin, *etc.*, as m inor constituents. Wood tissues are composed of interconnected cells (tracheids) and open space s (lumens). These cells are glued together by an intercellular layer and are connected by openings of different shapes. These openings are called pits (bordered pits or simple pits) and are the communication channels between the cells.^{9,12} Owing to its stable and hierarchically porous characteristics, wood is an excellent template for porous structures.

In the present study, porous SiO₂ ceramics were fabricated using fir flour as the biological template structure. Fir wood (classified as coniferous) is composed of a uni que cross-sectional constructed tracheidid cells and bordered pits along the tracheid walls for tangential connectivity. Fir wood exhibits a nearly bimodal pore distribution. The scales range from mm via µm to nm.¹² However, the fine structure of the cellulose materials in fir wood is com posed of crystalline and amorphous regions. The amorphous regions easily absorb chemicals, whereas the compactness of the crystalline regions makes it difficult for chemical penetration. To increase the pore volume and the corresponding possible amount of the infiltrated SiO₂ precursor, the fir flour was pretreated with a NaOH solution. The sol--gel infiltration process of a low viscous oxide prec ursor into the fir flour was applied. During burn ou t of the biolog ical preforms during the calcination process, porous SiO₂ ceramics were obtained, which maintained the morphology of the fir flour. The m icrostructure, cry stallinity change and chemical functional groups of fir flour and porous SiO₂ ceramics were investigated using field e mission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy.

EXPERIMENTAL

Material preparation

Fir wood (*Cunninghamia lanceolata*) was gr ound into flour of approxi mately 200 μ m and dried at 10 5 °C for 24 h. Dried flour (2.5 g) was treat ed with 20 wt. % NaOH solution (100 mL) at 30 °C for 2 h in order to re move the fats and fatty acids in the flour. The NaOH-treated flour, which possessed a better connectivity and cellular affinity for the penetration of the precursor solution, was subsequently washed with distilled water until the wash water was alkali-free and then dried at 105 °C for 24 h. The precursor solution was prepared u sing tetraethyl orthosilicate (TEOS), et hanol (EtOH), distilled wat er and hy drochloric acid (HCl) in the molar ratio 1:4:4:0.05.

The NaOH-treated flour specimens were infiltrated with the precursor solution at 60 °C for 24 h in a self-made sealed infiltration vessel. Subsequently, the specimens were removed

Available online at www.shd.org.rs/JSCS/

386

from the precursor solution and dried in air at 130 °C for 24 h to for m *in situ* SiO₂ gels. Finally, the infiltrated specimens were calcined by heating at a rate of 10° C/min to 600, 800 or 1000 °C and held at the desire d temperature for 3 h to rem ove the template by oxidation and then allowed to cool to room temperature.

Characterization

A Fourier transformation, infrared spectrometer (Perkin–Elmer Spectrum 100) operating in the transmission mode under a dry air atmosphere was employed to record the FTIR spectra of the samples in the wavenumber range 4000–400 cm⁻¹ using the KBr pellet technique.

For cry stalline phase identification, the X-ray diffraction patterns of the samples were measured on a powder X-ray diffraction meter (Rigaku D/Max-rB). The cry stallinity index (I_c) was determined by using Eq. (1):

$$I_{\rm c} = \frac{I_{(002)} - I_{(\rm am)}}{I_{(002)}} \ (1)$$

where $I_{(002)}$ is the counter reading at peak maximum at a 2 θ angle close to 22°, representing crystalline material, and $I_{(am)}$ is the counter reading at peak maximum at a 2 θ angle close to 18°, representing amorphous material in the cellulosic fir flour.

Field e mission scanning electron microscopy (FEI Sirion 2 00, operated at 5 kV) was employed to observe the morphological features of the sa mples. For field em ission scanning electron microscopy (FESEM) observations, the sample was pre-sputtered with a conducting layer of Au for 2 min at 10 kV.

The N_2 adsorption isoth erms were measured with a Micromeritics ASAP 2020 a dsorption analyzer. The pore size distributions (PSD) were calculated from the adsorption branches of the N_2 isotherms using the Barrett–Joyner–Halenda (BJH) method.

RESULTS AND DISCUSSION

FTIR Analysis

The spectra of fir flour, NaOH-treated flour, SiO ₂ gel-treated f lour composite and SiO₂ ceramics are shown in Fig. 1. In the spectra of the fir flour and NaOH-treated flour (Fig. 1, a and b, respectively), the absorption bands at 29 28 and 1374 cm⁻¹ are attributed to the C– H stretching and bending vibration in cellulose. The absorption band of the C–O stretch vibrations in cellul ose and hemicelluloses are at 1054 cm⁻¹, which is the highest intensity band. Furthermore, the vibration peak at 1732 cm⁻¹, attributed to the C=O stretching of methyl ester and carboxylic acid, where absent in the spect rum of the NaO H-treated flour. This indicated the removal of pectin, waxy and natural oils covering the external surface of the cell wall by the alkali treatment. The ratio of peak heights at 1374 and 2928cm⁻¹ (H_{1374}/H_{2928}) in the FTIR spectra of the flour samples was us ed for the determination of the crystallinity index of cellulose in fir flour.¹³ In this study, the H_{1374}/H_{2928} ratio decreased from 1.2 for fir flour to 0.93 for the NaOH-treated flour, suggesting that the proportion of the am orphous material had increased in the NaOH-treated flour.

In the spectra of the SiO₂-gel/treated flour composite and SiO₂ ceramics calcined at 800 $^{\circ}$ C (Fig. 1, c and d, respectively), the absorption bands at 1090, 800

LI, SHI and GUO

and 460 cm⁻¹ are ascribed to the asymmetric and symmetric stretching vibrations of Si–O–Si bonds. In the FTIR absorption spectrum of the SiO₂ gel-treated flour composite (F ig. 1, c), peaks charact eristic for both flour and SiO₂ absorption spectra appear, suggesting that no che mical reaction between the SiO₂ gel and the fir flour occurred during the infiltration. In the FT IR spectrum of the product obtained at a calcination tem perature of 800 °C, the peaks assigned to fir flour became negligible and nearly only the peaks ascribed to the Si–O–Si asymmetric and symmetric stretching vibrations were evident, suggesting that the calcination went nearly to completion.

Fig. 1. FTIR Spectra of a) fir flour, b) NaOH-treated flour, c) SiO₂ gel-treated flour composite and d) SiO₂ ceramics calcined at 800 °C.

XRD Analysis

The XRD patterns of the fir flour, NaOH-treated flour, SiO₂ gel-treated flour composite and the SiO₂ gel dried at 1 10 °C are shown in Fig. 2. The m ajor diffraction planes of the cellulose in fir flour, nam ely the (101), (002) and (040) planes, are present at 2θ angles of 16.5, 22.3 and 34.3° .¹⁴ The characteristic peak of cellulose can be se en in Fig. 2 (a and b). There wa s no cry stalline transformation of the crystalline structure in the NaOH-treated flour. However, the NaOH treatment decre ased the intensity of the (020) plane, suggesting that the degree of cry stallinity of cellulose w as decre ased. The cry stallinity index (I_c) decreased from 68 % for fir flour to 58 % for the NaOH-tr eated fir flour , suggesting that alkali treatment increase d the prop ortion of am orphous material present in the fir flour as also suggested by FTIR results. In Fig. 2 (d), a broad peak centere d at 2 θ = 23.2° indicates that the SiO₂ gel was in the am orphous

state.¹⁵ Characteristic peaks of both fir flour and SiO ₂ gel can be found in Fig. 2 (c). The broad peak at $2\theta = 23^{\circ}$ is form ed by the overlapping the ce llulose characteristic peak centered at $2\theta = 22.3^{\circ}$ and a SiO ₂ gel relevant peak. The peak characteristic for cellulose at 16.5° has a lower intensity than that shown in Fig. 2 (b). The peak characteristic for cellulose at 34.3° was absent.

Fig. 2. XRD Patterns of a) fir flour, b) NaOH-treated flour, c) SiO₂ gel-treated flour composite and d) SiO₂ gel.

The XRD patterns of the SiO₂ ceramics calcined at 600, 800 and 1000 °C in air are illustrated in Fig. 3. According to these patters, the original components of fir flour were completely removed. There is only one broad peak centered at $2\theta = 23.2^{\circ}$, sugg esting that am orphous SiO₂ was formed during calcination at 600 and 800 °C in air. When the calcination tem perature was increased to 1000 °C, the peak became somewhat sharper and more intense. The SiO₂ after calcination at 1000 °C in air had a t ypical cristobalite structure. There were eight cr ystal peaks at 2θ v alues of 21.8, 28.5, 31 .1, 36.0, 42.5, 44.6, 46.8, and 48.5°, which correspond to (110), (111), (102), (200), (211), (202), (113) and (2 12). The calculated size of the SiO₂ using the Scherrer Equation was in the range 1.8–4.1 nm. Some amount of the tridymite structure was found as evidenced by the additional peaks at 2θ values of 20.8 and 27.5°.

FESEM Analysis

The SEM micrographs of fir flour, NaOH-treated flour, the SiO₂ gel-treated flour composite and the S iO₂ ceramics calcined at 800 °C are sh own in Fig. 4.

LI, SHI and GUO

The fir wood, which is a softwood, is composed of a unique cross-sectional constructed tracheid cell and b ordered pits along the tracheid walls. Figs. 4a and 4b show that bordered pits of $5-10 \,\mu\text{m}$ can be observed on the cell w alls, which are channels that connect the different trac heid cells and enhance their connectivity. By comparing Fig. 4b with Fig. 4d, it is evident that NaOH treatment can clean the surface of the flour, and enlarge the size of the pit pores. The highl y uniform parallel tubular cellular structures and ordered arrays of bordered pits can be clearly observed (Fig. 4c). The pit pores at the tracheid walls are $10-15 \,\mu\text{m}$ in diameter (Fig. 4d).

Fig. 3. XRD Patterns of NaOH-treated flour specimens infiltrated with SiO₂ ceramics calcined at various temperatures in air.

After the NaOH-treated fir flour had been infiltrated with SiO ₂ sol, subsequent gelling and drying occurred, and an SiO₂ gel-treated flour composite was formed (Figs. 4e and 4f). It can be seen that the gel covered the surface of the flour and filled almost all the pores of tracheids and pits, suggesting that the SiO₂ sol penetrated the cell wall structures and condensed around the cellular tissues.¹⁶ Figures 4g and 4h show the SiO₂ ceramics calcined at 800 °C. In comparison with the fir flour, the obtained ceramic materials retained the ordered pores structure of the fir flour. The array of tubular tracheid and pit pores were retained. However, the pit p ores shrank to 1–5 μ m, and some cracks on the walls were created by the thermal contraction.

Available online at www.shd.org.rs/JSCS/

390

PREPARATION OF POROUS CERAMICS

Fig. 4. SEM Micrographs of fir flour (a and b), NaOH-treated flour (c and d), SiO₂ gel-treated flour composite (e and f) and SiO₂ ceramics calcined at 800 °C (g and h).

