
J. Serb. Chem. Soc. 72 (6) 563–578 (2007) UDC 546.76+546.226–325:548.7:544.6:620.193

JSCS–3588 Original scientific paper

Structural effects of metallic chromium on its electrochemical

behavior

BORE JEGDI]1, DRAGUTIN M. DRA@I]2*#, JOVAN P. POPI]2# and

VELIMIR RADMILOVI]3

1Institute for Chemical Power Sources, Batajni~ki drum bb. 11070 Belgrade-Zemun, 2Institute

of Chemistry, Technology and Metallurgy-Center for Electrochemistry, P. O. Box 473, 11001

Belgrade, Serbia and 3Lawrence Berkley National Laboratories, University of California,

Berkeley, CA, USA (e-mail: dmdrazic@eunet.yu)

(Received 20 February 2007)

Abstract: Chromium dissolution in aqueous sulfuric acid solution of pH 1 was studied

electrochemically on chromium electrodes with different crystallographic structures. A

slow potentiodynamic method was used for the electrochemical measurements in

deaerated solutions (purged with nitrogen), while the Cr(III) ions in the solution after the

corrosion were determined by atomic absorption spectrometry. Three electrode materi-

als with a very dominant crystallite orientation resembling single crystal structures (i.e.,

111 and 110) confirmed by the electron backscattering diffraction (EBSD), were used in

the experiments. The (111) structures were somewhat more active electrochemically

(both anodic and cathodic) than the (110) structure. However, Cr electrochemically de-

posited in standard plating bath, assumed from literature data to has also the (111) struc-

ture, was more than 4 times active for anodic dissolution and, by the same number, less

active for cathodic hydrogen evolution. The concentrations of Cr(III) ions determined in

the solution after definite times of corrosion of all the materials showed almost two

times larger dissolution rates than observed electrochemically by three different electro-

chemical methods (Wagner–Traud, Stern–Geary, electrochemical impedance spectros-

copy). This is explained by the simultaneous occurrence of potential independent chem-

ical dissolution of Cr, by a direct reaction of metallic Cr with H2O molecules, proposed

a long time ago by Kolotyrkin and coworkers.
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INTRODUCTION

It was shown in previous works1–4 that metallic chromium in deaerated sulfu-

ric acid dissolves by two different mechanisms. One is the electrochemical mecha-

nism involved in the electrochemical corrosion of metals in acid solutions, which

follows the Wagner–Traud,5 interpretation of the acid corrosion processes and the
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second one, the chemical model of Kolotyrkin et al.6–12 in which the metal disso-

lution reaction proceeds in the form of a chemical reaction by direct reaction of

metal atoms with water molecules, with a possible participation of hydronium

ions. In these processes there are no electron transfer reaction steps through the

double layer and, therefore, these reactions do not depend on the electrode poten-

tial, contrary to those which involve electron transfer, e.g., electrochemical anodic

dissolution. In the reported experimental results it was shown that the rates of these

reactions depend to some extent, on the crystallographic orientation of the crystal-

lites in the electrode material.4 This finding was made accidentally, since by

chance the metallic chromium used in these experiments was a cast large grain

specimen. Hence grains as large as 5 mm in diameter could be analyzed.

In the work presented here, the influence of the crystallographic structure of

the surface on electrochemical and chemical dissolution in sulfuric acid was stud-

ied by comparing these properties for three metallic chromium samples obtained

by three different methods of preparation; casting, rolling and by electrochemical

deposition from a standard chromium plating bath.

EXPERIMENTAL

The experiments were performed with metallic chromium (Merck, cast, lumps), marked A,

metalic Cr (Goodfellow, Berwin, Pa, USA), as 5 mm rods marked B, and electroplated Cr on steel

coupons ca. 120 �m thick, marked C.

