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Abstract: The Zhang–Zhang polynomial ζ(x) is a recently conceived tool in the ma-
thematical apparatus of theoretical chemistry. It combines (in a quantitative man-
ner) the Kekulé- and Clar-structure-based features of benzenoid molecules. It is 
shown that the topological resonance energy (TRE) can be accurately approximated 
as bxaTRE +≈ )(ζ , where x ≈ 0.5, by which fact a significant insight is gained 
into the structure-dependence of TRE of benzenoid molecules. 
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INTRODUCTION 

A few years ago, the Chinese mathematicians Heping Zhang and Fuji Zhang 
introduced a polynomial that is based on the Kekulé and Clar structures of benzenoid 
molecules.1–3 Although these authors reported some chemical applications of their 
polynomial,4,5 intensive research along these lines started only relatively recently.6–9 

In what follows, the polynomial conceived by Zhang and Zhang will be re-
ferred to as the Zhang–Zhang polynomial, and will be denoted by ζ(B,x) or ζ(x), 
with B symbolizing the underlying benzenoid molecule. 

The Zhang–Zhang polynomial is defined in the following manner. Let B be a 
benzenoid system i.e., a graph representing the carbon-atom skeleton of a benze-
noid hydrocarbon; for details see the book.10 It is assumed that B is Kekuléan, 
i.e., that it has at least one Kekulé structure. Consider the so-called "Clar covers" 
of B, subgraphs in which all vertices are covered by either isolated edges or by 
disjoint hexagons. Let z(B,k) be the number of Clar covers of B, containing 
exactly k hexagons. Then 
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An example illustrating this definition is given in Fig. 1. According to it, the 
Zhang–Zhang polynomial of pyrene is 6+6x+x2. More details on the Zhang–Zhang 
polynomial can be found elsewhere,1–9 especially in the chemist-friendly review.8 

 
Fig. 1. The Clar covers of pyrene; the chosen edges and hexagons are indicated by heavy lines. One 

should note that s1 corresponds to the Clar aromatic sextet formula of pyrene, whereas c8–c13 
correspond to its six Kekulé structures. Only the Clar cover c1 possesses two hexagons; therefore 

z(B,2) = 1. Six Clar covers: c2, c3, c4, c5, c6, c7 possess a single hexagon; therefore z(B,1) = 6. 
Six Clar covers: c8, c9, c10, c11, c12, c13 do not possess any hexagon; therefore z(B,0) = 6. The 

Zhang–Zhang polynomial of pyrene is thus z(B,0) + z(B,1) x + z(B,2) x2 = 1 + 6x + 6x2. 

The Zhang–Zhang polynomial unifies the Kekulé- and Clar-theory-based fea-
tures of the respective benzenoid hydrocarbon. Therefore, its chemical applica-
tions should, first of all, be sought in those parts of the theory of benzenoid hydro-
carbons in which Kekulé and Clar formulas play a significant role.10–12 One pos-
sible way in which the Zhang–Zhang polynomial can be applied is the following. 

An elementary property of the Zhang–Zhang polynomial is that ζ(B,0) is 
equal to the number K of Kekulé structures of the benzenoid molecule B. Sup-
pose now that a certain property P of B can be (at least approximately) calculated 
from the respective K-value: 
 )(Kf≈P  

which is tantamount to 
 ))0((ζf≈P  (1) 

Now, if instead of ζ(0), the Zhang–Zhang polynomial for some other value 
of x is substituted into formula (1), it may happen that this will result in a better 
approximation for P than f(ζ(0)). 
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In this work, the topological resonance energy (TRE) and its dependence on 
the Zhang–Zhang polynomial is examined. Recall,13,14 that TRE is a variant of 
the Dewar resonance energy15,16 in which no additional semi-empirical parame-
ters are used for the calculation of the reference energy. More details on TRE can 
be found in the recent reviews17,18 and in the references cited therein. 

