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Abstract: Five types of polyacrylonitrile, PAN, based carbon fibres, differing in
modulus, breaking strain and in crystallite orientation, have been studied. Non-Hoo-
kean behaviour was investigated by computing the tangent tensile and compression
moduli as a function of strain, from the axial stress—strain response obtained in stan-
dard tensile, compression, as well as in modified flexural tests of unidirectional car-
bon/epoxy composites. The dependences of the tensile modulus on tensile strain of
the carbon fibres were extracted from data obtained in single-filament tensile tests.
Analytical expresssions for the tensile modulus—tensile strain and compression
modulus—compression strain dependences in the performed test were deduced. The
structural characterization of the carbon fibres was performed by X-ray diffraction
on bundle of parallel fibres. The interlayer spacing dyyy, and the apparent lateral di-
mension of the crystallites L, were deduced by processing the 002 diffraction pro-
files. The established modulus—strain dependences were correlated with the fibre
characteristics (breaking strain and mean modulus values), as well as with the char-
acteristic of the 002 difraction profile and the dy, and L values.

Keywords: carbon fibres, carbon/epoxy composites, non-linear elasticity, crystallite
preferential orientation.

INTRODUCTION

The tensile modulus of carbon fibres increases with increasing tensile stra-
in,I~4 while the compression modulus decreases with increasing compression
strain.®~8 This makes stress—strain response of carbon fibres non-Hookean. Such
behaviour has been observed for carbon fibres themselves, as well as for their uni-
directional composites.>8 The non-Hookean stress—strain response of carbon
fibres is reversible and is unaffected by loading and unloading cycles up to at least
40 % of the tensile strength. This suggests that the non-linear behaviour of carbon
fibres is real non-Hookean elastic behaviour.
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In this paper the results of a study of the non-Hookean behaviour of carbon
fibres with different mechanical properties (modulus and breaking strain) are pre-
sented. Tensile tests on carbon single-filaments and standard axial (tensile, com-
pression) and modified flexure test8 on coupons of unideractional carbon fibre/ep-
oxy resin composites were performed. The tangential Young's modulus and strain
values were extracted from test data and a linear expression between the tangent
moduli and strain were deduced

Eax =Eo (1 + Yax€ax) (1)

The coefficient y,, describing the variation of E with &, is a measure of the
degree of non-linearity.

The y,x values for all the tested carbon fibres were correlated to the fibre
breaking strain and the mean modulus values, as well as to structural characteris-
tics of the fibres, determined using X-ray diffraction analysis of bundles of parallel
fibres. Special attention was paid to the parameter FWHM (full width at half-maxi-
mum peak height) for the (002) planes as a possible measure of the preferred axial
orientation of the crystallites along the fibre axis, i.e., orientation of the basal plane
of turbostratic carbon to the a-axis.

EXPERIMENTAL
Materials

The tested commercial carbon fibres types were: high strength Torayca T 300; fibres of en-
hanced breaking strain (Union Carbide THORNEL A, Enka TENAX HTA, Grafil HYSOL XA-S)
and high modulus, Sigry Sigrafil HM carbon fibres, the characteristics of which are given in Table I.

TABLE I. Characteristics of the employed carbon fibres, from the producer's data sheets

Fibre Diameter ~ Density/kgm=  Strength Modulus/GPa Breaking
um MPa strain/mm m’!
Tarayca T 300 7 1740 2800 226 11.0
Thornel A 7 1730 3100 230 15.0
Tenax HTA 7 1770 3900 240 15.6
Hysol XA-S 7 1780 3100 270 15.5
Sigrafil HM 6.6 1800 2570 445 6.5

The tested carbon/epoxy laminates were obtained from four commercial unidirectional carbon
fibre/epoxy resin prepregs:

— Brochier Vicotex 108, with Torayca T 300 carbon fibres, laminate label B

— Hexcel F263, with Union Carbide Thornel A carbon fibres, laminate label F,

— Hexcel M 39, with ENCA Tenax HTA carbon fibres, laminate label M and

— Hexcel NCHR, with ENCA Tenax HTA carbon fibres, laminate label NH.

The used prepregs were cured at 175 °C, except Vicotex 108, which was cured at 120 °C.

Mechanical tests

All mechanical test were performed with an M 1185 INSTRON Universal Testing Machine. The
tensile test were performed on Tenax HTA, Hysol XA-S and Sigrafil HM fibres, on axially aligned sin-
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gle-filaments (centre-line mounted on a slotted tab), according the ISO 11566 standard. During the
test, the applied load (P) and fibre extension (/) were recorded on the machine chart, as an /-P curve.
From this curve, the quantities of fibre elongation, AL, and fibre compliance, C, given as:

c=AL_IH 2)
AP PS

(where H is the cross head and S the chart speed) were deduced, as the data necessary for the calcula-

tion of the experimental tensile fibre characteristics, the strength o and the failure strain &*P

4 CP
op=——> Prax e ?XP — 7 max 3)
TE(I)f LO

a=14
s

where @ is the fibre diameter.

