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Abstract: The Hosoya polynomial of a molecular graph G is defined as
H(G,1)= Z{u,v}cv G)ﬂd(“"’), where d(u,v) is the distance between vertices U
and v. The first derivative of H(G,1) at =1 is equal to the Wiener index of G,
dlefined as W(G)= Z{U,V}QV(G)d(U’V)' The second derivative of
5AH(G,4) at A=1 is equal to the hyper-Wiener index, defined as
WW(G):%W(G)+%Z{U V}CV(G)d(u,v)z. Xu et al.! computed the Hosoya
polynomial of zigzag open-ended nanotubes. Also Xu and Zhang? computed
the Hosoya polynomial of armchair open-ended nanotubes. In this paper, a new
method was implemented to find the Hosoya polynomial of G = HCg[p,q], the
zigzag polyhex nanotori and to calculate the Wiener and hyper Wiener indices
of G using H(G,A).
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INTRODUCTION

A topological index is a real number related to a structural graph of a mole-
cule. It does not depend on the labeling or pictorial representation of graph.
Among topological indices, the Wiener index3 is certainly the most important
one. This index was introduced by the chemist Harold Wiener, about 60 years
ago to demonstrate correlations between physico-chemical properties of organic
compounds and the topological structure of their molecular graphs. Wiener defi-
ned his index as the sum of the distances between two carbon atoms in the
molecules, in terms of carbon—carbon bonds. The historical details and further
bibliography on the chemical applications of the Wiener index are reviewed in
the literature. 4>

The topological distance between a pair of vertices U and v of a molecular
graph G, denoted by d(u,v), is the number of edges on the shortest path joining u
and v. Thus, the Wiener index of G is half the sum of distances between all
vertices of the graph G:
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3 12 ELIASI and TAERI

W(@G)=  >.d(u,v)
{uvicVv(G)
where V(G) is the set of vertices of G.
Another topological index is the hyper-Wiener index that was defined by
Klein et al.6 and others’~12 applied it to cyclic structures as:

WW (G) =1W(G) L 3 d(u,v)?
2 UVieV (G)
Haruo Hosoya!3 introduced a distance-based polynomial, which he called
the Wiener polynomial, related to each connected graph G as:

H(G,2)= Y d(G,k)A
k>0
where d(G,K) is the number of pair vertices of G that are at distance k of each
other. However, today it is called the Hosoya polynomial.l14~15 It is easy to see
that it is equal to:

HG,H)= >0
{uvicVv(G)

In 1991, Iijimal® discovered carbon nanotubes as multi-walled structures.
Carbon nanotubes show remarkable mechanical properties. Experimental studies
have shown that they belong to the stiffest and most elastic materials known.
These mechanical characteristics clearly predestinate nanotubes for advanced
composites. Diudea was the first chemist who considered the problem of com-
puting topological indices of nanostructures.!-2:17-24 Recently computing topo-
logical indices of nanostructures has been the subject of many papers. The reader
is encouraged to consult papers25-3! on computing topological indices of some
nanotubes.

RESULTS AND DISCUSSION

Xu et al.! computed the Hosoya polynomials of zigzag open-ended nano-
tubes. Also Xu and Zhang? computed the Hosoya polynomial of polynomials of
armchair open-ended nanotubes. In this paper, a new method was implemented to
find the Hosoya polynomial of zigzag polyhex nanotorus. Throughout this paper,
G = HCg[p,q] (see Fig. 1) denotes an arbitrary zigzag polyhex nanotorus in terms
of the circumference p and the length q.

It should be noticed that p and g must be even. Also, a coordinate label for
the vertices of G = HCg[p,q], as shown in Fig. 2, was chosen. The distances from
Xo1 to all vertices are given in Fig. 3. Note that the graph is bipartite, or equi-
valently, the vertices can be colored with white and black, so that adjacent ver-
tices have a different color. Since the graph is symmetric with respect to the line

joining X0.P 41 to X > one half of the numbers are shown in Fig. 3.
97 ,E
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Fig. 1. HC¢[20,40]:
Side view; top view.