N₂ Adsorption measurement

From the N₂ adsorption measurement, the isotherms and corresponding PSD curves for Si O₂ ceramics calcined at 800 °C are sh own in Figs. 5a and 5b, respectively. The obtained isotherm can be classified as type-IV according to the IUPAC classification with an H3 hy steresis loop. According to the ePSD curves, the size distribution fell i n the range of mesopore (2–40 nm), as can be seen in

LI, SHI and GUO

Fig. 5b. The adsorption–desorption hysteresis occurs in the p/p_0 range 0.41–0.99, demonstrating that the materials contai ned mesopores of relatively uniform pore size. The H3 h ysteresis loop in dicates the asymmetric slot shape of the mesopores or channels coincidence with the tubul ar characteristics of the pores of the fir flour. Meanwhile, a narrow hysteresis loop illustrates an interconnected mesoporous system and high pore connectivity according to the percolation theory.¹²

Fig. 5. N₂ adsorption results of SiO₂ ceramics calcined at 800 °C, a) isotherm plots and b) PSD curves.

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

PREPARATION OF POROUS CERAMICS

CONCLUSIONS

The structure of fir flour treated with 20 % NaO H solution was analyzed by FTIR spectroscopy, X-ray diffraction analysis and FESEM. The results show that most of the non-cellulosic co mponents, such as pectin, waxy substances and natural oils, covering the external surface of the cell walls were removed and t hat the crystallinity of the fir flour was d ecreased after treatment, which changed the topography of the flour and increased t he proportion of am orphous material present in the fir flour. The N aOH treatment was useful to achieve a net shape conversion of the complex structures and to increase the pore volume and the corresponding possible amount of the infiltrated precursor.

Porous SiO_2 ceramics were successfully prepared by a sim ple biotemplated process, *i.e.*, the infiltration of NaOH-treated fir flour with a low viscosity SiO_2 sol and subsequent heat treatment in air. The final oxide products retained the ordered pores structure and also exhibited unique pore size and distribution with a hierarchy on the nanoscale derived from the fir flour.

Acknowledgements. This work was supported by the National Science Fo undation of China (No. 50773017).

ИЗВОД

МОРФОЛОГИЈА SiO2 ДОБИЈЕНОГ ИЗ ШАБЛОНА ОД ПИЉЕВИНЕ ЈЕЛЕ

ZHONG LI^{1,2}, TIEJUN SHI¹ и LIYING GUO¹

¹School of Chemical Engineering, Hefei University of Technology, Hefei 23009 u ²School of Chemical Engineering, Anhui University of Science & Technology, Huainan 232001, China

Испитивано је добијање SiO₂ са контролисаном порозном структуром из шаблона од пиљевине јеле сол–гел поступком. Пиљевина јеле одређене крупноће, која је третирана 20 % раствором NaOH, филтрирана је SiO₂ солом мале вискозности и затим термички третирана у ваздуху, чиме се формира високопотозна структура SiO₂. Микроструктура SiO₂ и формирање фаза током поступка испитивани су дифракцијом X-зрака (XRD), инфрацрвеном спектроскопијом са Фуриеовим трансормацијама (FTIR) и скенирајућом електронском микроскопијом исијавања из поља (FESEM). Расподела пора по величини у коначном производу мерена је адсорпцијом N₂ (PSD). Резултати указују на то да се мења топографија површине и повећава удео аморфне фазе у пиљевини третираној раствором NaOH. Коначни оксидни производ задржао је уређену структуру пора и показао је униформну расподелу пора по величини, са хијерархијом на нано-нивоу добијеном из пиљевине јеле.

(Примљено 10. априла, ревидирано 25. новембра 2009)

REFERENCES

- 1. O. D. Velev, T. A. Jede, R. F. Lobo, A. M. Lenhoff, Nature 389 (1997)447
- 2. B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater. 11 (1999) 795
- 3. O. D. Velev, E. W. Kaler, Adv. Mater. 12 (2000) 531
- 4. M. Kanungo, M. M. Collinson, Chem. Commun. 5 (2004) 548
- 5. M. E. Davis, Nature 417 (2002) 813

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

LI, SHI and GUO

- 6. J. Cao, O. Rusina, H. Sieber, Ceram. Int. 30 (2004) 1971
- 7. Z. Liu, T. Fan, W. Zhang, D. Zhang, Micropor. Mesopor. Mater. 85 (2005) 82
- A. Egelja, J. Gulicovski, A. Devecerski, B. Babić, M. Miljković, S. Bošković, B. Matović, J. Serb. Chem. Soc. 73 (2008) 745
- 9. Y. Shin, J. Liu, J. H. Chang, Z. Nie, G. J. Exarhos, Adv. Mater. 13 (2001) 728
- 10. S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, Nature 385 (1997) 420
- 11. G. Cook, P. L. Timms, C. G. Spickermann, Ang. Chem. Int. Ed. 42 (2003) 557
- 12. X. Li, T. Fan, Z. Liu, J. Ding, Q. Guo, D. Zhang, J. Eur. Ceram. Soc. 26 (2006) 3657
- 13. S. Y. Oh, D. I. Yoo, Y. Shin, H. C. Ki m, H. Y. Ki m, Y. S. Chung, W. H. Park, J. H. Youk, *Carbohyd. Res.* **340** (2005) 2376
- 14. L. Y. Mwaikambo, M. P. Ansell, J. Appl. Polym. Sci. 84 (2002) 2222
- 15. J. Locs, L. Berzina-Cimdina, A. Zhurinsh, D. Loca, J. Eur. Ceram. Soc. 29 (2009) 1513
- 16. Y. Shin, C. Wang, W. D. Samuels, G. J. Exarhos, Mater. Lett. 61 (2007) 2814.

J. Serb. Chem. Soc. 75 (3) 395–404 (2010) JSCS–3972 546.264–31:61 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 633.824:665.52/.54:66.061+ 5.281-188 Original scientific paper

Supercritical CO₂ extract and essential oil of bay (*Laurus nobilis* L.) – chemical composition and antibacterial activity

JASNA IVANOVIĆ^{1*#}, DUŠAN MIŠIĆ², MIHAILO RISTIĆ³, OLIVERA PEŠIĆ¹ and IRENA ŽIŽOVIĆ^{1#}

¹Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, ²Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade and ³Institute for Medical Plant Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia

(Received 3 March, revised 26 September 2009)

Abstract: The present study deals with the supercritical car bon dioxid e (SC--CO₂) extraction and hydrodistillation (HD) of dried bay leaves (Laurus nobilis L.). The chemical composition and antibacterial activity of the SC-CO₂ extract and essential oil (EO) from dried leaves of ba y were compared to each oth er and literature data. Qualitative and quantitative analyses of the SC-CO₂ extract and EO were performed u sing GC-FID and GC-MS an alytical methods. A significant difference in the c hemical composition of the SC-CO 2 extract and EO was observed. The EO co mprised high contents of monoterpenes and their oxygenated derivates (98.4 %), principall y 1,8-cineole (33.4 %), linalool (16.0 %) and α -terpinyl acetate (13 .8%), sabinen e (6.91%) and methyl euge nol (5.32 %). The SC-CO $_2$ extra ct comprised twice less monoterpenes and their oxygenated derivates (43.89 %), together with se squiterpenes (12.43 %), diterpenes (1.33 %) and esters (31.13 %). The major components were methyl linoleate (16.18 %), α -terpinyl acetate (12.88 %), linalool (9.00 %), methyl eugenol (8.67 %), methyl arachidonate (6.28 %) and eugenol (6.14 %). An investigation of the antibacterial activity of bay SC-CO₂ extract and EO was completed on different Staphylococcus strains using the broth macrodilution method. Staphylococcus intermedius strains were the most susceptible to both the SC-CO 2 extract and EO ($MIC = 640 \ \mu g/ml$).

Keywords: Laurus nobilis; bay; supercritical extraction; essen tial oil; antibacterial activity; gas chromatography.

INTRODUCTION

Dried leaves and the essential oil (EO) of bay (*Laurus nobilis* L.) are used extensively in the food industry for seasoning of meat products, soups, and fishes.¹

^{*}Corresponding author. E-mail: jasnai@tmf.bg.ac.rs

[#] Serbian Chemical Society member.

doi: 10.2298/JSC090303003I

VANOVIĆ et al

Several studies have evaluated the pot ential role of bay EO as an antim icrobial and antifungal agent,^{2–4} as well as the an tioxidant properties of leaves extracts.^{5–8} Recently, ba y extracts obtained by s olvent extraction were studied for their cytotoxic activity.^{9,10}

The EOs and plant extracts are generally obtained by hydrodistillation (HD) and solvent extraction (SE), although these methods suffer certain disadvantages. During HD, extensive hydrolysis and thermal degradation phenomena can be induced, giving in any case a product with a characteristic off-odor. SE can give an oil but, due t o a high content of waxes and/or other high m olecular mass compounds, often gives rise to a concentrate with a scent very similar to that of the material from which it was derived. A further d rawback of SE is that s mall amounts of organic solvents can pollute the extraction product. Supercritical fluid extraction (SFE) can be used for the production of flavors and f ragrances from natural materials and can constitute a va lid alternative to both of the abovementioned processes.¹¹ Tuning of the process parameters (pressure, temperature) enables tuning of the selectivity of supercritical carbon dioxide (SC-CO₂) towards desirable fractions as well as complete separation of the phases so that a solventfree extract can b e obtained. Several research groups i nvestigated SC-CO 2 extraction in order to isolate biologically active compounds from Laurus nobilis leaves,^{4,8,12,13} berries ¹⁴ and seeds. ¹⁵ The chem ical composition of the EO and extracts isolated from bay leaves were studied by different researchers.^{4,12,13,16–22}

Previously i nvestigated bay EO isolated b y HD was reported for r its inhibitory effects on the pathogens²¹ in following order: *Escherichia coli* O157:H7 > *Staphylococcus aureus* > *Staphylococcus typhimurium* > *Listeria monocytogenes*. Bouzouita *et al.*² reported that the high content of 1,8-cineole in the EO of *L. nobilis* L. contributed to its weak antimicrobial activity on two bacteria (*Lactobacillus plantarum* and *E. coli*) and a fungus (*Geotrichum candidum*). Santoyo *et al.*⁴ reported that a SC-CO 2 extract had the strongest antimicrobial activity against *S. aureus* ATCC 25923, substantial activity against *Bacillus subtilis* ATCC 6633, *Pseudomonas aeruginosa* ATCC, 10145, *E. coli* ATCC 11 775 and *Candida albicans* ATCC 60193 strains while the fungi *Aspergillus niger* ATCC 16404 was the least susceptible.

In this study, SC-CO₂ extraction and hydrodistillation of dried bay leaves were compared with respect to their e fficiency and selectivity. Thus, the yield and chemical composition of the SC-CO₂ extract and EO obtained by HD of bay leaves were investigated and are discussed herein. The antibacterial activity of bay SC-CO₂ extract and EO was investigated against chosen *Staphylococcus* strains.