From single filament tensile tests with different gauge length (L), for the tested carbon fibres, the
system compliance values (C;=8.25 x 10 m N) were derived according to Annex A of the above-men-
tioned Standard Document and the through (corrected) fibre strain value £°°" was deduced as:

SfCOIT — SfCXp _ CS £ (4)

Ly

Then the tangential through modulus values for successive individual strain intervals were calcu-
lated (the correlation coefficient of the linear regression, 7, was not lower than 0.98) by the definition:

Ep= do (5)
dg corr

The tangential moduli values, in the range from zero up to breaking strain, were correlated to
the corresponding strain interval mean value ££°™ values and the linear expression

E¢=Ey (1 +Yax€ax) (6)
for the tested carbon fibres, as well as for the tested UDC(0) were derived. The values of £, and y,,
parameters together with the values of correlation coefficient 7 for the tested fibres und UDC(0) are
summarized in Table II.

The tensile test on B, F, M and NH UDC(0) coupons were performed using the ISO 527-5 stan-
dard tensile method. The B-UDC(0) coupons were also tested in compression in accordance to the
ISO 14126 standard test method (using a Celanese compression test fixture), as well as in a modified
standard (ISO 14125) flexure test.® During the tensile, compression and modified flexure test, the
longitudinal strains were monitored using strain gauges. The systematic error in recording the load
was less than 1 %, for a measurement strain lower than 0.5 %.

The coefficient of variation of the determination of the fibre modulus ate;=0.003 was+7.0 %,
while that for the determination of UDC(0) at ;= 0.004, it was lower than + 6.0 %.

In a modified three point flexure test, with a span to depth ratio equal to 32, measurements of
the axial strain of both outer coupon surfaces were performed using strain gauges attached at a dis-
tance x from the middle point. The axial stress at point x was calculated using the equation:®

From the axial and modified flexure test on the B-UDC(0) coupons, E — ¢, dependences were
derived for the tensile and compression range (Fig. 1). For the F, M and NH-UDC(0) coupnos, the £
— &,x expressions were only derived for tensile range (Table II).
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Structural characterization of the fibres

The structural characterization of fibres by X-ray difraction analysis included the determina-
tion of the apparent crystallite size (lateral dimension) L, and the lattice constant dy, (the The X-ray
diffraction patterns were recorded using a Siemens diffractometer, type D500, with a Rontgen tube
with a copper anode. The K ,; rays of wavelength A =0.154050 nm were used. The Kg; X-ray waves
were eliminated with a nickel filter. The diffractions were performed on bundles of parallel fibres
and the L, and dyy, values (Table III) were deduced from the (002) diffraction profile, i.e., L from
the positions of the diffraction angle (20) and the full width at half maximum intensity peak (FWHM
= B) using the Scherrer equation, L, = KA/B cos 6 were the shape factor K is equal 0.89, and dy, us-
ing the Bragg Law, d(y, = nA/2 sin 6 where, n =1 for the (002) diffraction profile.

The functions of the diffractometer were controlled by a microprocessor using the software
package DIFRRACP!S, The EVA program of the package was used for the following operations: the
graphical processing and analogue presentation of the diffraction diagrams, the elimination of K,
component of the radiation and the computing and digital presentation of the data, i.e., computing
the position, area, intensity and width at half intensity of the peaks, as well as calculating the values
of the interlayer spacing. The FWHM values were calculated without taking into account the correc-
tion for the instrumental broading of the 002 peak, amounting 0.09°.

RESULTS AND DISCUSSION

The values obtained from the standard tensile and modified flexure test on
B-UDC(0) coupons were the same, while yc value deduced from the modified flex-
ure test was lower than that derived from the standard compression test in the
Celanesse fixture (Fig. 1). In addition, the value derived from the standard com-
pression test was higher than the yT value, while the y¢ value derived from the
modified flexure test was lower.
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Fig. 1. Dependences of the axial modulus on strain, derived from standard axial (a) and modified
flexure tests (b) for B-UDC.