DEPENDENCE OF THE TOPOLOGICAL RESONANCE ENERGY ON 
THE KEKULÉ STRUCTURE COUNT 

Although TRE has been known for 30 years, and although numerous of its 
mathematical properties were established, its dependence on the number of Ke-
kulé structures was never properly analyzed. The dominant factor determining 
the value of TRE (as well as of any other kind of resonance energy) is the number 
of π–electrons17,18 which, in the case of conjugated hydrocarbons, is determined 
by the number of carbon-atoms and carbon–carbon bonds. Therefore, in order to 
examine the influence of other structural factors on TRE it is necessary to restrict 
the consideration to sets of isomers (in which all members have equal number of 
carbon atoms and equal number of carbon–carbon bonds).19 

In this work, the results obtained for six sets of benzenoid isomers, those with 
formulas C22H14 (12 isomers), C24H14 (13 isomers), C26H14 (9 isomers), C26H16 
(36 isomers), C28H16 (62 isomers), and C30H18 (118 isomers), are reported. In each 
of these sets, all possible isomers were taken into consideration. 

In earlier works,5–7 the dependence of TRE on K (and, consequently, the de-
pendence of TRE on ζ(x)) was postulated to be logarithmic. This assertion is a 
consequence of non-critically accepting that a logarithmic approximation for the 
original Dewar resonance energy20 can be applied also to TRE. This turned out to 
be a mistake, since – as seen from Fig. 2 – the dependence of TRE on K is essen-
tially linear, and by no means logarithmic. 

In order to learn about the dependence of TRE of benzenoid molecules on 
their Kekulé structure count, first a typical plot of TRE vs. K is shown in Fig. 2. 

From Fig. 2, it can be seen that there is a good linear correlation between 
TRE and K. Such results are found for all the examined sets of benzenoid iso-
mers. However, these correlations can be somewhat improved if, instead of K, 
TRE is correlated with Kλ. Surprisingly, the values of the exponent λ for which 
the best correlations are obtained are significantly different from unity. A chara-
cteristic example is shown in Fig. 3. 

The λ-values that minimize the average relative error of the approximation 

 bKaTRE λ +≈  (2) 

are given in Table I. The λ-values for which the correlation coefficients become 
maximal are close, yet not identical, to those given in Table I. In formula (2) and 
later in the text a and b are coefficients calculated by least-squares fitting (dif-
fering, of course, for each of the examined six sets). Their values can be obtained 
from the authors (I.G. & S.R.) upon request. 
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Fig. 2. The topological resonance energies of the heptacyclic catacondensed benzenoid isomers 

C30H18 plotted versus the Kekulé structure count K. The correlation appears to be linear. Indeed, 
the correlation coefficient is 0.993, and the approximation aK + b (with a and b determined by 
least-squares fitting) reproduces the TRE with an average relative error of 0.55 %. Yet, a slight 

curvilinearity in these correlations can be observed, and TRE is better 
reproduced by a linear function of Kλ, λ ≠ 1, see Fig. 3. 

 
Fig. 3. Same TRE values as in Fig. 2 plotted versus Kλ, λ = 0.70. This value of 

the exponent lambda minimizes the average relative error (= 0.50 %). 
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TABLE I. Data on the dependence of the topological resonance energy on the Kekulé structure 
count, of the form given by Eq. (2), for six sets of benzenoid isomers. N.I. = the number of Ke-
kuléan isomers of the benzenoid systems with the given formula; all these isomers were contained 
in the sets considered; AERR(λ) = average relative error for the given (optimal) value of the para-
meter λ; AERR(λ = 1) = average relative error of formula (2) for λ = 1, i. e., for the linear depen-
dence of TRE on K 

Formula N.I. λ AERR(λ) / % AERR(λ = 1) / % 

C22H14 12 0.89 0.37 0.39 

C24H14 13 1.53 0.55 0.71 

C26H14 9 0.75 0.44 0.46 

C26H16 36 0.77 0.46 0.50 

C28H16 62 1.24 0.71 0.75 

C30H18 118 0.70 0.50 0.55 

DEPENDENCE OF TOPOLOGICAL RESONANCE ENERGY ON 
THE ZHANG–ZHANG POLYNOMIAL 

The findings outlined in the previous section suggest that in the case of 
topological resonance energy, the approximation of type (1) should be chosen to 
have the form 

 bxaTRE +≈ λζ )(  (3) 

where the parameters λ and x should be used for optimization. The optimal values 
of these parameters (determined so as to minimize the average relative error) are 
given in Table II. 
TABLE II. Data on the dependence of the topological resonance energy on the Zhang–Zhang poly-
nomial, of the form given by Eq. (3), for the same benzenoid isomers as in Table I. AERR(λ,x) = 
= average relative error for the given (optimal) values of the parameters λ and x; ERR(max) = 
= maximal relative error observed 