Available online at www.shd.org.rs/JSCS/

3961

EXPERIMENTAL

Plant material

Dried leaves of bay (*Laurus nobilis* L.) originating from Montenegro (2007) were used for the SC-CO₂ extraction and HD. The plant mat erial was milled in a blend er and sieved to the fraction with average particle diameter of 0.8-0.9 mm.

Supercritical carbon dioxide extraction

Extraction with SC-CO₂ was preformed in a previously described²³ pilot-plant-scale supercritical fluid extractor (Aut oclave Engineers SCE S creening System) with a 15 0 ml extraction cell. Commercial carbon dioxide (99 % purity, Messer Tehnoga s, Belgrade, Serbia) was used for the extraction n. The SC-CO₂ extraction was s performed under a pressure of 10 MPa and at a temperature of 40 °C (density of SC-CO₂, 630 kg/m³). The initially used mass of the plant material was 24 g and the solvent rate was 0.3 kg/h.

Hydrodistillation

Plant material (24 g) and water (500 ml) were placed in a Cle venger-type apparatus. The EO was i solated by HD for 4 h. The obtaine d EO was kept in a se aled vial at 4° C until required.

GC/FID/MSD

The qualitative and quantitative analyses of the SC-CO₂ extract and EO were perform ed using H ewlett-Packard G C-FID and GC- MS analy tical methods. In the first instance, a model HP-58 90 Series II ch romatogram, e quipped with a split- splitless inj ector, HP-5 capillary column (25 m×0.32 mm, film thic kness 0.52 µm) and a fla me io nization detector (FID), was e mployed. Hy drogen was u sed as the c arrier gas (1 ml/min). The inj ector was heated at 25 0 °C, the detec tor at 300 °C, while the col umn t emperature was line arly programmed from 40 to 2 60 °C (4 °C/min). GC-MS analyze was realized under the same analytical conditions, using a model HP G 1800C Series II GCD analytical system equipped with an HP-5MS column (30 m×0.25 mm×0.25 μ m). Helium was used as the carrier gas. The transfer line (MSD) was heated at 260 °C. The EI mass spectra (70 eV) were acquired in the scan mode in the m/z range 40–400. In each case, the sample in a solution in hexane (1 µl) was injected in the split mode (1:30). Identification of constituents was performed by matching their mass spectra and Kovats indices (I_K) with those obtained from authentic samples and/or the NIST/Wiley spectra libraries, different types of search (PBM/NIST/AMDIS) and available literature data (Adams, 2007).²⁵ Area percents, obtained by the integration of corresponding chromatograms (FID), were used for quantification of the individual components.

Antibacterial activity

The investigation of the antibacterial activity of the SC-CO $_2$ extract and EO was performed on six *Staphylococcus* strains origina ting from dog s, cattle, hu mans and vistual s of animal origin. The investigated strain s were isolated from e ar and ton sils swabs and from cheese and raw milk samples. A reference s train *S. aureus* ATCC 25923 (Becton Dickin son) was also included in the investigation.

The anti microbial effects of t he plant e xtracts were in vestigated by the b roth macrodilution method according to CLSI (Clinical and Laboratory Standards Institute, 2008) pre scribed references ^{26,27} for anti microbial susceptibility testing. A single modification of th e method conc erned the fact that the plant extracts were use d instead of an tibiotics, but the principle of the procedure as well as the means of preparat ion and culture media were n ot altered. The antimicrobial activity of the plant extracts was investigated in concentrations (ex-

VANOVIĆ et al.

pressed in µg/ml): 1280; 640; 320; 160; 80; 40; 20 and 10. Mueller Hinton II broth (catio n adjusted, CAMHB, Becton Dickinson), was used in the investigation. Bromocresol Purple 1.6 % (Merck) in a final concentra tion of 0.2/200 v/v for the gra m-positive bacteria and Phenol Red 1 % in a final concentration of 1/200 v/v for the gram-negative bacteria were added to the CAMHB to obtain bacterial growth visibil ity. The desired innoculu m d ensity of 5×10^5 CFU/ml was a chieved by preparing a suspension of the bacteria of a pproximately 1×10^8 – -2×10^8 CFU/ml, which was the same density as the McFarla nd standard 0.5 (Becton Dickinson). The prep ared su spension was diluted 10 ti mes to ob tain a final ino culum density of approximately 1×10^7 – 2×10^7 CFU/ml and 50 µl of this suspension was applied to the CAMHB, after which the nu mber of bacteria in the media was approximately 5×10^5 /ml. The active substance genta micin sulfate p urity 685 µg/mg (Sigma) was used for comparative antibiotic susceptibility testing. The media were incubated at 37 °C for 18 h. The *MIC* values were taken as the lowest extract concentration in the broth with no visible bacterial growth.

RESULTS AND DISCUSSION

The y ield of the EO was 1.43 % after 4 h of HD, which has been in accordance with previously published data. 11,12,17,18 Ozek *et al.*¹³ reported oil yields (on a dry weight basis) of 2.6 % for hydro- and 1.9 % for steam distillation after 3 h (coastal line of Turkey). Carreda *et al.*¹² isolated 0.90 % of EO from bay leaves (southern Sardinia, Italy) after 4 h. Recently, a novel m icrowave method was applied to the hy drothermal extraction of essential oil from bay leaves. ¹⁸ This study¹⁸ revealed that the yield of EO obtained by HD in a Clevenger-type apparatus equipped with an electric mantle heater for 1 h (tradition al method) was 0.784 %, while the y ields of EO obtain ed by HD with a 200 and 300 W microwave system for 1 h were 0.813 and 1.132 %, respectively. Verdian-Rizi *et al.*¹⁹ obtained 0.654–1.132 % of EO from the aerial parts of bay in different vegetative stages after 4 h.

In the present study, the yield of ba y SC-CO₂ extract obtained b y a singlestage SC-CO₂ extraction was 1.37 % after 1.4 h of extraction $(m_{CO_2}/m_{solid} = 16.67)$. Ozek *et al.*¹³ reported similar yields of bay SC-CO₂ extract, 1.34 % (8 MPa and 40 °C) and 1.13 % (8 MPa and 50 °C). Carreda *et al.*¹² isolated a SC-CO₂ extract by fractional separation at 9 MPa and 5 0 °C (waxes were entrapped in the firs t separator set at 9 MPa and -10 °C, the oil was recovered in the second separator at 1.5 MPa and 10 °C). In the mentioned stud y,¹² the authors reported a y ield of essential oil fraction of 0.82 % after 4 h ($m_{CO_2}/m_{solid} = 21.44$).

The results of che mical analyses of the obtained SC-CO $_2$ extract and essential oil (EO) accomplished by GC–FID and GC–MSD ar e presented in Table I. Thirty-four components were detected and identified in the EO of bay obtained by HD. The EO comprised mostly oxygenated monoterpenes (78.77 %) and hydrocarbon monoterpenes (19.68 %). Sesquiterpenes (1.06 %) and their oxygenated (0.53 %) were also found in the EO of bay. The main components in the EO were 1,8-cineole (33.4 %), linalool (16.0 %), α -terpinyl acetate (13.8 %), sabinene (6.91 %), methyl eugenol (5.32 %), α -pinene (4.39 %) and β -pinene (3.52 %). A si mi-

Available online at www.shd.org.rs/JSCS/

3981

lar chemical composition of the oil extracted from bay leaves was observed by several authors. $^{12,13,17-21}$ In these papers, 1,8-cineole was reported to be the main component in the bay EO isolated by HD, whereby its content was in the range of 23.51–60.72 %.

TABLE I. Percentage composition of the compounds identified in the SC-CO₂ extract and EO (mass %)

Component	$I_{\rm K}$ (Kovats index)	SC-CO ₂ Extract	EO
<i>p</i> -Xylene 871.6		0.44	_
α -Thujene 919.2		_	0.55
α-Pinene 924.8		_	4.39
Camphene 938.9		_	0.30
Sabinene 965.0		_	6.91
β -Pinene 967.2		_	3.52
Dehydro-1,8-cineole 984.4		_	0.21
β -Myrcene 985.1		_	0.14
α -Phellandrene 997.1		_	0.17
δ^3 -Carene 1002.7		_	0.24
α-Terpinene 1009.3		_	0.42
<i>p</i> -Cymene 1017.7		—	0.41
Limonene- β -phellandrene 1020.9		—	1.59
1,8-Cineole 1025.0		2.53	33.4
γ-Terpinene 1051.3		—	0.74
cis-Sabinene hydrate	1061.5	0.25	0.30
Terpinolene 1080.7		_	0.33
Linalool 1096.3		9.00	16.0
δ -Terpineol 1161.0		0.49	0.57
Terpinen-4-ol 1170.3		0.90	2.38
<i>p</i> -Cymen-8-ol 1175.5		0.23	—
α-Terpineol 1184.5		2.54	2.83
Nerol 1227.0		0.44	0.19
Linalyl acetate	1250.4	0.58	0.34
4-Thujen-2a-yl acetate	1296.1	0.20	0.28
Bornyl acetate	1278.7	0.27	0.47
δ -Terpinyl acetate	1310.1	0.55	0.68
exo-2-Hydroxycineole acetate	1335.8	0.31	0.20
α -Terpinyl acetate	1343.8	12.88	13.8
Eugenol 1352.8		6.14	1.77
β-Elemene 1383.8		0.69	_
Methyl eugenol	1400.4	8.67	5.32
β -Caryophyllene 1409.8		0.87	0.43
α-Guaiene 1429.7		0.18	_
α -Humulene 1444.1		0.71	_
allo-Aromadendrene 1451.2		0.16	—
Germacrene D	1472.0	0.55	_
β -Selinene 1476.8		0.33	—
Bicyclogermacrene 1487.3		0.72	0.36
Germacrene A	1493.0	0.39	_

Available online at www.shd.org.rs/JSCS/

2010 Copyright (CC) SCS

VANOVIĆ et al.