Electrode A. These electrodes consisted of the Merck chromium sealed in an acrylic resin in

the form of a piece of metal with an exposed surface of 1 cm2. The electrode surface was mechani-

cally polished stepwise using finally polishing paper of the quality 0. Such surfaces were etched in

the sulfuric acid solution used in the experiments. The etching revealed that the chromium surface

consisted of two or three large crystal surfaces, indicating that Merck chromium is composed of

large macro crystals, probably formed during the slow cooling during the casting process. Figure 1a

represents a photograph of an electrode A after polishing the diameter of the whole electrode is ca. 2

cm, and a microphotograph after anodic dissolution for ca. 60 min (�150) , with one boundary be-

tween two large grains. Such electrodes were electrochemically studied either as one complex en-

tity, or the parts representing only one grain left unprotected while the rest of the surface was pro-

tected by acrylic resin. Hence, a single grain could be electrochemically studied alone. Such sur-

faces were marked as electrode A1 and A2.

Electrode A1. The numbers in Fig. 1a designate the surfaces corresponding to the grains A1

and A2. The estimated surface area of grain 1 was 0.5 cm2, while the crystallographic orientation of

the grain is presented later in the text.

Electrode A2. The surface area of grain 2 was estimated to be 0.35 cm2. The crystallographic

orientation of grain 2 is presented later in the text.

The results reported in this work are related to electrodes A, A1 and A2 as defined above, since

the crystal orientation was determined for these two specific surfaces, i.e., A1 and A2.

Electron B. Chromium rod 5.0 mm in diameter (Goodfellow, Berwin, Pa, USA, 99.8 %) was sealed

in acrylic resin and cut perpendicularly so that only a disk of the surface area, estimated to be 0.2 cm2

was exposed to the solution. The estimate of the crystallilne structure of these electrodes is presented

later in the text. The microphotograph of surface B after ca. 60 min of polarization is shown in Fig. 1b.

Electrode C. These electrodes were made of mild steel coupons electrolytically covered with a

ca. 120 �m thick chromium deposit. For plating, a standard procedure for Cr plating bath was used

(235 g/dm
3 CrO3, 4.5 g/dm3 Cr2O3, 2.67 g/dm3 H2SO4, j = 55 A/ dm2, t = 55 °C). Microphotographs
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of surfaces of the electrode C, before etching and after 60 min of polarization measurements are pre-

sented in Fig. 1c, (1) and (2), respectively.

All the experiments were performed in aqueous mixtures of 0.1 M NaSO4 + H2SO4, the con-

centrations of the acid being adjusted so to give that pH of 1.0. Merck p.a. chemicals and doubly dis-

tilled water were used for the preparation of the solutions. An all glass thermostated three compart-

ment electrochemical cell with a platinum foil as the counter electrode and a saturated calomel refer-

ence electrode (SCE) were used. All the potentials are referred to the SCE. The solution were contin-

uously deaerated with purified nitrogen. The experiments were carried out at 25±0.2 °C). The elec-

trical measurements were performed with a PAR 273 potentiostat–galvanostat set up, Houston X–Y

recorder and 5315 lock-in-amplifier for the electrochemical spectroscopy measurements, using 332

Corrosion Software and 368 AC-Impedance Software.

When the chromium electrode after polishing in air was introduced into the solution, even after

purging the solution with purified N2 the spontaneously established open circuit potential, Ecorr,1,

was about –0.450 V in pH 1.0, which corresponds to the potential of a passivated electrode. Prior to

the measurements, the chromium electrodes were activated by cathodic polarization at –0.9 V for 90

s to reduce the thin oxide film formed at the surface while the electrode was in contact with air. After

15 min stabilization at the corrosion potential, polarization curves were recorded starting from the

corrosion potential in cathodic and anodic direction with a sweep rate of 2 mV/s. This sweep rate ap-

peared to be sufficiently slow to consider the polarization curves to have been obtained under a quasi

steady state condition. Of course, this does not hold for the passive range of the anodic curve, since

the passive current permanently decreases over time.

Chemical analysis of the solution for determining the concentration of the total dissolved chro-

mium as Cr(III) was made by atomic adsorption spectroscopy (Perkin Elmer 1100). Since in a previ-

ous work,1 it was shown that some of the chromium dissolves as Cr(II) and some as Cr(III) in the ra-

tio 1:7, the equivalent metallic chromium dissolution rate was calculated from the Cr(III) concentra-

tion using the apparent valence n = 2.12 for Cr.