Fig. 3. Distances from Xg; to each vertex of HCg4[6,16].
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CALCULATION PROCEDURE
For a vertex ueV(G),

d(u,A)= Y 90w
veV (G)

is defined and the work is commenced with the following key result.
Result 1. Let ueV(G) be a white vertex and the summation of A%UX_ where X varies on
the vertices of level k, is denoted by wy(4). Then if 0 <k < p/2, one obtains:

W (1) = Zﬂd(XOLX)

xelevel k
zld(X(M,X)
xelevel k
1 P P
— l_l(/lkJrz _/fiZkJrl +ﬂk+2+l —k/12k _ﬂ?k +k/12k+2)
and if kK > p/2 then one has:
W, (1) = zid(xoz,x)
xelevelk
— Z/qu(xo%x)
xelevel k

P ket | P

2 2
Similarly, suppose that ueV(G) is a black vertex and the summation of A%, where X
varies on the vertices of level K, is denoted by by(4). Then if 0 <k < p/2, one has:

by (A1) = Z’ld(XOl’X)

xelevelk

— Zﬂd(xm,x)

xelevel k
1 k+2 k+241
:—(/,i 2_/12k+1+/1 P
A-1

and if k > p/2, then one has:

+ k/12k+1 _/fiZk _ k/12k71)

by () = zld(xm,x)
xelevek

— Zﬂd(xos,x)

xelevek

P k-1, P ok

2 2

Proof. b(2) is computed. It is suffices to consider Xq;. For other black vertices, the
argument is similar. Firstly, note that the lattice is symmetric with respect to the line joining
Xo1 to X;;. Three cases can be distinguished:

Case 1. p/2 <k and Kk is even. In this case, for all 1 <j<p/2 + 1, one has
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d (%01, %) = 2k —1if jiseven
0L Tk if jisodd

Now by considering these vertices and their symmetric vertices, one obtains p/2 vertices
having a distance 2k — 1 from Xy, and p/2 vertices having a distance 2k from X;. Hence,

P k-1, P ok
b, (1) =—A +—=A
K (4) 5 5

Case 2. p/2 <k and k is odd. In this case for all 1 <j < p/2+1, one has:

2k if jiseven

d(Xo1, Xgj) = .
(Yo %q) {Zk—lifjisodd

Now by considering these vertices and their symmetric vertices, one obtains p/2 vertices
having distance 2k — 1 from Xg;, and p/2 vertices having a distance 2k from X,;. Hence,

P k-1, P ok
b (1)=—=A""+—=2".
k(4) 5 5
Case 3. p/2 <k.Forall j's, such that p+ 1 <jand k + 1 < j, one has:

Thus, the summation of the distances between X,; and X, (for all j's, such that p + 1 < j
and k + 1 <) and their symmetric vertices is:

P
2 .
Sy =2 Y Aty
j=k+2 -
Alsoif 1 <j<k+ 1, then

P P
Kg+l-l _ 1 k+5+1

P
(T2 _p ket gl

d (X1 X ) = 2k if k — jisodd
o7k 2k —1 if k — jiseven

Therefore, the summation of the distances between Xy, and X (for all j such thatl <j <k + 1)
and their symmetric vertices is:

S, = (k + 1) 22K + k2!
Hence,

p
k+7+1

P
be(4) =S, +8$, :—/11 1(/1"*2 AR R Vol VA

The proof for wy(A)is similar.
Result 2. For one white or black vertex Xoj of level 0, one has:

Wy (D) =b (1) = A0 =
2

q
xelevel )

1 (ﬁ% _/12(%)44 +ﬂ%+§+1 +%ﬂz(g)+1 _
A-1
a9y a
P, pad L a P
2 2 2 2

2 g, 2H-1,..9 P
2727 (AT < 2
<) )i 5 <3
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Proof. Since G is symmetric with respect to the line joining Xo; to Xy, it is sufficient to
prove the assertion for Xy, and Xg,. For Xg;, the proof is exactly the proof of Result 1. Con-
sidering tori that can be built up from two halves collapsing at level 0, the top part Xy, is a
black vertex, hence by the proof of Result 1, one can calculate b g (4) .