400 I

TABLE I. Continued			
Component	$I_{\rm K}$ (Kovats index)	SC-CO ₂ extract	EO
γ-Cadinene 1504.7		0.29	_
δ -Cadinene 1514.4		0.32	0.27
trans-Cadina-1,4-diene 1522.5		0.41	_
α-Cadinene 1534.0		0.79	_
Dauca-5,8-diene 1565.9		0.56	_
Spathulenol 1567.9		0.79	0.27
Caryophyllene oxide	1572.7	0.46	0.26
Viridiflorol 1581.4		0.49	_
Ledol 1592.3		0.21	_
Dihydro-cis-α-copaene-8-ol 1608.7		0.20	_
Eremoligenol 1619.5		0.37	_
β -Eudesmol 1640.0		1.45	_
Shyobunol 1680.3		0.25	_
Sedanenolide 1712.4		1.21	_
Neocnidilide (sedanolide)	1717.7	0.36	_
Oplopanone 1729.1		0.17	_
Neophytadiene isomer I	1806.8	0.26	_
Dehydrosaussurea lactone	1823.8	0.35	_
Hexahydrofarnesyl acetone	1835.0	0.40	_
Methyl palmitate ^a 1915.4		1.49	_
Eremanthin (vanillosimin)	1981.0	0.20	_
Methyl linoleate	2087.2	16.18	_
Methyl petroselinate ^D	2092.2 5.95		—
Phytol 2102.4		1.33	_
Methyl stearate ^c 2117.5		1.23	_
Methyl arachidonate	2215.1	6.28	_

^aMethyl hexadecanoate; ^bmethyl *cis*-6-octadecenoate; ^cmethyl octadecenoate

Sixty-three com ponents were detected of which fift y two were identifie d (93.0 %) in the bay SC-CO₂ extract. The supercritical extract comprised mostly oxygenated monoterpenes (43.2 %) and fatty acid esters (31.13 %), followed by sesquiterpene hydrocarbons (7.26 %) and their ox ygenated derivates (5.17 %), hydrocarbons (2.60 %), phthalides (1.57 %), diterpenes (1.33 %) and m onoterpene hydrocarbons (0.69 %). The most abundant components in the SC-CO₂ extract were methyl linoleate (16.18 %), α -terpinyl acetate (12.88 %), linalool (9.00 %), methyl eugenol (8.6 7 %), methyl arachidonate (6.28 %) and eugenol (6.14 %). A comparison of the chemical composition of the SC-CO₂ extract and that of the EO reve aled significant difference s. The SC-C O₂ extract comprised more than two tim es less monoterpene hydrocarbons and oxygenated monoterpenes (43.89 %) in comparison to EO (98.4 %). Carreda *et al.*¹² studied the che mical composition of fractions of the SC-CO₂ extract during 4 h. According to this study,¹² the lighter compounds (hydrocarbon monoterpenes) were extracted almost completely during the first extraction hour, the cont ent of ox ygenated monoterpene

penes decreased to a m inor extent with time, content of hydrocarbon sesquiterpenes increased significantly with time, while the content of oxyge nated sesquiterpenes did not change much after the 3rd hour.

Buttery et al.²⁸ stated that 1,8-cineole is the major aroma component of bay oil, followed by linalool. In addition, substances present in lower concentrations, such as eugenol and (E)-isoeugenol, and especially the non-identified compounds at trace levels, possessing a pepper-like odor, have to be considered as key aroma compounds with a marked influence on the overall odor and flavoring quality of the leaves.²⁷ In the present study, the c ontents of eugenol and m ethyl eugenol were two times higher then in the EO. A significant difference in the 1,8-cineole content in the EO and extract was also observed. The SC-CO₂ extract in this study had a very low content of 1,8-cineo le (2.53 %) and high contents of eugenol (6.14 %) and methyl eugenol (8.67 %) compared to those previously reported for an SC-CO₂ extract.¹² This can be result of the shorter extraction time applied in the present study (1.4 h), since Carreda et al.¹² observed remarkable differences in the contents 1,8-cineole and methy l eugenol after the first and fourth h our of extraction (1,8-cineole, 30.98 vs. 2.05 % and methyleugenol, 6.85 vs. 16.42 %). Ozek et al.¹³ identified high contents of 1,8-cineole (40.2-43.0 %) and low contents of eugenol and methyl eugenol (0.7-0.8 %) in SC-CO2 extracts obtained at 8 MPa and at temperatures of 40 and 50 °C.

According to the *MIC* values given in Table II, bay EO and SC-CO₂ extract had the same antibacterial activity against the investi gated *S. intermedius* and *S. aureus* strains. One of the *S. intermedius* strains was more susceptible to the presence of the SC-CO₂ extract and EO, with an *MIC* value of 640 μ g/ml. However, the antibacterial activities against the other *Staphylococcus* strains were lower with an *MIC* value of 1280 μ g/ml.

Destanial studie	Origin of the examined	$MIC / \mu g ml^{-1}$		
Bacterial strain	strains	EO SC	-CO ₂ extract	Gentamicin
S. aureus ATCC 25923	Reference strain	1280	1280	<u><</u> 0.5
S. intermedius	Ear swab from dog	640 640		2
S. intermedius	Ear swab from dog	1280 1280		1
S. aureus	Feta cheese	1280	1280	1
S. aureus	Milk sample from cow with masititis	1280 1280		1
S. aureus	Tonsil swab from human	1280 1280		2

TABLE II. The minimum inhibitory concentrations (MIC) of the bay $SC-CO_2$ extract measured by the broth macrodilution (BMD) test

Antibacterial activity of the SC-CO₂ extract and EO isolated from bay leaves could be the result of high contents of linalool (SC-CO₂, 9.00 %; EO, 16.00 %), α -terpinyl acetate (SC-CO₂, 12.88 %; EO, 13.8 %), methyl euge nol (SC-CO₂,

VANOVIĆ et al

8.67 %; EO, 5.32 %), eugenol (SC-CO₂, 6.14 %; EO, 1.77 %) and α -terpineol (SC-CO₂, 2.54 %; EO, 2.83 %), which were previously reported to have antibacterial activity.²⁹ High cont ents of methyl esters were identified in the SC-CO₂ extract (methyl linoleate, 16.18 %; methyl arachidonate, 6.28 %). The high antibacterial activity of eugenol was previously reported.³⁰ Fatty acids and fatty acid methyl esters were also re ported to have significant antibacterial and antifugal activity.³¹ In the present study, despite the much lower content of 1,8-cineole in the SC-CO₂ extract, the h igh contents of euge nol, methyl eugen ol, and methyl esters³¹ together with other active co mponents (*e.g.*, linalool, α -terpinyl acetate) could contribute to its antibacterial activity.

CONCLUSIONS

In this stud y, similar yields of EO and SC-CO₂ extract were observed, although the supercritical extraction was a less time-consuming process. This study reported significant antimicrobial activity of bay EO and SC-CO₂ extract against the tested *Staphylococcus* strains. Despite having m uch lower contents of m onoterpenes and their ox ygenate derivates, which are generally considered to be responsible for antibacterial activity, the SC-CO₂ extract had the same antibacter ial activity as the EO. The high contents of eugenol, methyl eugenol and fatt y acid methyl esters together with other active e components (*e.g.*, linalool, α -terpinyl acetate, 1,8-cineole) in the SC-CO₂ extract could contribute to its overall antibacterial activity. One of the *S. intermedius* strains was more susceptible to both bay EO and SC-CO₂ extract than the other s trains. The presented results indicate that bay EO and SC-CO₂ extract could be considered for use not only as a spice and flavoring agent but also as preservative in the food industry.

Acknowledgments. Financial support of this work by the Ministry of Science and Technological Development of the Republic of Se rbia (Project TR 19037) is gratefully acknowledged.

ИЗВОД

НАТКРИТИЧНИ ЕКСТРАКТ И ЕТАРСКО УЉЕ ЛОВОРА (*Laurus nobilis* L.) – ХЕМИЈСКИ САСТАВ И АНТИБАКТЕРИЈСКА АКТИВНОСТ

ЈАСНА ИВАНОВИЋ¹, ДУШАН МИШИЋ², МИХАИЛО РИСТИЋ³, ОЛИВЕРА ПЕШИЋ¹ и ИРЕНА ЖИЖОВИЋ¹

¹Универзийией у Београду, Технолошко—мейлалуршки факуличей, Карнегијева 4, 11000 Београд, ²Инсийийуй за йроучавање лековийог биља "Др Јосиф Панчић", Тадеуша Кошћушка 1, 11000 Београд и ³Универзийией у Београду, Факуличей вейлеринарске медицине, Булевар Ослобођења 18, 11000 Београд

У раду је испитана надкритична екстракција и хидродестилација осушених листова ловора (*Laurus nobilis* L.). Приказана је упоредна анализа хемијског састава и антибактеријске активности надкритичног екстракта и етарског уља као и поређење истих са литературним подацима. За квалитативну и квантитативну анализу хемијског састава надкритичног екстракта и етарског уља коришћене су GC–FID и GC–MS аналитичке методе. Хемијски састав надкритичног екстракта и уља ловора био је веома различит. Најзаступљеније компоненте у етарском уљу били су монотерпени и њихови кисеонични деривати (98,4 %), пре свега 1,8-

Available online at www.shd.org.rs/JSCS/

402 I
-цинеол (33,4 %), линалоол (16,0 %), α -терпинил-ацетат (13,8 %), сабинен (6,91 %) и метилеугенол (5,32 %). Надкритични екстракт ловора садржао је два пута мању количину монотерпена и њихових кисеоничних деривата у односу на етарско уље (43,89 %) поред сесквитерпена (12,43 %), дитерпена (1,33 %) и естра (31,13 %). У надкритичном екстракту најзаступљеније компоненте били су метил-линолеат (16,18 %), α -терпинил-ацетат (12,88 %), линалоол (9,00 %), метил-еугенол (8,67 %), метил-арахидонат (6,28 %) и еугенол (6,14 %). Антибактеријско деловање надкритичног екстракта и етарског уља ловора испитивано је на сојевима *Staphylococcus* применом макродилуционе методе у бујону. Сојеви *Staphylococcus intermedius* били су најосетљивији на надкритични екстракт и етарско уље ловора при чему су вредности *MIC* биле 640 µg/ml.

(Примљено 3. марта, ревидирано 26. септембра 2009)