Structural analysis of the electrode materials

The electron backscattering diffraction (EBSD) technique was employed to determine the lo-

cal textures as well as the grain size and distributions of the misorientation angles using OIM (color

coded pictures based on inverse pole figures). The experimental data were collected using a DB-235

FEI® FIB equipped with a TSL® orientation imaging system at the National Center for Electron Mi-

croscopy, Lawrence Berkeley National Laboratory.

RESULTS

Electrode structure

The microphotographs presented in Fig. 1 clearly show that electrodes A, B

and C have different crystallographic structures and textures, which enabled the ef-

fect of the electrode structure on its electrochemical and chemical behavior to be

investigated. The crystallographic examination revealed that electrode A had two

separated macro grains, appearing as two single crystal structures. These results

will be presented in the following text.

Electrode A1. X-Ray analysis did not show a Laueogram as expected from a

single crystal structure.4 However, texture analysis showed that this grain is a

monocrystal, but consisting of domains of different orientation, predominantly

(111), as shown in Fig. 2a., which represent the inverse pole figure obtained by

Electron Backscattering Difraction analysis (EBSD). Therefore, this texture could

be considered further as a structure (111) crystal orientation.
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Electrode A2. The texture analysis of this surface, as shown in Fig. 2b, indi-

cates a dominant (110) structure, i.e., grain 2 could be considered as a single crystal

of the orientation (110), which is a more packed surface of the bcc Cr lattice then

the (111) one.
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Fig. 1. (al) – Photograph of electrode A with the resin holder (total diameter 2 cm); (a2) – SEM of
the grain boundary region between the surfaces of the electrodes A1 (111) and A2(110); (b) – Mi-

crophotograph of electrode B after etching for 15 min in the studied solution (�500); (cl) –

Microphotography of the electrode C before electrochemical treatment (�500): (c2) – surface of

the electrode C after the electrochemical treatment for 60 min (�500).



Electrode B. The texture of this electrode is shown in Fig. 2c, indicating a

dominant (111) structure perpendicular to the electrode surface, which is due to the

orientation of crystallites of the rolled chromium rod and elongation of crystallites

in the (111) direction.

Electrode C. Texture analysis of this electrode was not performed but, from

the literature,13 it is known that electroplated chromium always has the (111) tex-

ture, except when large amounts of hydrogen were absorbed during the plating,

when a hexagonal structure could be obtained. However, after two days, it trans-

forms back to a bcc lattice. Namely, the hexagonal lattice corresoponds to CrH or

CrH2 hydrides. After desorption of hydrogen the bcc lattice is recovered. Due to
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Fig. 2. Inverse pole figures obtained by Electron Back-

scattered Diffraction Analysis (EBSD): (a) – of elec-

trode A1 showing strong texture (111); (b) – of electrode

A2 showing strong texture (110); (c) – of electrode B

showing the texture to be predominantly (111).
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the time elapsed between the chromium plating of this sample and the electro-

chemical experiments in the present work it could be considered that the investi-

gated surface was of preferentially oriented (111) crystallites.

Polarization measurements

Electrode A. The polarization curves presented in Fig. 3 are the results of five

independent measurements with electrode A, i.e., Merck, shown in Fig. 1a in the

0.1 M Na2SO4 + H2SO4 solution of pH 1. This diagram shows that the repro-

ducibility of these measurements was very high, which is not often encountered in

electrochemical kinetics measurement. The corrosion potential Ecorr.2 was –0.715

V, estimated from the anodic and cathodic Tafel slopes ba = bc = 0.120 mV dec-1,

which corresponds to the values reported by Dra`i} and Popi}1 for the same elec-

trode material.

Electrode A1. The polarization curves for this part of the Merck electrode (A)

are presented in Fig. 4. The open signs are related to A1 electrode. Also, the results

of the analytical determination of the total concentration of dissolved Cr at the cor-

rosion potential, expressed as the current density, is presented by the open squares.