Result 3. For each ueV(G), one has:

D) ::d(u,/l):bo(/l)+bl(/l)+---+bﬂ(ﬂ)+wl(i)+~~-+wgil(ﬂ)

Proof. Firstly, note that the lattice is symmetric (with respect to the level k). Hence, it
suffices to consider Xy, and Xg,. For other black (white) vertices, the argument is similar. Now,
beginning with Xy, let B, = {k|0<k <3} and B, = {k |%< k <g—1} . Then one has:

d(Xo1,4) = Zld(XOI’V) = z/ld(XmaV) + Z;Ld(xm,v)
veV (G) veB; veB,
However,

S G0 = 3 2000 3 000 Ly Zﬂd(xm")—bo(ﬂ)+b1(/1)+ -+b, (/1)

veB, velevel0; velevelly Ve|eV9|1

For computing the last sum, tori that can be built up from two halves collapsing at level 0
are considered. The top part is formed of the lines of B, such that x,; are a black vertex.
Hence, by changing the index and using the proof of Lemma 1, one obtains:

Zid(X()],V) — Zj'd(XOI’V) + Z;Ld()(()l,v) ot z/ld(X()l,V) =W1(/1)+"'+Wq (/1)
-1
2

veB, velevelg—-1; velevelqg—2; velevellgﬂ

which completes the proof.
Theorem. The Hosoya polynomial, H(G,4), of G = HCg4[p,q], nanotorus is given by:

H,(G,A) if q<p
H,(G,A) if g>p

where
Pq 2 5 4 a2 2
H,(G,A) = W( L0402 L2t 0 m L 42 4 A0 4
p.a ) » p.a
a2t et o0t _og _ogr o +4-qa9+24272)

and

pq 543 q+3 3 p+2 p+2

H, (G, 1) = (=222 4 A3 4 43 —44P2 _ paPr2 -

402 -1)?

++2

2 R
412 22 4 pAPT 4 4APF2 p 4QP 40 2027 4 P - paath
Proof. One has:

H(G, 1) = > 21“<“’V>+l 2/1‘““’“):1 d(v/i)+ \V(G)|_ ZD(/I)+ pq =

ueV(G) VeV (G) 2 4ev(e) 2 e 2y&v(G)
pPg 1

= Pipay+2
5 @) 5 Pa

First suppose that g < p—2. In this case, g < p, hence by Result 3 and Result 1, one has:
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D(/”t):bo(/l)+bl(/l)+---+bﬂ(i)+wl(i)+---+wﬂ_l(/1)
2 2

q

_ iﬁ(iﬂg _ p2k+ +/1k+§+1 Akl g2k gkt
k=04 —

4

ZZ: ll l(lk"'g _12k+1 +ﬂ,k+g+l _k12k _ﬂZk + kl2k+2) _

k=14~

= ;(21 F422 Q013 42072 1204 48 -
20 -1 -1)

Dy Y DY ane U At S Y s acs S Eac i

C6a2 Y gt L ARt g qAaH At g0t 4 gt g pat
Hence, in this case H(G, 1) = H{(G,4).

Now suppose that p < g—2. In this case, p/2—1 < g/2—1, hence by Result 3 and Result 1,
one has:
D(4)=by(A) + by (1) +---+ bg(ﬂ)+wl(/1)+~~+wﬂil(l) =
2 2
:bo(i)+b1(i)+---+b£71(/1)+b£(i)+---+bg(i)+
2 2 2

+wl(/l)+-~~+WLI(/l)+WB(1)+---+WLl(/1):
2 2 2

b1
_ 22/11 1(2k+§ _22k+l +ik+g+l +k/12k+1 —ﬂZK _kﬂ}kfl)+
k=04 —

9 P
2 2 P P
+ z (%ﬂZk—l_i_ngk)_i_ Z/’il l(ik+2 _/12k+l+lk+2+l_k12k _ﬂ}k +kﬂ,2k+2)+
k=§ k=14~
31

P 22k+1 | P 42k
+ (22 +2/1 )