The lower y than y value from the standard axial test is, according to Harper
and Neumann,® explained by the buckling mechanism of the fibres, which could
cause a reduction of the modulus with compressive strain, while it could not ac-
count for the increase in the modulus with tensile strain. Consequently, the yc
value deduced from the modified flexure test was lower than that deduced from the
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standard compression test, because the buckling of the fibres, as a progressive fail-
ure mechanism under compressive load, is more intense in the coupon during the
standard compression test than on the upper outer surface of the bent coupon. In the
Celanesse fixture, the shear between the gripes and coupon tabs contributes to a re-
duction of E¢ and an increase of yc, as well.
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Fig. 2. Dependences of the axial modulus on strain. (a) of NHCR UDC(0) coupons reinforced
with Tenax HTA fibres tested on tension and (b) of Tenax HTA carbon fibres tested in the single
filament tensile test.

The yt values deduced from the single-filament tensile test of Tenax HTA car-
bon fibres and that from the tensile test of UDC(0) NHCR coupons reinforced with
the same fibres, are identical (Fig. 2). It is easy to see that the correlation of the
UDC coupons data is much better than that of the fibre data, due to the more precise
measurement of strain in the UDC coupon test than in the single filament test. The
same occurred with the other tested fibres and with the UDC reinforced with the
same fibres (Table II). Thus, the linear correlation of the £ — ¢ values for the fibres
is worse than that for UDC. Also, the r values the linear correlation of data ob-
tained from the modified flexure test are slightly higher than from the standard ax-
ial test (Fig. 1).

TABLE II. Parameters of E¢= Ey(1 +7,4€4) €xpression of the non-linear behaviour of the fibres, de-
duced from test on carbon single-filaments and on carbon/epoxy UDC(0) coupons

UDC(0) — standard tensile(T) compession (C) and modified flexure (MF) tests
UDC(0)  Fibres  Test &, /mmm! Ey/GPa y,  rD EMa2/GPa FWHMY/°

Brochier Torayca T 10.2 1174 252 0.987 219+15 5.25
Vicot. 108 T300  MFT 117.8 248 0999  219+15

HFezxg;' Thornel A T 15.0 1074 22.8 0909 240429 533
Hexcel - Tenax 1 15.6 118.1 245 0997 240421 5.20

HNCR HTA
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TABLE II. Continued
UDC(0) — standard tensile(T) compession (C) and modified flexure (MF) tests
UDC(0)  Fibres  Test &,/ /mmm! Ey/GPa y, rD EMa2/GPa FWHMY/°

Hexcel Tenax
M30 HTA T 15.6 118.6 27.3 0.756 240+33 5.24
Brochier Torazca C 10.2 117.7 33.5 0.988 147420 5.25
Vicot. 108 T 300 MFC 117.9 12.0 0.992 178+7

CARBON FIBRES - single filament tensile tests (SFTT)
Producer  Fibres Test &, /mmm’ EyGPa vy,  r!) EM2)/GPa FWHMY/°

SIGRY  Sigrafil HM 6.5 4583 7.1 0.863 472+4 1.69
GRAFIL Hysol Xa-S SFTT 14.0 2083 18.1 0.954 242+20 4.16
ENCA  Tenax HTA 15.2 205.8 24.5 0.854 253+26 5.20

ICorrelation coefficient of linear regression; 2mean fibre modulus data calcualted from UDC(0) ex-

perimental results, via the rule of mixture; 3experimental fibre mean modulus values; *FWHM - full
width at thalf-maximum height for 002-profile

The y values for B-UDC(0) with high strenth fibres of first generation and for
F, M and NH-UDC(0) coupons (all reinforced with carbon fibres of enhanced
breaking strain) were mutually similar (Table II). This is due to similar conditions
of fibre processing.%-10

For the high strain Hysol XA-S carbon fibres in the single-filament tensile
test, a somewhat lower y value (18.8) was evaluated, while for the high modulus
Sigrafil HM carbon fibres a rather low y value (7.2) was found (Table II).

The determined values of the coefficient y,, as a measure of the degree of
non-linear elasticity of the carbon fibres, are correlated to the mean modulus val-
ues, as well as to the characteristics of the X-ray diffraction pattern (Fig. 4) and
with the parameters of the structure of the carbon fibres (Table III).

The only distinct peak present in all the diffraction patterns of the tested car-
bon fibres (Fig. 4) is the 002 peak, with a maximum intensity at 20 = 25— 26°. The
Hysol and Sigrafil fibres were covered with epoxy sizing before the X-ray diffrac-
tion analysis. For this reason, a peak at about 12° appeared on the diffraction pat-
terns of these fibres (Fig. 4, patterns 5 and 6).

From Tables II and I11, it can be seen that the values decrease with decreasing
interlayer spacing (dg;) and width of the 002 reflection (FWHM). Simultaneously,
the apparent lateral dimension of the crystallites, L. increases.