It is almost two times larger than the electrochemical corrosion determined by

Tafel line extrapolation, indicating an additional corrosion process, most probably

the chemical dissolution of chromium proposed by Kolotyrkin et al.,9 involving

the direct reaction of water molecules and hydronium ions with the metal. The

passivation peak current density is 3 mA cm–2 somewhat larger than for the elec-

trode A, presented in Fig. 3. The Tafel slopes, both anodic and cathodic, as well as

568 JEGDI] et al.

Fig. 3. Polarization curves for 5 independent experiments with the electrode A.



the corrosion potentials are approximately the same. Since, as shown before the

structure of the A1 electrode is predominantly (111), which is the least packed face,

it is to be expected that the dissolution of this plane would be faster than that of the

well packed ones.

Electrode A2. The polarization curves for this electrode are also presented in

Fig. 4 (filled signs), for easier comparison with electrode A1. Even though the ba-

sic shape of these curves is the same for both electrodes, the A2 electrode shows a

somewhat smaller electrochemical activity, both for the cathodic and anodic reac-

tion, which also produced a smaller corrosion current density. The passivation cur-

rent peak was also smaller. However, the chemical reaction of Cr dissolution was

also nearly the same as the electrochemical corrosion rate (the chemical dissolu-

tion rate is the difference between the total dissolution rate (filled square) and

jcorr,Merck(110)).

Electrode B. The four repeated independent experiments showed very good

reproducibility, similar to that for electrode A, shown in Fig. 3. In order to econo-

mize on space, these diagrams are not shown here. One of these polarization dia-

grams is shown in Fig. 5, together with the polarization diagrams for electrodes A

and C. This electrode also shows the appearance of the chemical reaction, together

with the electrochemical corrosion. This is obvious from the position of the total

dissolution rate (filled triangle) as compared to the corresponding electrochemical

corrosion density. Corrosion potential is approximately the same as for electrodes

A1 and A2, i.e., � – 0.710 V.
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Electrode C. Five independent measurements were made with electrode C and

they all showed very good reproducibility, similar to that for electrode A (Fig. 3).

Therefore, as for electrode B, these results will be omitted in this paper. A typical

polarization diagram for electrode C is also shown in Fig. 5 (open circles). This di-

agram is considerably different from those for electrodes A1, A2 and B. First, the

corrosion potential of electrode C is more negative (Ecorr.2 = – 0.775 V and the po-

sition of the anodic polarization curve shows an almost 4 times higher electro-

chemical activity, as compared to electrode A or B, while the cathodic hydrogen

evolution was inhibited for the same ratio. This resulted in a change of the corro-

sion potential in the negative direction, as already mentioned, but without a serious

effect on its corrosion current densities. The chemical dissolution rate determined

from the total analysis of Cr (Fig. 5, open squares) showed that the rate is

approximately the same as for the electrochemical corrosion.

Corrosion rates

As already shown in the previous polarization diagrams, the corrosion rates of

all the electrodes determined by chemical analyses of the electrolyte were larger

than the electrochemical corrosion rate determined from the extrapolation of the

Tafel lines (Wagner and Traud).5 In order to check the validity of the extrapolation

method the electrochemical corrosion rates were also determined by the Ste-

rn–Geary14 and electrochemical impedance spectroscopy methods.15 The ob-

tained parameters for the all the studied electrodes together with the corrosion rates
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calculated from the analytical data, using an apparent valence n = 2.121 are given

in Table I. The chemical corrosion rate was obtained by subtracting the electro-

chemical (Wagner–Traud) corrosion rate from the analytically obtained one.

TABLE I. Corrosion rates for the electrodes A1, A2, B and C obtained by different methods at 298 K

Electrode Corrosion rate, j/mA cm-2 Electrode capacitance

�F cm
-2

Wagner–Traud Stern–Geary EIS Analytical Chemical

A 0.56 0.69 0.67 1.00 0.44 53±3

A1 (111) 0.98 1.58 0.60

A2 (110) 0.75 1.10 0.31

B 0.59 0.48 0.40 0.81 0.22 74.4±6

C 0.62 0.78 0.76 1.35 0.63 103±18

Effect of temperature

The temperature has a considerable effect on the corrosion rates, as shown

elsewhere for the Merck electrode material (i.e., electrode A).3 In this work, simi-

lar measurements were carried out on electrode B. The results are presented in Fig.