=
wlo

After calculation of these summations, one obtains:

H(G,4) = Hy(G,4)
Finally, if p = g, then by Result 3 and Result 1, for each ueV(G), one has:
D(A) =by(A) + oy (A) +---+bg () + Wi (A1) +---+ W, 1(/1) =
2 27

:bo(/l)+b1(/1)+~~+bﬁ_l(/l)+w£(ﬂ)+wl(ﬂ)+~~+w£_l(/1):
2 2 2

S-lap
— 2 ;l(ik‘Lg _12k+1 +ﬂk+g+l + kﬂka+l _12k _ kﬂka*l)_i_(%/iz(g)*l +§ﬂ,2(g))
k=0 -
g’l P p
Z ll l(ik"'f _AZkJrl +ﬂk+7+l —k)qu —ﬂ,Zk +kﬂ,2k+2)
k=14~

Hence, in this case, H(G,4) = H{(G,4).
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One of the most frequent applications of the Hosoya polynomial is the calculation of the
Wiener and hyper-Wiener indices. In fact

d
W(G)=-2H(G.A
G) i ( )1:1
and
WW(G)—li[AH (G, )]
C2d2 T

Since the polynomials are a continuity function, hence for the obtained polynomials one has:
. d
W(G) = llm;ﬁld—[H (G, )]
A
and
WW (G) =lim li[/lH (G, )]
A—-1 2 dlz E]

Thus, one can calculate:
Result 4. The Wiener index of HCg4[p,(] nanotori is given by:

2
B (-4+3p” +3pg+q?)if g< p
2
B2 (-4+ p? +69%)if > p
Result 5. The hyper-Wiener index of HC¢[p,q] nanotori is given by:
o35 PA*(-16+16p—20q+4p> +6p>q+4pqg’ +12p> +5¢° + 49> +12pg)if g < p
55 P?q(3p’ +4p> —12p-6+16q° + 249> +8q)if q > p

CONCLUSION

A method has been developed which is usually very useful for calculating
the Hosoya polynomials of Cg nanotubes and nanotorus. As a consequence of
calculating the Hosoya polynomials of zigzag polyhex nanotorus, the Wiener and
hyper-Weiner of such nanotorous were computed.

Acknowledgement. The second author was partially supported by the Center of Excel-
lence of Mathematics of the Isfahan University of Technology (CEAMA).

N3BOJ
HOSOYA ITOJIMHOM HUK-IAK IMTOJIMXEKC HAHOTOPYCA
MEHDI ELIASI 1 BUAN TAERI
Department of Mathematical Sciences, Isfahan University of Technology,Isfahan 84156-83111, Iran
Hosoya nonHOM MoJtekysickor rpada G je nedunucan kao H(G,1) = Z{U’V}QV(G)/I"(“’V),

rae je d(u,v) pacrojame usmel)y uBopoBa U u V. IlpBu u3Boxg ox H(G,1) 3a A=1 jennak je
Buneposom unzekcy rpada G, koju je nepunucan kao W (G) = Z{u v}cV(G)d (u,v) . Ipyru ussox
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on %AH (G,A4) 3a A=1 jennax je xunep-BuHepoBOM HHAEKCY, AePUHHUCAHOM Kao
_1 1 2 1

WW(G) =W (G) +32{u,v gV(G)d(u,v) . Xu et al.! cy uspauynanu Hosoya MOJMHOM He3aTBO-

PEeHHX LMK-IAK HaHoLeBH. Xu u Zhang? cy m3pauyHanun Hosoya momuaoM “armchair” HesaTso-

pPEHHX HaHOLIEBH. Y OBOM paly pa3BHjeHa je HOBa Meroja 3a oapehuBame Hosoya moimHOMa 3a

G =HCq[p.q], 1j. 3a muk-mak nonuxekc Hanoropyce. Kopucrehn H(G, 1), m3pauynaru cy Bunepos

nu XI/IHep-BI/IHepOB HWHJCKC OBHUX HAHOTOpYCa.

(ITpumsbeno 12., pesuaupano 22. centem6pa 2007)
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