NOTE

Bicyclic molecular graphs with the greatest energy

BORIS FURTULA, SLAVKO RADENKOVIĆ# and IVAN GUTMAN**

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia

(Received 6 December 2007)

Abstract: The molecular graph Q_n is obtained by attaching hexagons to the end vertices of the path graph P_{n-12}. Earlier empirical studies indicated that Q_n has greatest energy among all bicyclic n-vertex (molecular) graphs. Recently, Li and Zhang proved that Q_n has greatest energy among all bipartite bicyclic graphs, with the exception of the graphs $R_{a,b}$, $a + b = n$, where $R_{a,b}$ is the graph obtained by joining the cycles C_a and C_b by an edge. This result is now completed by showing that Q_n has the greatest energy among all bipartite bicyclic n-vertex graphs.

Keywords: total π-electron energy; graph energy; bicyclic molecular graphs.

INTRODUCTION

The HMO total π-electron energy E is an important quantum-chemical characteristic of large polycyclic conjugated molecules.1−4 A closely related quantity is the graph energy (also denoted by E), equal to the sum of the absolute values of the eigenvalues of the underlying molecular graph.4,5 The question which molecular graph (within some pertinently defined class) has the greatest E value is of evident chemical relevance and has been much studied.1,6−13

In 2001, by means of a computer-aided empirical search, it was established8 that the graph Q_n (depicted in Fig. 1) is most probably the maximum-energy specie among n-vertex bicyclic molecular graphs. Recently, Li and Zhang11 offered a mathematical result that almost completely proved this finding. Namely, they showed that Q_n has the greatest energy among bipartite bicyclic n-vertex graphs, with the exception of the graphs $R_{a,b}$, $a + b = n$. The structures of the graphs Q_n and $R_{a,b}$ are shown in Fig. 1.

COMPLETING THE RESULT OF LI AND ZHANG

For odd n, the graphs $R_{a,b}$, $a + b = n$, are not bipartite. Therefore, for odd n, it is know that Q_n is the maximum-energy bicyclic bipartite graph and there re-
mains nothing to be added to the proof of Li and Zhang. In view of this, in what follows, it is assumed that \(n \) is even.

Fig. 1. The molecular graphs considered in this note. All these graphs are assumed to possess \(n \) vertices and that \(n \geq 12 \). Therefore \(a + b = n \).

In order to complete the result of Li and Zhang,\(^{11}\) appropriate computer-based investigations were undertaken. First it was necessary to determine which among the graphs \(R_{a,b}, a + b = n \), has the greatest energy. As bipartite graphs are under consideration,\(^5\) the parameters \(a \) and \(b \) must be even. In view of the earlier collected knowledge on the Hückel \((4m + 2)\)-rule (for details see\(^{14-16}\)), it could be anticipated that \(E(R_{a,b}) \) will be maximal for \(a = 6, b = n - 6 \) (or, what is the same: \(a = n - 6, b = 6 \)). This, indeed, was confirmed by our calculations, performed until \(a + b = 50 \).

A comparison of the energies of \(Q_n \) and \(R_{6,n-6} \) was now required. For this the quantity \(\Delta(n) = E(Q_n) - E(R_{6,n-6}) \), the dependence of which on \(n \) is shown in Fig. 2, was computed.

Fig. 2. The dependence of \(\Delta(n) = E(Q_n) - E(R_{6,n-6}) \) on the number \(n \) of vertices of the molecular graphs considered. For details see text.

As another consequence of the Hückel \((4m + 2)\)-rule, the data points for \(n \equiv 0 \) (mod 4), \(i.e.\), for \(n = 12, 16, 20, 24, \ldots \), lie below the data points for \(n \equiv 2 \) (mod 4), \(i.e.\), for \(n = 14, 18, 22, 26, \ldots \). For \(n = 12 \), the molecular graphs \(Q_n \) and
$R_{6,n-6}$ coincide and therefore $\Delta(12) = 0$. For all other (even) values of n, $\Delta(n)$ is greater than zero. Moreover, as seen from Fig. 2, in the limit case $n \to \infty$, $\Delta(n)$ tends to a value that lies between 0.2 and 0.3.

By this it was verified that for all even values of n, $n > 12$, $E(Q_n) > E(R_{6,n-6})$. Consequently, $E(Q_n) > E(R_{a,b})$ for any even value of a and b, $a + b = n$. Together with the result of Li and Zhang\(^{11}\), this implies that the earlier guess\(^8\) that Q_n, the molecular graph of the a,ω-diphenylpolyene, has the greatest energy among all bicyclic graphs was correct.

REFERENCES