REFERENCES

- 1. H. Surburg, J. Panten, *Common Fragrance and Flavor Materials, Preparation, Properties and Uses*, 5th ed., Wiley-VCH Verlag, Weinheim, 1985, p. 212
- 2. N. Bouzouita, F. Kachouri, M. Hamdi, M. M. Chaabouni, Flavour Fragr. J. 18 (2003) 380
- 3. A. Si mić, D. Sokovi ć, M. Ristić, S. Gruj ić-Jovanović, J. Vukoj ević, P. D. Marin, *Phytother. Res.* **18** (2004) 713
- S. Santoyo, R. Lloría, L. Jai me, E. Ibanez, F. J. Senorans, G. Reglero, Eur. Food Res. Technol. 222 (2006) 565
- 5. M. Simić, T. Kundaković, N. Kovačević, Fitoterapia 74 (2003) 613
- M. Skerget, P. Kotnik, M. Ha dolin, A. R. Hras, M. Simonic, Z. Knez, Food Chem. 89 (2005) 191
- 7. A. Demo, C. Petrakis, P. Kefalasa, D. Boskoub, Food Res. Int. 31 (1998) 351
- 8. D. J. M. Gomez-Coronado, C. J. Barbas, J. Agric. Food Chem. 51 (2003) 5196
- 9. A. Barla, G. Topcu, S. Oksuz, G. Tumen, D. G. I. Kingston, Food Chem. 104 (2007) 1478
- 10. B. Kıvçak, T. Mert, Fitoterapia 73 (2002) 242
- 11. H. Hafizoğlu, M. Reunanen, Lipid-Fett 95 (1993) 304
- 12. A. Caredda, B. Marongiu, S. Porcedda, C. Soro, J. Agric. Food Chem. 50 (2002) 1492
- 13. T. Ozek, B. Bozan, and K. H. C. Baser, Chem. Nat. Comp. 34 (1998) 668
- 14. H. Marzouki, A. Piras, B. Marongiu, A. Rosa, A. M. Dessì, Molecules 13 (2008)1702
- 15. S. H. Beis, N. T. Dunford, J. Am. Oil Chem. Soc. 83 (2006) 953
- A. Kilic, H. Ha fizoglu, H. Kollmannsberger, S. J. Nitz, J. Agric. Food Chem. 52 (2004) 1601
- 17. H. Yalçin, M. Anik, M. A. Sanda, A. J. Cakir, J. Med. Food. 10 (2007) 715
- G. Flamini, T. Mariann a, P. L. Cioni, L. Ceccarini, A. S. Ricci, I. J. Longo , J. Chromatogr. A 1143 (2007) 36
- 19. M. Verdian-Rizi, J. Environ. Agric. Food Chem. 7 (2008) 3321
- F. J. Müller-Riebau, B. M. Berger, O. Yegen, C. Cakir, J. Agric. Food Chem. 45 (1997) 4821
- 21. I. Dadaliolu, A. Evrendilek, J. Agric. Food Chem. 52 (2004) 8255
- 22. M. C. Diaz-Ma roto, M. S. Pre z-Coello, M. D. J. Cabezudo, J. Agric. Food Chem. 50 (2002) 4520
- I. Žižović, M. Stamenić, J. Ivanović, A. Orlović, M. Ristić, S. Djordjević, S. Petrović, D. Skala, J. Supercrit. Fluids 43 (2007) 249

VANOVIĆ et al.

- 24. Automated Mass Spectral Deconvolution and Identification System software (AMDIS ver.2.1.), Natio nal Institute of Standards and Technology (NIST), Standard Referen ce Data Program, Gaithersburg, MD, 2005
- 25. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, 4th ed., Allured Publishing Corporation, Carol Stream, IL, 2007
- 26. Clinical Laboratory Standards Institute, Performance standards for antimicrobial susceptibility testing, 16th Informational Supplement, Vol. 26, No.3, Wayne, PA, 2006
- H. D. Isenberg, Antimicrobial susceptibility testing, in: Clinical Microbiology Procedures Handbook, Vol. 2, H. D. Isenberg, Ed., Am erican Soci ety for Microbiology Press, Washington DC, 2004
- 28. G. R. Buttery, D. R. Black, G. D. Guada gni, L. C. Ling, G. Connolly, R. Teranishi, J. Agric. Food Chem. 22 (1974) 773
- 29. H. J. D. Dorman, S. G. Deans, J. App. Microbiol. 88 (2000) 308
- A. M. Leite, E. O. Lima, E. L. Souza, M. F. F. M. Diniz, V. N. Trajano, I. A. Medeiros, Braz. J. Pharm. Sci. 43 (2007) 121
- G. Agoramoorthy, M. Chandrasekaran, V. Venkatesalu, M. J. Hsu, *Braz. J. Microbiol.* 38 (2007) 739.

404 I

J. Serb. Chem. Soc. 75 (3) 405–412 (2010) JSCS–3973 62–492.3–032. JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 628.161.2:547.236+632.954: 35

Original scientific paper

On the removal of *s*-triazine herbicides from waters using commercial low-cost granular carbons

F. J. ROJAS MORENO¹, J. M. CARDENETE LÓPEZ¹, R. MARÍN GALVÍN^{1,2}, M. J. MARTÍNEZ CORDÓN³ and J. M. RODRÍGUEZ MELLADO^{4*}

¹Empresa Municipal de Aguas de Córdoba, S.A, C/ De los Plateros, 1, E-14006-Córdoba, ²Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias, Campus Universitario Rabanales, edificio Marie Curie, Universidad de Córdoba, E-14014-Córdoba, ³Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Campus Universitario Rabanales, edificio Marie Curie, Universidad de Córdoba E-14014-Córdoba and ⁴Departamento de Química Física y Termodinámica Aplicada, Facultad de Ciencias, Campus Universitario Rabanales, edificio Marie Curie, Universidad de Córdoba, E-14014-Córdoba, Spain

(Received 7 March 2009)

Abstract: The a dsorption capacities of three low-cost granular active carbons, used in a water treat ment fa cility for the re moval of the t riazine herbicid es propazine, pro metryn and pr ometon, was e valuated. Kin etic studie s showed that the three carbon sa mples used could be suitable in practice for the trea t-ment of moderate contents of the herbicides in contaminated waters. The apparent adsorption rate constants were calculated. Equilibrium studies showed that the data fit the Fru mkin isotherm. The results show that in the adsorption process there are repulsive lateral interactions that depend mainly on the adsorbate molecules rather than the nature or distribution of the adsor ption sites. Such lateral interactions seem to be established mainly between the isopropyl groups of adjacent molecules, being of the same order for the three molecules.

Keywords: granular carbon; ad sorption; triazine herbicides; herbicide removal; propazine; prometryn; prometon.

INTRODUCTION

For several decades, active granular carbon has been used in water treatment in the filtration units of 1 andfills because of their known adsor bent properties.¹ There are several para meters on which the efficiency of the different types of granular carbon assets depend: the adsorbent properties of the type of carbon used, grain size and distribution, filter bed depth, treat ment applied to the water

405

Available online at www.shd.org.rs/JSCS/

^{*} Corresponding author. E-mail: jmrodriguez@uco.es doi: 10.2298/JSC090307004M

$406\,\mathrm{mor}$

ENO et al.

before arriving at the coal filters and fi nally, but very important, on the concrete compound (or compounds) to be eliminated from the treated water.²

The adsorbent properties of carbons dep end on the type of carbon itself, its origin (either vegetable, such as coconut, wood or rabble, or mineral, both in mineral form or coke), and on the exact ther mal and/or che mical activation. These properties are standardized according to the adsorption of iodine, of Methy lene Blue or of more specific s ubstances, such as atra zine, toluene or trichloroethylene.³ In addition, the practical perfor mance is determined not only by the granulometry (mean particle diameter, effective size, coefficient of uniform ity and abrasion) and the depth of the employed filter bed, but also by the purely filtering capacity.⁴

The purely adsorbent activity of an activated carbon (granular or as powder) is related to the presence of "pores" in its surface, which are r esponsible of the adsorptive process. Although active carbon is an amorphous substance and is essentially apolar, it has surface functional groups (mainly carboxyl-, carbonyl- and phenol-) that are responsible for the adsorption capacity.⁵

On the other hand, the m ain field of activity in water treatment in which the use of active carbon is i ncreasingly de manded is that of the m inimization of synthetic organic compounds, which are difficult to remove by conventional treatments, and that appear with incre asing frequency in t he waters habitually used for human consumption.

The *s*-triazine herbicides are continuously accessing the envir onment due to their persistence in soils and hydric sediments, caused by their low solubilities in water, and their strong sorption on carbonous materials and clays.⁶

Wood charcoal was used as an effective low-cost adsorbent for the rem oval of contaminants, such as endosulfan,⁷ from waters. Other waste activated carbons (granular and powder) were studied for the removal of atrazine.⁸

In a previous paper, the a dsorption capacities of three low-cost granular active carbons used in a water treatment fac ility were evaluated for the rem oval of simetryn, a triazine herbicide.⁹

The aim of this work was to com pare the adsorption capacities of such lowcost granular active carbons for t he removal of pr opazine, prometryn and prometon, three triazine her bicides having the sa me basic che mical structure but with different substituents, as shown in Fig. 1.

EXPERIMENTAL

In all cases, Merck analytical grade reagents were used with the exception of the triazine herbicides, which were from Polyscience (HPLC standard quality). All reactant s were used without further purification.

Commercial ac tive carbon s u sed were provid ed by Aguas d e LevanteTM, G alaquimTM and KemiraTM, having the characteristics given in Table I.

Fig. 1. Che mical struct ures of the inve stigated herbicides. Propazine, R = -Cl; prometryn, $R = -SCH_3$; prometon, $R = -OCH_3$.

The analyses were made using a Varian G C 3800 gas chromatograph coupled with a n Autodrive 8200 autosampler. The pH of the samples was adjusted to 6.5 b y adding HCl or NaOH prior to preconcentration using C18 packed cartridges (Supelco 505471). Such cartridges were connected to a vacuum generator (Supelco 57030-U) equipped with a pump (Millipore XX 55 220 50) and activated by the successive addition of 3 mL hexane, 3 mL ethyl acetate and 2 mL deionized water. The samples were then slowly passed through the cartridges. Dry argon was passed during 20 min through the cartridges. The elution was performed with 2 mL ethyl acetate and 2 mL hexane. The solvent was evaporated from the 4 mL of eluted samples with dry nitrogen and the residual was dissolved in 500 μ L hexane. Then, the samples were processed in the gas chromatograph. The cali bration of the method was made with st andards of the herbici de. When the concentration s of herbicide were very high, the initial samples were diluted with deionized water to suitable volumes.

Martaial	AC1 AC2			AC3
Material	Coconut Vegetabl		e	Mineral
Superficial area, m ² g ⁻¹	1000 950			900
Iodine index, mg g ⁻¹ 1000		900		950
Methylene Blue index, mg g ⁻¹ 260		265		255
Atrazine adsorption $(1 \ \mu g L^{-1})$, mg g ⁻¹	40	35		30
Toluene adsorption (1 mg L^{-1}) , mg g ⁻¹	100	110		90
Trichloroethylene adsorption (50 μ g L ⁻¹), mg g ⁻¹ 20		25		25
Abrasion minimum coefficient	75	75		70
Effective size, mm	0.9-1.1 0.9-1.1			0.9-1.1
Particle mean diameter, mm	1.4	1.4		1.35
Uniformity coefficient	1.4	1.3		1.4

TABLE I. Characteristics of the studied active carbons

For kinetic studies, glass bottles (Schott Duran GL45) of 100 mL capacity were used. A suitable adsorbent dose and 75 mL of solution of si metryn were introduced into such bott les and placed in a ther mostated linear bath shaker (from Ovan model Ovantherm 100). Samples of 1 mL were taken at i ntervals of 15 min. The filtrates of such samples were stored in the dark at 4 ° C and analyzed for the residual herbicide concentration as described above. Blank samples consisting of the sa me solutions but without the herbicide were treated in the sa me manner.

The equilibrium studies were performed at constant temperature using the d ata obtained in the previous kinetic study. The same type of samples were placed on the shaker and agitated for a period of 36 h, which was found in the kinetic experiment to be sufficient for

$408\,\mathrm{mor}$

ENO et al.

equilibrium to be attained. The filtrates of the sam ples were stored in the d ark at 4 °C an d analyzed for residual herbicide concentration. Blank samples consisting of the same solutions but without the herbicide were treated in the same manner.