6 for the electrochemical corrosion rates and total (analytical) corrosion rates as a

function of temperature. It is interesting that the chemical dissolution rate (the dif-

ference between jcorr,an and jcorr.e1) increase faster than the electrochemical corro-

sion rate. At 353 K, they become 3 times faster than the electrochemical one, while

at 293 K they are approximately equal (see Fig. 6).
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cally (diamonds) as a function of temperature.



There are some considerations that during corrosion the electrodes surface

roughness increases and also that at higher corrosion rates (e.g., at higher tempera-

tures) the apparent current densities including the corrosion current densities do

not correspond to the real surface area. If it is assumed that the electrode capaci-
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Fig. 7. (a) – Time dependence of the analytically (i.e., total) and electrochemically determined
Corrosion currents at 333 K: (b) – Dependence of the electrode capacitance on the average micro

roughness (i.e., coarseness).



tance is proportional to the surface these values can be a measure of the change of

the real surface area. The values of the electrode capacitance obtained from the EIS

measurements show that even though the macro roughness measured with a

prophylometer changed with corrosion time, the electrode capacitance values did

not change within the limits of experimental error. The same values were obtained

for electrodes A and B.

Similarly, both corrosion rates (i.e., the analytical and electrochemical) fol-

lowed over time, as shown in Fig. 7a, remained practically unchanged during 60

min. These experiments were performed at 333 K in order to decrease the effects of

experimental errors on the results. In other words, an increase of the macro rough-

ening (coarsing) did not change the observed corrosion rates, which obviously de-

pended only on the real surface roughness. Also, the electrode capacitances were

constant as the macro roughness changed during a prolonged corrosion process

(see Fig. 7b). Despi} and Popov16 in their analysis of the effect of surface

roughening pointed out the difference between surface roughness and coarseness

and the fact that there are situations when the real surface area remains the same

even though the coarseness can change considerably. Of course, this is not always

the case. The real surface roughness at the atomic level is usually estimated by

comparing the electrode capacitance with the capacitance value of 18 �F cm
–2,

which is a capacitance of the mercury electrode. Capacitances of 40–50 �F cm
–2

are usually observed for solid corroding electrodes,17 indicating a real surface

roughness factor of about 2.5 for the Merck chromium and 5 for the electrochemi-

cally deposited chromium (electrode C). The factor 5 indicates that the coarseness

of this electrode, as seen after some time of corrosion (Fig. 1c2), is responsible for

this effect.

DICUSSION

The influence of the crystal orientation of chromium on its electrochemical behavior

The polarization curves obtained for the different electrodes were rather similar

except for the electrode C, which behaved considerably different. Bearing in mind

that the reproducibility of the measurements in electrochemical kinetics is not very

high and might depend on a number of factors, or might be thought that the observed

differences between the electrodes A, A1, A2 and B are within experimental error.

However, repeated experiments with the same material 4–5 times, as shown for he

electrode Ain Fig. 3 as an example, clearly shows that the differences observed in the

polarization curves for A1, A2 and B are much higher than the differences due to the

bad reproducibility. Therefore, there is no other possibility than to conclude that the

observed differences in the structures of the employed electrodes are at least one of

the reasons for the observed differences (see Figs. 4 and 5).