Formula λ x AERR(λ,x) / % ERR(max) / % 

C22H14 0.65 0.31 0.33 0.56 

C24H14 0.33 0.69 0.41 1.16 

C26H14 0.34 0.86 0.31 0.78 

C26H16 0.51 0.30 0.39 1.15 

C28H16 0.64 0.54 0.71 0.75 

C30H18 0.45 0.36 0.50 0.55 

Both the optimal λ- and optimal x-values given in Table II vary to a great ex-
tent from sample to sample. Nevertheless, it appears as if both the λ- and the x-va-
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lues “oscillate” around the value 0.5. Indeed, the approximation (3) will not lose 
much of its precision if one sets λ = 0.5 and also x = 0.5. If so, then one arrives at 
the expression 

 baTRE +≈ )2/1(ζ  (4) 

Statistical data pertaining to formula (4) are given in Table III. As seen by com-
paring the columns AERR and AERR(min), the accuracies of formula (4) and of the 
optimized formula (3) are practically the same. One should, nevertheless, bear in 
mind that the exponent λ = 0.5, leading to the expression (4) was chosen only 
because of simplicity. Other values for this exponent could serve as well, but then 
the form of the resulting approximation would be somewhat more complicated. 
TABLE III. Data on the dependence of the topological resonance energy on the Zhang–Zhang poly-
nomial, of the form given by Eq. (4), for the same benzenoid isomers as in Table I. AERR = average 
relative error for λ = x = 0.5; ERR(max) = maximal relative error observed; AERR(min) = the 
(minimal) AERR-value, attained for the optimal choices of λ and x (same as AERR(λ,x) in Table II). 

Formula AERR /  % ERR(max) / % AERR(min) / % 

C22H14 0.35 0.67 0.33 

C24H14 0.43 1.17 0.41 

C26H14 0.33 0.66 0.31 

C26H16 0.42 1.10 0.39 

C28H16 0.56 2.56 0.52 

C30H18 0.46 2.73 0.41 

CONCLUSIONS 

By means of formula (4), the TRE–values may be reproduced with an error 
that is (on average) around 0.5 % or below, and (in the worst case) less than 
2–3 %. This aspect of Eq. (4) may be viewed as something not particularly valu-
able. In our opinion, the true value of the formula (4) is not so much in its ability 
to estimate TRE, but in the insight that it gives into the structure–dependence of 
TRE and, consequently,13–19 into the structure-dependence of the stability and 
“aromaticity” of benzenoid molecules. In particular, formula (4) provides a 
quantitative connection between Clar-theory-based structural features and reso-
nance energy. Recall that in the original Clar aromatic sextet theory,11 all consi-
derations were non-quantitative, and that until now very few quantitative Clar-theo-
ry-based approaches have been put forward.21 

The fact that in formulas (3) and (4) the parameter x is significantly different 
from zero indicates that not only the Kekulé structures (via z(B,0)), but also the 
cyclic Clar covers (via z(B,1), z(B,2), ...) influence the value of the topological 
resonance energy. As x ≈ 1/2, it can be seen that the (stabilizing) effect of a Clar 
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cover with a single hexagon is about 50 % of the effect of a Kekulé structure, the 
effect of a Clar cover with two hexagons is about 25 % of the effect of a Kekulé 
structure, etc. 

И З В О Д  

ВЕЗА ЕНЕРГИЈЕ РЕЗОНАНЦИЈЕ СА ЖАНГ–ЖАНГОВИМ ПОЛИНОМОМ 
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Жанг–Жангов полином ζ(x) је један недавно предложени објекат који се примењује у мате-
матичком формализму теоријске хемије. Он повезује (на квантитативан начин) особине засно-
ване на Кекулеовим и Кларовим структурама бензеноидних молекула. Показано је да се тополо-
шка енергија резонанције (TRE) може веома тачно апроксимирати формулом bxaTRE +≈ )(ζ , 
где је x ≈ 0,5. 

(Примљено 23. октобра 2006, ревидирано 9. фебруара 2007) 
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