RESULTS AND DISCUSSION

Typical decreasing curves of the residual herbicide c oncentration with time were obtained for the three studied samples of carbo n. The kinetics of herbicides adsorption by one of the assayed activated carbons is given in Fig. 2 as an example. It can be seen that the equilibrium was attained faster for propazine than for the other two herbicides. I n all cases, ar ound a 75 % was removed after 3 h and the maximum removal was reached after 8–12 h, being around 80 %. The extension of the experiments to 36 h showed that a very slight increase in the removal was obtained, although on some occasions, a very slight decrease in the removal was observed. Since the industrial filters ha ve residence times of 1.5 to 2 h, the use of two filtration units mounted in series (or even using onl y one unit) could be suitable in the practic e for the treatment of moderate contents of herbicide in contaminated waters, this being the cas e for the three studied carbon sam ples as well as for the three investigated herbicides.

Fig. 2. Adsorption kinetics on carbon AC3 as the residual herbicide concentration vs. time at 25 °C. Initial herbicide concentration, 4 mg mL⁻¹.

Though 12 h seem enough to reach equilibrium conditions, the equilibrium study was performed, as stated above, for 36 h.

Adsorption kinetics can be attributed to the occupation of the available adsorbent sites by the adsorbate molecules. Although the adsorption process could

be complex due to the non-equivalence of the adsorption sites arising from the pore and particle si ze distributions and di fferences in the chem ical affinities, a simple model can be assu med to compare the adsorption kinetics of the herbicides onto the samples. At infinite time, it could be supposed that all the available sites had been occupied and the number of available sites must be proportional to the difference between the initial and the residual concentrations of adsorbent. If a second-order adsorption kinetics is a ssumed (first-order in both the adsor bate and the sites of adsorption), it is easy to show that the following equation is fulfilled:

$$\ln \frac{c - c_{\infty}}{c} = \ln \frac{c_0}{c_0 - c_{\infty}} - kt$$

where c_0 , c and c_{∞} are t he initial and residual he rbicide concentration at the instant and at infinite time, respectively, and k is the apparent rate constant.

Plots corresponding to the studied three carbons are shown in Fig. 3. As can be seen, the plots are linear, indicating that the above equation can be considered as a good approximation for the adsorption process.

Fig. 3. Plots corresponding to the kinetic model; Carbon AC2.

The apparent rate constants for the th ree carbons used are given in Table II. As can be seen, althoug h the AC1 carb on leads in all cases to the maximum removal, the other carbons reached equilibrium more rapidly. In general, the AC3 carbon approached equilibrium with an apparent rate constant similar to that of AC2 but giving a maximum removal similar to that of AC1. In addition, the a d-sorption of propazine occurred faster than the adsorptions of the two other compounds and equilibrium was reached at c.a. 45 min, 1 h prior that for propazine.

410 MOR

ENO et al

TABLE II. Apparent rate constants $(k / \text{mg g}^{-1} \text{ h}^{-1})$ for the adsorption processes

Sample Propazine	Pro	metryn	Prometon
AC1	0.66 0.47 0.46		
AC2	0.78 0.63 0.61		
AC3	0.76 0.59 0.56		

The adsorption of the herbicides onto granular active carbons from solutions in distilled w ater does not fit the Langm uir isotherm. Neverthel ess, it fit well with the Freundlich isotherm, as is shown by the fact that the plots of $\ln q vs$. $\ln c$ were linear (q being the a mount of adsorbed herb icide). This isotherm is useful for practical work with the herbicide-adsorbent system.

In addition, i f it is assumed that at the tested concentrations the maximum adsorption was not reached (which seem s logical because the maximum concentration of t he herbicide sam ples is li mited by the low solubilit y of these substances in water), the fitting with the Fr umkin isotherm is good. Hence, using the data obtained at the lowest concentrations, the values of q_{max} , K and a/q_{max} can be estimated from the intercept and the slope of the plot of $\ln (q/c) vs. q$, respecttively, as shown in Fig. 4. Thus, q_{max} was obtained using the hi gher concentrations and the estimated parameters, and fitting the experimental data to the Frumkin equation.

Fig. 4. Plot of the linearized Frumkin isotherm for AC1 carbon.

The results show that in t he adsorption process there are repulsi ve lateral interactions, because the exponential parameters of the isotherm are negative. The results obtained for the three carb ons and the three herbicides investigated are given in Table III.

Available online at www.shd.org.rs/JSCS/

Table III. Is otherm parameters; q – adsorbed herbicide (mg g⁻¹), K – adsorption constant, a – adsorption parameter, q_{max} – maximum specific adsorption capacity (mg·g⁻¹); Freundlich: q = Kca; Frumkin: $(q/(q_{\text{max}} - q))\exp(-2aq/q_{\text{max}}) = Kc$

Herbicide Sam	ple	K _{Freundlich}	$a_{\rm Freundlich}$	<i>K</i> _{Frumkin}	<i>a</i> _{Frumkin}	q_{\max}
Propazine	AC1	10.21 0.3	1 122.2		-3.13	27.15
	AC2 9.32	2	0.39	109.7	-3.27	25.62
	AC3 9.12	2	0.37	115.3	-3.37	25.05
Prometryn AC1		9.87	0.30	121.9	-3.09	26.32
-	AC2 8.66)	0.38	108.9	-3.21	23.92
	AC3 8.82	2	0.36	114.1	-3.34	24.75
Prometon AC1		9.82	0.30	120.9	-3.09	26.02
	AC2 8.63		0.37	108.6	-3.20	23.51
	AC3 8.79)	0.35	112.3	-3.31	24.58

As can be seen, the calculated maximum specific adsorption capacity was similar for the three investigated carbons, although it was slightly higher for AC1. On the other hand, the repulsive lateral interactions arising from the exponential parameter of the Frumkin isotherm are very similar for the three sam ples. This indicates that these repulsi ve lateral interactions depend mainly of the adsorbate molecules rather than the nature or distribution of the adsorption sites. Moreover, such lateral i nteractions are very similar for the three herbicides. This could easily be explained if it is assumed that the adsorption of the three compounds occurs with the triazine ring parallel to the carbon surface, as is the case on mercury electrodes.^{10–12} Hence, the main lateral interactions must be established mainly between the isopropy 1 groups of adjacent molecules, and these inter actions must be of the same order for the three molecules.

Acknowledgements. Financial support from Junta de Andalucía (Research Group FQM--0198) and DGICyT (Project CTQ2006-07224/PPQ) is gratefully acknowledged.

ИЗВОД

УКЛАЊАЊЕ *s*-ТРИАЗИНСКИХ ХЕРБИЦИДА ИЗ ВОДА ПОМОЋУ КОМЕРЦИЈАЛНИХ ГРАНУЛИСАНИХ УГЉЕВА

F. J. ROJAS MORENO¹, J. M. CARDENETE LÓPEZ¹, R. MARÍN GALVÍN^{1,2}, M. J. MARTÍNEZ CORDÓN³ μ J. M. RODRÍGUEZ MELLADO⁴

¹Empresa Municipal de Aguas de Córdoba, S.A, C/De los Plateros, 1, E-14006-Córdoba, ²Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias, Campus Universitario Rabanales, edificio Marie Curie, Universidad de Córdoba, E-14014-Córdoba, ³Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Campus Universitario Rabanales, edificio Marie Curie, Universidad de Córdoba E-14014-Córdoba and ⁴Departamento de Química Física y Termodinámica Aplicada, Facultad de Ciencias, Campus Universitario Rabanales, edificio Marie Curie, Universidad de Córdoba, Spain

Испитиван је адсорпциони капацитет три комерцијална гранулисана активна угља. Они су коришћени у третману вода за уклањање триазинских хербицида, пропазина, прометрина и прометона. Кинетичка испитивања су показала да три употребљена узорка активних угљева могу бити корисни у пракси за третман вода са умереним садржајем хербицида.

 $412\,\mathrm{mor}$

ENO et al.

Израчунате су константе брзине адсорпције. Добијени резултати су у сагласности са Фрумкиновом изотермом. Резултати показују да током адсорпције постоје одбојне бочне интеракције које знатно више зависе од карактеристика адсорбата, а мање од расподеле и типа активних места на адсорбенсу. Таква бочна интеракција се остварује углавном између изопропил група суседних молекула који су истом положају код сва три испитивана хербицида.

(Примљено 7. марта 2009)

REFERENCES

- 1. R. Marín Galvín, Equipamientos y Servicios Municipales 34 (1990) 65
- 2. D. Lemarchand, A. Le Marechaly, G. Martin. TSM-L'eau 11 (1981) 561
- 3. Commercial information from Aguas de LevanteTM, GalaquimTM and KemiraTM, 2006
- 4. R. Marín Galvín, *Análisis de Aguas y Ensayos de Tratamiento: Principios y Aplicaciones*, Ed. G. P. E., S.A., Barcelona, Spain, 1995
- 5. P. Y. Divet. Ingeniería Química, octubre 1976, 123
- 6. J. Ayele, P. Levavasseur, M. Mazet, J. Water-SRT Aqua 45 (1996) 28
- 7. Y. Sudhakar, A. Dikshit, J. Environ. Sci. Health 34 (1999) 587
- 8. P. K. Gosh, L. Philip, J. Environ. Sci. Health 40 (2005) 425
- L. Alonso, M. Gonzále z Jiménez, J. M. Card enete López, R. Marín Galvín, J. M. Rodríguez Mellado, *VirtualPro* 86 (2009)1
- M. J. Higuera, M. Ruiz Montoya, R. Marín Galvín, J. M. Rodríguez Mellado, J. Electroanal. Chem. 474 (1999) 174
- 11. M. J. Higuer a, M. Ruiz Montoya, R. Mar in Galvin, J. M. Rodr iguez Mellado, *Bull. Electrochem.* **19** (2003) 513
- J. M. Rodríguez Mellado, R. Marín Galvín, M. Ruiz Montoya, in *New trends in electrochemistry research*, M. Núñez, Ed., Nova Science Publishers Inc., New York, 2007, p. 187.

JSCS-3974 543.42.004.12

J. Serb. Chem. Soc. 75 (3) 413-422 (2010)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC *Shilajit:547.992:541.1.004.12:

Original scientific paper

Humic acid from Shilajit – a physico-chemical and spectroscopic characterization

SURAJ P. AGARWAL¹, M. D. KHALID ANWER^{1,3*}, RAJESH KHANNA², ASGAR ALI¹ and YASMIN SULTANA¹

¹Dept. of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi-110062, ²Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh-201010, India and ³College of Pharmacy, Al-kharj, King Saud University, K.S.A.