The electrochemistry of the deposition and dissolution of single crystal metals

is studied mostly in attempts to evaluate the mechanism of the electrocrystalliza-
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tion processes. Works related to the dissolution of single crystals are scarce. Single

crystals of nickel18,19 and aluminium20 were the subject of studies, while single

crystal chromium was studied by Shcherbakova et al.21 and Dobbelaar and de

Wit.22 Therefore almost all the literature related to single crystals is devoted to

electrocrystallization.23–25 It was shown, in particular in the case of Ag and Cu

electrodeposition that the deposition mechanism might have two reaction paths;

one by the direct deposition of a metal ion after its jump through the double layer

and discharge reaction into the most stable position in the lattice, e.g., kink sites

and similar, and the second one by discharge onto a flat filled crystal face, with the

subsequent surface diffusion of adatoms over the surface to the most stable posi-

tion in the kink sites and corners, i.e., so-called half-crystal positions. The presence

of the dislocations at the surface does not change this picture except that the den-

sity of dislocations, either in a linear or spiral form, can change the surface diffu-

sion paths. In a classical work of Bockris and Conway,23 it was shown that energet-

ically it is easier to have surface diffusion and adatom formation during the deposi-

tion process than to have a direct jump into a stable half-crystal position. This dif-

ference does not mean that there are no direct jump steps, but that the deposition

occurs predominantly by the surface adatom diffusion mechanism. Even though

there are practically no experimental results of the electrochemical dissolution

rates of single crystal metals, it is assumed that the dissolution mechanism is just

the reversal of the deposition one, i.e., that it passes through similar dissolution

steps, involving adatoms, their surface diffusion and final jump through the double

layer. All these theories were developed after studying the deposition on the copper

and silver crystals which have a fcc crystal lattice and where the (111) face is the

closed packed face. Their idea is that during the dissolution all higher index faces

dissolves faster and that after some time the only remaining face is the closed

packed one, i.e., the (111). The reasoning is simple; this is the surface structure

with the highest interaction of an atom with the neighboring atoms and therefore

with the largest activation energy for dissolution.

With chromium which has a bcc structure the same reasoning for the energetic

situation is different. Figure 8 depicts the surface structures of of three different
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faces of chromium, showing that the (111) face has atoms with the least number of

interactions with their neighbors. Therefore, it can be expected that the (111) face

will dissolve more readily than all the others. It seems that this is exactly the reason

why the A1 electrode (111) dissolves faster than the electrode A2 (110) (see Fig.

4). This can also be seen on the SEM picture of boundary region between the A1

and A2 electrodes after the corrosion presented in Fig. 1 a2. This is in agreement

with our finding in experiments in an AFM studies4 of the Merck electrode surface,

where the A1 surface was found to dissolve faster than the other surface. This is

also in accord with the results of Shcherbakova et al.21 who found that the dissolu-

tion rates increased in the order (110) < (111) < (100). However, it should be

pointed out here that in that paper,4 which was based on X-ray Laue analysis, it was

erroneously reported that electrode A1 was amorphous. It appears that the fine sub-

structure of the dominantly(111) orientation, as observed in the present study by a

better technique, could not be detected by the previously used Laue technique.

However, the much higher anodic dissolution rates of the electrolytically de-

posited Cr cannot be explained by its crystallographic orientation (as mentioned

before, practically all data in the literature agree that this deposit is textured and

generally has (111) orientation.13 The difference in the anodic activity of elec-

trodes B and C is considerable, even though the crystallographic orientations are

practically the same, or similar. This higher anodic activity of electrode C could be

explained either by the much higher concentration of surface dislocations, often

observed in cathodically deposited metals,24 or by the very large surface roughness

and large number of cracks in the deposit, as observed in the microphotograph of

electrode C after corrosion (see Fig. 1c2), or both. More work is needed to clarify

this point. It is also interesting, that the hydrogen evolution rates at electrode C are

inhibited to the same extent as the anodic reactions are accelerated so that the cor-

rosion potential, which is the intersection potential of the cathodic and anodic Tafel

lines is practically the same for electrodes B and C, giving the impression that there

are no differences between them.

Chemical dissolution of chromium

Systematic results of the chemical analyses of sulfuric acid solutions after

leaving of chromium electrodes in them for some time show that all the chromium

electrodes dissolved about two times faster than would correspond to the electro-

chemical corrosion of each electrode. This fact was already experimentally veri-

fied in some of our previous works13 and also much earlier by Kolotyrkin and

Florianovich.7 From the experimental data presented in this work, it seems that the

crystallogarphic orientation of the chromium influence the rate of its chemical dis-

solution in the same way as by electrochemical dissolution. As shown elsewhere2

this chemical process can be represented by
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Cr + H2O � CrOHads + H (1)

CrOHads + H+
� Cr2+ + H + OH– (2)

2H � H2 (3)

---------------------------------------

Cr + H2O + H+ = Cr2+ + H2 + OH– (4)

in which there are no electrochemical reactions, chromium is chemically dissolved

(or corroded) with the simultaneous evolution of hydrogen (the overall reaction

(4)), and most importantly, these reactions are independent of the electrode poten-

tial. They can be accelerated only by a decrease of the solution pH and an increase

of temperature. It should be noted here, that according to the results presented else-

where3 the chemical dissolution rate increases faster with increasing temperature

than the electrochemical dissolution rate. Therefore, one should take into consider-

ation that when corrosion rates of chromium are determined by electrochemical

methods at elevated temperatures, the real corrosion rates might be several times

faster than the electrochemically determined ones. Also, chemical dissolution

might be important in the processes involved in stress corrosion cracking, espe-

cially at the elevated temperatures, since the electrochemical potentials at the crack

tips are of no importance whatsoever.

CONCLUSION

Studies of the electrochemical behavior of three different metallic chromium

samples of different origin and pretreatment showed that they have some proper-

ties of the single crystal structures of the (111) or (110) orientation, which in sulfu-

ric acid solution (pH 1) have a somewhat different electrochemical activity both

for the anodic dissolution and cathodic hydrogen evolution reactions. The (111)

surface dissolves faster and hydrogen evolves faster on it, than the (110) face. Elec-

trolytically deposited chromium, which is assumed on the basis of literature data to

have the (111) structure, dissolves much faster than the single crystal (111) face,

but the hydrogen evolution reaction is inhibited by the same degree. Possible rea-

sons for this could be the very different coarseness of these surfaces. All the materi-

als showed that dissolution, and corrosion, occurs through two parallel processes.

The first one is the potential dependent electrochemical dissolution reaction, while

the second one is the potential independent chemical reaction of chromium with

water molecules. Both processes proceed at approximately same rate at the room

temperature, while at 333 K, the chemical rate is ca. 3 times faster than the electro-

chemical one. The importance of this finding in relation to the processes involved

in stress corrosion cracking is pointed out.
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Prou~avano je elektrohemijsko rastvarawe hroma u vodenim rastvorima sumporne

kiseline (pH 1) sa elektrodama od hroma razli~ite kristalografske strukture. Prime-

wena je spora potenciodinami~ka metoda u deaeriranim rastvorima (uz provo|ewe

azota) na 25 °C, a joni Cr(III) u rastvoru posle odre|enog vremena korozije odre|ivani su

atomskom apsorpcionom spektroskopijom. U eksperimentima su upotrebqena tri elek-

trodna materijala sa dominantnim kristalnim strukturama koje podse}aju na mono kri-

stalne (tj. 111 i 110), a {to je potvr|eno EBSD metodom. Na|eno je da je struktura (111)

elektrohemijski aktivnija (i anodno i katodno) od strukture (110). Me|utim, elektroli-

ti~ki istalo`en Cr iz standardnog kupatila za hromirawe, a koji na osnovu literaturnih

podataka ima strukturu (111) bio je oko 4 puta aktivniji u anodnoj reakciji i isto toliko

mawe aktivan za katodnu reakciju izdvajawa vodonika. Analiti~ki odre|ivane koncen-

tracije Cr(III) jona u rastvoru posle odre|enog vremena spontane korozije pokazivale su

dva puta ve}e koncentracije nego {to bi se o~ekivalo na osnovu brzine elektrohemijske

korozije, odre|ivanih metodama Wagner–Traud, Stern–Geary i elektrohemijskom impedan-

snom spektroskopijom. Ovo je obja{weno jednovremenim odigravawem i elektrohemijske

reakcije i hemiske reakcije direktnog reagovawa metalnog Cr sa molekulima vode, po

mehanizmu predlo`enom od Kolotirkina i saradnika.

(Primqeno 20. februara 2007)
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