(Received 16 March, revised 22 June 2009)

Abstract: Shilajit is a blackish-brown exudation, consisting of organic substances, metal ions and minerals, from different formations, commonly found in the Himalayan region (1000-3000 m) from Nepal to Kashmir. Shilajit can also be collected t hroughout the mountain region s i n Afghani stan, Bhutan, China, Bajkal, throughout Ural, Cauc asus and Altai mountains also, at altitudes be tween 1 000 to 5000 m. The major phy siological acti on of shilaj it has be en attributed to the presence of b ioactive dibenzo-a-pyrones together with humic and fulvic acid s, which act as carrier molecu les for the active ingredient s. In this work, the aim was to extract humic acid from Shilajit from various sources and characterised these humic acids based on their physicochemical properties, elemental analysis, UV/Vis and FTIR spectra, X-ray diffraction pattern and DSC thermograms. The spectral fea tures obtained from UV/Vi s, FTIR, XRD an d DSC studies for sa mples of different origins sh owed a distinct similarity amongst the mselves and i n c omparison to soil hu mic acids. The surfacta nt properties of the extract ed fulvic acids were investigated by determining the effect of increa sing concentration on the surface ten sion of water. The stu dy demonstrated t hat hu mic a cids extra cted from shilajit inde ed po ssessed surfactant properties.

Keywords: Shilajit; humic acid; FTIR spectra; DSC; XRD; surfactant properties.

INTRODUCTION

Shilajit, also known as salajit, shilajatu, mumie or mummiyo, is a blackish– –brown exudate coming out from layer of rocks in many mountain ranges, especially in the Himalayas and Hinduk ush ranges of the Indian subcontinent.¹ It is also found in Russia, Tibet, Norway and other countries, where it is collected in small quantities from steep rock faces at altitudes between 1000 and 5000 m. Shi-

413

^{*} Corresponding author. E-mails: -manwer@ksu.edu.sa; mkanwer2002@yahoo.co.in doi: 10.2298/JSC090316006A

$414_{\,\rm AGAR}$

lajit samples from different regions of the world, however, vary in their physiological properties.²

It mainly consists of p alaeohumus (around 80–85 %) and organic compounds derived from vegetation f ossils that were compressed under la yers of rocks for hundreds of years and underwent significant metamorphosis due to the prevalent high temperature and pressure conditions.⁵

Extensive research has be en performed to deter mine the exact che mical nature of Shilajit. Earlier work on shilajit showed that its major organic constituents included benzoic acid, hippuric acid, fatty acids, resin and waxy materials, gu ms, albuminoids and vegetabl e matter with benzoic acid being the active substance.^{6,7} Extensive resear ch in the eighties showed that the major organic mas s of Shilajit was comprised of hum us (60-80 %) along with other components, such as benzoic acid, hippuric acid, fatty acids, ichthyol, ellagic acid, resin, triterpenes, sterol, aromatic carboxy lic acid, 3,4-be nzocoumarins, amino acids and phen olic lipids.⁸ The major physiological action of Shilajit was found to be due to the presence of bioactive dibenzo $-\alpha$ -pyrones along with humic and fulvi c acids, which acted as the carrier molecules for the active substances.^{9–11} Recently, the physicco-chemical, spectral and t hermal properties of shilajit and its humic substances were reported, which further confirmed its humic nature.^{12–15} Elemental analysis and spectroscopic techniques, such as UV/Vis, FTIR and X-ray diffraction and DSC analyses have been widely used for the characterization of hum ic acids obtained from lignite, charcoal, soil, sewage sludge and compost.^{16,17} In this study, these methods were applied for the first time to humic acids extracted from Shilajit from different sources.

EXPERIMENTAL

Materials and methods

An authentic sample of rock Shilaj it (RS) w as obtain ed from Da bur Re search Foundation, Ghaziabad, India. Dried Shilaj it extracts were also obtained from three different commercial sources in India, *viz.*, Pioneer Enterpris es (PE) – Mumbai, Natural Remedies (NR) – Bangalore and Gurukul Kangri (GK) – Haridwar. The humic acid was extracted from all the samples of Shilaj and characterised based on their physico-chemical properties and their elemental analysis. Scanning electron microscopy and spe ctral analysis, such as UV/Vis, FTIR, DSC and X-ray diffraction, were perfor med. The E_4/E_6 ratio was al so determined. The spe ctral properties were compared with a humic acid standard from Sigma Aldrich.

Extraction of humic acid from Shilajit

Finely powdered shilaj it was succe ssively extracted ¹⁸ with 5 00 ml each of hot organic solvents of increasing polarity, *i.e.*, chloroform, ethyl acetate and methanol, to remove the bioactive components, specific ally oxygenated dibenzo- α -pyrones. The so-ob tained extracted Shilajit was taken and dispersed in 0.10 M aqueous sodium hydroxide with intermittent shaking under nitrogen at room temperature for 24 h. The suspension was filtered to remove humin (insoluble in water at all pH values) and the filtrate was acidi fied with dilute HCl to a pH of less than three. The solution was allowed to stand at room temperature (25 °C) overnight. The humic acid, which separated out as a coagulate, was filtered, dried and pulverized.

Elemental analysis

The C, H, N a nd S content s were determined by packing the fulvic acid powder in tin boats after care ful weighing (Balan ce – Mett ler Toredo, MX5) with the ai d of a CHNS a nalyzer (Vario EL-III). The obtained values are expressed as dry weight of powder, in mass %.

UV/Vis Spectroscopy

The UV/Vis spectra of various HA extract ed from shilajit of different origins were o btained on a Shimadzu, 1601 UV/Vis spectrophotometer by dissolving the various HA samples in water and recording the spe ctra in a 1 c m quartz cuvette i n the wavelength range 200–800 nm. Since humic substances usually yield uncharacteristic spectra in the UV and visible, the E_4/E_6 ratio (ratio of the absorbance of the solution at 465 and 665 nm)¹⁹ was determined for the various samples.

Fourier transform infrared spectroscopy (FTIR)

The FTIR spec tra of HA sa mples were recor ded on a W in-IRrez (Bio-Rad, Hercules, CA, USA) using the potassium bromide (KBr) disc technique. The samples (2 mg) were mixed with potassium bromide (about 100 mg) in a clean glass pestle and mortar and compressed to obtain a pellet. The base line was corrected and scanning was performed from 4000–400 cm⁻¹.

Powder X-ray diffraction

Powder X-ray diffraction patterns of powd ered samples of HA were obt ained using a Panalytical X-ray diffractometer, PW3719. All the samples were treated ac cording to the following specifications: target/filter (monochromator), Cu; voltage/current, 40 kV/50 mA; scan speed, 4 °/min.

Differential scanning calorimetry (DSC)

A Perkin–Elmer Pyris 6 instrument was used for recording DSC ther mograms of the HA samples obtained from different shilajit sources. Samples (2-8 mg) were accurately weighed and heated in c losed aluminium crimp cells at a rate of $10 \degree$ C/min under a dynamic nitrogen atmosphere (flow rate 20 ml/min) over the 50–300 °C temperature range.

Scanning electron microscopy

Scanning electron micrographs of the powdered samples were obtained using a Joel JSM-840 scanning electron microscope with a 10 k V accelerating voltage. The surface of samples for SEM was made electrically conductive i n a sp uttering apparatus (Fine Coat Ion Sputter JFC-1100) by evaporation of gold.

Surfactant properties

The surfactant properties of the hu mic acids were investigated by determining the effect of increasing the concentration of humic acid on the surface tension of water. The surface tension of the solutions was determined by the drop-weight method using a stalagmometer. Solutions of fulvic acids in the concentration range 0-1.4 % w/v were prepared. Each solution was separately sucked into the stalagmometer and allowed to drop slowly from it. The drop rate was adjusted to approximately 2–3 drops/min. and the weight of 10 drops was measured.

RESULTS AND DISCUSSION

Extraction of humic acid from shilajit

The yields obtained at the different stages of the earlier reported method and the improved method for the extraction of humic acid from shilajit are compared in Table I. The yields of HA extracted from shilajit from Dabur, Gurukul Kangri,

416_{AGAR}

WAL et al.

Natural Remedies and Pioneer Enterprises were 2.5, 9.2, 8.7 and 8.7 %, respectively. These are high proportion compared with those reported in the literature.¹⁸ The maximum yield of HA was obtained from the Gurukul Kangri shilajit.

_	Yield of fulvic acid, %						
Shilajit	Reported method		Improved method				
	I II	III	Mean $\pm SD$	I II		III	Mean $\pm SD$
RS	1.2 1.0 1.4		1.2 ± 0.2	2.2	2.8	2.6	2.5 ± 0.3
GK	7.5 7.8 7.3		7.5 ± 0.3	9.2	8.9	9.5	9.2 ± 0.3
NR	5.8 6.2 6.9		6.3 ± 0.6	8.1	8.9	9.1	8.7 ± 0.5
PE	6.9 6.4 7.1		6.8 ± 0.4	9.3	8.8	8.5	8.9 ± 0.4

TABLE I. Comparison of the yields of humic acid from Shilajit obtained from different sources

Physical characteristics

The physical characteristics of the humic acids extracted from Shilajit of different origin are list ed in Table II. The extracted HA from shilajit of different origins exhibit very similar physico-chemical characteristics, indicating no quailtative variation in the Shilajit samples and in their extraction procedure.¹⁸. Slight variations are to be expect ed and were seen in these HA samples. All the HA samples were brownish black in colour and had a typical characteristic odour and taste. The pH of 2 % aqueous solutions ranged from 3.46 to 3.86. The ratio of the absorbance at 465 and 66 5 nm (E_4/E_6) has been widely used by soil scientist for characterization purposes. The E_4/E_6 ratio for all the examined HA samples ranged from about 3.0 to 4.0, which are consistent with those reported in the literature.¹⁷

Elemental analysis

Elemental analysis of humic substanc es is gener ally used to establish their nature and origin.²⁰ As shown in Table III, a comparison of carbon, hydrogen, ni-

TABLE II. Comparison of the physical characteristics of humic acid from Shilajit of different origins

Characteristic	Humic acid (RS)	Humic acid (GK)	Humic acid (NR)	Humic acid (PE)	
Nature Dark	brown	Dark brown	Dark brown	Dark brown	
	powder	powder	powder	powder	
Colour	Dark Brown	Dark Brown	Dark Brown	Dark Brown	
Odour Charact	eristic	Characteristic C	haract eristic	Characteristic	
Taste Charact	eristic	Characteristic C	haract eristic	Characteristic	
pH of 2 % aq. solution	3.86 3.77 3.	.46		3.68	
Absorbance at 465 nm (E_4)	0.513 0.542		0.284	0.222	
Absorbance at $665 \text{ nm} (E_6)$	0.144 0.180		0.072	0.072	
E_4/E_6 ratio	3.56 3.01 3.	.94		3.08	

trogen and sulphur contents of the humic acids extracted from Shilajit of different origins with t hose of soil hum ic acids²¹ and the Sig ma Aldrich standard hum ic acid revealed that the content of C, H, N and S were very low in the case of the humic acids extracted from the pioneer shilajit. The carbon, hy drogen, nitrogen and sulphur contents also varied significantly among the samples of humic acids. These differences may be due to differences in the origin, different isolation techniques and error in sam pling and analysis. The C/N ratio also varied am ong the samples of humic acids.

TABLE III. Elemental analysis of humic acids extracted from shilajit of different origins

			3		8
Source of humic acid	% C	%Н	% N	% S	C/N ratio
Rock Shilajit (Dabur)	36.46	5.15	3.03	0.70	12.0
Shudh Shilajit (Gurukul Kangri)	45.36	5.92	2.31	0.39	19.63
Shilajit extract (Natural Remedies)	51.48	5.89 3.27	0.81		15.73
Shilajit extract (Pioneer Enterprises)	27.44	2.90 1.24	0.26		22.10
Sigma Aldrich (Std. HA)	42.28	4.25	0.57	0.81	73.09

UV/Vis Spectra

The UV/Vis spectra of the various samples of humic acids extracted from Shilajit of different origin were recorded in water from 200 nm to 800 nm are shown in Fig. 1. The samples did not exhibit any sharp maxima but exhibited a slight hump near 260–280 nm , which is charact eristic of hum ic substances. ¹⁹ As discuss ed previously, this hump is attributed to the absorption of radiation by the double bonds C=C, C=O and N=N of the aromatic or unsaturated components of humic

Fig. 1. UV/Vis Spectra of humic acid extracted from Shilajit of different origins: a) RS, b) GK, c) NR and d) PE.

Available online at www.shd.org.rs/JSCS/

-

417

418_{AGAR}

WAL et al.

substances.²² The variation in the h ump observed with the differ ent samples of Shilajit could be attributed to variations in the concentrations of aromatic co mpounds, which in turn is characteristic of the difference in the humification process.

FTIR Spectra

The FTIR spectra (Fig. 2) of the extracted humic acids were characterised by relatively few broad bands. All the hum ic acid samples exhibited broad bands at about 3400, 1725 and 1630 cm⁻¹, which can be att ributed to hydrogen bonded OH groups, C=O stretching of COOH groups and C=C double bonds, respectively. Sharp bands were observed in the region of 2 925, 1400 and 1050 cm⁻¹, which can b e attributed to the bendin g vibration of a liphatic C –H groups, the O–H bending vibrations of alcohols or ca rboxylic acids and the OH bending deformation of carboxyl groups, respectively.¹⁹

Fig. 2. FTIR Spectra of humic acid extracted from Shilajit of different origins: a) RS, b) GK, c) NR, d) PE and e) Laurentian humic acid.

X-Ray diffraction pattern

The X-ray diffraction pattern in the 2θ range from 10 to 70° of humic acid extracted from rock a shilajit sam ple (Fig. 3) exhibited very small diffuse peaks with a few in tense peaks, i mplying its n on-crystalline nature. This behaviour is

consistent with the behaviour observed in the case of humic substances from other sources. 23,24

Differential scanning calorimetry (DSC)

The humic acid of pi oneer Shilajit exhibited no sharp endothermic peak, indicating that it does not have any defined melting point (Fig. 4). A shallow endotherm could be observed near 100 °C, which could be attributed to dehydration of the sample. On the other hand, it showed an exothermic peak near 331 °C, which could be attributed to the thermal degradation of carboh ydrates, dehydration of aliphatic structures and decarboxylation of carboxylic groups.²⁴

Fig. 3. XRD Pattern of humic acid extracted from the rock Shilajit.

Fig. 4. DSC Spectra of humic acid extracted from the Pioneer Shilajit.

Scanning electron microscopy

The scanning electron micrographs (Fig. 5) of humic acid extracted from rock Shilajit of D abur showed a loose spongy structure of humic acids with the particles tending to aggregate to each other.

Surfactant properties

As can be se en in Fig. 6, increasing the concentration of extracted hum ic acids in water clearly led to a decrease the surface tension. The decrease was ini-

420_{AGAR}

WAL et al.

tially gradual until a concentration of about 0.8 %, w/v, after which it rose slightly and then became almost constant. This could be due to the formation of micelle at this concentration. This demonstrates that humic acids extracted from Shilajit indeed possess surfactant properties. The value of 0.8 %, w/v, for the critical micelle concentration (CMC) is in agree ment with the reported value of 0.7 %, w/v, for humic acids extracted from soil.²⁶

Fig. 5. Scanning electron micrographs of humic acid from rock shilajit; a) 500×; b) 1500×.

CONCLUSIONS

Humic acids from the various samples of shilajit were characterised and their physico-chemical and spectral properties compared. Such results are presented for the first time herein. The spectral features obtained from UV/Vis, FTIR, XRD and DSC studies for samples of different origins showed a distinct similarity amongst themselves and in com parison to soil hum ic acids. The surfact ant properties of humic acids were investigated by determining the e ffect of increasing concentration of humic a cids on the surface t ension of water. The study demonstrated that the humic acids extracted from shilajit indeed possessed surfactant properties.

Available online at www.shd.org.rs/JSCS/

Acknowledgements. Our than ks go to the H amdard Nation al Foundation, Jamia Hamdard, New Delhi, for a fellowship and the financial aid given for the project. The authors ar e also grateful to Dr. G. N. Qazi, vice chancellor, Jamia Hamdard, for providing the facilities.

ИЗВОД

ХУМИНСКА КИСЕЛИНА ИЗ ШИЛАЏИТА – ФИЗИЧКО-ХЕМИЈСКА И СПЕКТРОСКОПСКА КАРАКТЕРИЗАЦИЈА

 $\mathsf{SURAJ}\,\mathsf{P}.\,\mathsf{AGARWAL}^1,\mathsf{M}.\,\mathsf{D}.\,\mathsf{KHALID}\,\mathsf{ANWER}^{1,3},\mathsf{RAJESH}\,\mathsf{KHANNA}^2,\mathsf{ASGAR}\,\mathsf{ALI}^1\,\mathsf{H}\,\mathsf{YASMIN}\,\mathsf{SULTANA}^1$

¹Dept. of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi-110062, ²Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh-201010, India u ³College of Pharmacy, Al-kharj, King Saud University, K.S.A

Шилаџит је црно-мрк ексудат, који се састоји од органских супстанци, металних јона и минерала, различитог састава. Широко је распрострањен у хималајској регији (на висинама 1000–3000 m) од Непала до Кашмира. Шилаџит се такође може наћи у планинским регијама Авганистана, Бутана, Кине, Бајкала, као и на Уралу, Кавказу и Алтају, на висинама између 1000 и 5000 m. Основна физиолошка активност шилаџита приписана је присуству биоактивних дибензо-*α*-пирона поред хуминске и фулвинске киселине, које делују као носећи молекули активних састојака. У овом раду, циљ је био да се екстрахују хуминске киселине из шилаџита различитог порекла и да се оне окарактеришу на основу физичко-хемијских својстава, елементалне анализе, UV/Vis и FTIR спектара, дифрактограма X-зрака и DSC термограма. Спектралне карактеристике узорака различитог порекла добијене UV/Vis, FTIR и XRD методама, као и информације добијене DSC техником, показале су очигледну међусобну сличност узорака и сличност са хуминских киселина из земљишта. Испитивана је и површинска активност се хуминских киселина одређивањем утицаја њихове концентрације на површински напон воде. Испитивања су показала да су екстраховане хуминске киселине заиста површински активне.

(Примљено 16. марта, ревидирано 22. јуна 2009)

REFERENCES

- 1. Y. C. Kong, P. P. H. Butt, K. H. Ng, K. F. Cheng, R. C. Ca mble, S. B. Malla, *Int. J. Crude Drug Res.* 25 (1987) 179
- 2. S. Ghosal, Shilajit in perspective, Narosa Publishing, New Delhi, 2006, p. 1
- 3. S. Ghosal, J. Lal, S. K. Singh, Soil Biol. Biochem. 23 (1991) 673
- 4. S. Ghosal, J. Lal, K. Ravi, K. Yatendra, Soil. Biol. Biochem. 25 (1993) 377
- 5. S. Ghosal, V. Murugan andam, M. Biswajit, S. K. Bhattach arya, *Indian J. Chem.* 36 (1997) 596
- S. P. Agarwal, R. Khann a, R. Kar markar, M. K. Anwer, R. K. Khar, *Phytother. Res.* 21 (2007) 401
- 7. S. Ghosal, J. P. Reddy, V. K. Lal, J. Pharm. Sci. 65 (1976) 772
- R. N. Chopra, I. C. Chopra, K. L. Handa, L. D Kappor, *Indigenous Drugs of India*, U. N. Dhar & Sons, Calcutta, 1958, p. 457
- 9. S. P. Agarwal, M. Aqil, M. K. Anwer, Drug Dev. Indust. Pharm. 34 (2008) 506
- 10. S. Ghosal, J. Lal, S. K. Sin gh, G. Da sgupta, M. Bhaduri, M. Mukhopadhyay, S. K. Bhattacharya, *Phytother. Res.* **3** (1989) 249
- 11. S. P. Agarwal, M. Aqil, M. K. Anwer, Asian J. Chem. 19 (2007) 4711

 $422_{\rm AGAR}$

- 12. S. P. Agarwal, R. Khanna, R. Karmarkar, M. K. Anwer, R. K. Khar, *Asian J. Chem.* **20** (2007) 209
- S. P. Agarwal, M. Aqil, M. K. Anwer, in *Proceeding of 13th Meeting of the International Humic Substances Society*, Karlsruhe, Germany, 2006, p. 465
- R. Khanna, R. Karmarkar, M. K. Anwer, S. P. Agarwal, R. K. Khar, in *Proceeding of 13th Meeting of the International Humic Substances Society*, Karlsruhe, Ger many, 2006, p. 345
- R. Khanna, M. Witt, M. K. Anwer, S. P. Agarwal, B. P. Koch, Org. Geochem. 39 (2008) 1719
- 16. F. Martin, Fuel 54 (1975) 236
- P. M. Trompowsky, V. D. M. Be nites, B. E. Madari, A. S. Pimenta, W. C. Hockaday, P. G. Hatcher, Org. Geochem. 36 (2005) 148
- S. Ghosal, in *Research and Development of Indigenous Drugs*, S. B. Vo hara, P. C. Dandiya, Eds., Institute of History of Medicine and Medical Research, New Delhi, 1989, p. 72
- M. Schnitzer, in *Proceeding of Int. Meeting of Humic Substances*, Nieuwersluis, Pudoc, Wageningen, 1972, p. 293
- R. McDonnell, N. M. Holden, N. M., S. M. Ward, J. F. Collins, E. P. Farrell, M. H. B. Hayes, *Bio. Environ.* 101 (2001) 187
- 21. Y. Chen, N. Sensi, M. Schnitzer, Soil Sci. Soc. Am. J. 41 (1977) 352
- 22. M. Domeizel, A. Khalil, P. Prudent, Bioresource Technol. 94 (2004) 177
- 23. G. Chilom, J. A. Rice, Org. Geochem. 36 (2005) 1339
- 24. S. A. Visser, H. Mendel, Soil Bio. Biochem. 3 (1971) 259
- 25. M. Pietro, C. Paola, Thermochim. Acta 413 (2004) 209
- J. S. Gaffiney, N. A. Marley, S. B. Clark, ACS Symp. Ser. 651, American Chemical Society, Washington DC, 1996.