The present results (Table I1) show that the y values are inversely propor-
tional to the mean modulus values of the carbon fibres, which is a well-known phe-
nomenon.!1-13 The experimental mean modulus value of the Twaron fibres, mak-
ing an exception to this generalisation, is higher than that of the Hysol fibres. The
found value is higher than the one reported by the producer (Table I) and the value
determined from the UDC(0) modulus values.The observed disparity between the
values of the modulus of the Twaron fibres can be ascribed to different strain inter-
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Fig. 3. Dependences of the tensile modulus on strain derived from single-filament tensile tests of
Hysol XA-S (a) and Sigrafil HM carbon fibres (b).
vals employed for the different measurements of the mean modulus. For this rea-
son, research in the field of the study of non-Hookean elasticity is directed to the
correlation of non-linearity with the parameters of the carbon fibre structure deter-
mined by X-ray diffraction alaysis.

Loidl et al.!4 measured the Young modulus of nanocrystallites of carbon sin-
gle filaments loaded in tension by in-sity X-ray microbeam diffraction. They con-
cluded that the half-width of the 002 reflection decrease nearly linearly with in-
creasing load. With the increasing tensile load, both the modulus and strain also in-
crease. Hence, Loidl's conclusion is in full agreement with the above cited state-
ment on the relation between the present FWHM and y¢ results.
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Fig. 4. X-Ray diffraction patterns of the tested fibres showing the (002) peak.
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It is generally accepted that the variation in the Young modulus with strain is a
measure of axial preferred orientation in carbon fibres.!3 However, it would be dif-
ficult to claim that the full width at half maximum intensity peak (FWHM) of the
(002) peak is a measure of the preferred orientation of the crystallites along the fi-
bre axis. The commonly accepted comprehension of a measure of the preferred ori-
entation of the crystallites along the fibre axis is the full width at half maximum in-
tensity of 002 reflection profile, obtained in an azimuthal scan.!3

TABLE III. Characteristics of the profile of the (002) diffraction peak and the parameters of the car-
bon fibre structure

Material 20/° FWHM/° dppo/nm L /nm
Graphite 25.31 0.335
Sigrafil HM 26.00 1.69 0.341 4.77
Hysol XA-S 25.42 4.09 0.346 1.97
Tenax HTA 25.23 5.28 0.353 1.54
Torayca T 300 25.19 5.22 0.355 1.53
UC Thornel A 25.07 5.28 0.358 1.52
CONCLUSIONS

The stress-strain response of the tensile of carbon fibres and carbon fibre/ep-
oxy resin unidirectional composites, with different fibre characteristics, were in-
vestigated and non-linear elastic behaviour of the carbon fibres was observed.

The lateral dimension of the crystallites and the interlayer spacing, as charac-
teristics of the structure of carbon fibres, were determined by X-ray diffraction
analysis of bundles of parallel fibres from the characteristics of the 002 peaks of
the recorded diffractograms.

For the investigated carbon fibres and the unidirectional carbon fibre/epoxy
resin composites, expressions for the dependence of the modulus on strain and the
values of the parameter y,,, as a measure of non-linear elasticity, were derived.

Obtained y,4 values were correlated to values of the mean modulus of the
fibres, as well as to characteristics of the fibre crystallite structures. It was found
that the value of the coefficient of non-linear elasticity of the fibre crystallite struc-
tures. It was found that the value of the coefficient of non-linear elasticity is lower
in fibres of higher modulus and that it decreases with decreasing interlayer spacing
of the fibre crystallite structure and the width at maximum intensity of the 002 re-
flection on X-ray diffractograms. Simultaneously, the apparent lateral dimension
of the crystalites increases.
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U3BOJ

HEJIMHEAPHO EJTACTMYHO [TIOHAITAKLE KAPBOHCKHMX BTAKAHA
PABIIMYNUTUX CTPYKTYPHUX U MEXAHNYKNX KAPAKTEPUCTUKA

NCUaOP M. BOPEEBUR, JAHUEJA P. CEKYJIMh u MOMYMNJIO M. CTEBAHOBUR,

Hnciauiiiyiu 3a nykaeapre nayke "Bunua", Beozpao

IIpoy4aBaHoO je meT KBaIuTeTa KAPOOHCKUX BIaKaHa Pa3IMuUTHX BPEHOCTH MOAYIA,
nedopmanyje Kujarma 1 napaMerapa cTpykType. HeXyKOBCKO elacTHYHO MOHAIIAE je PO-
yuaBaHO ofipebnBameM TaHIeHTHHX MOJlyJIa 3aTe3armba U KoMIIpecuje Kao pyHKIuje aedop-
Malfyje 13 nojaTaka u3BeJ[CHNUX U3 CTaHapIHUX TECTOBA 3aTe3alkha U KOMIIPECHje 1 MOIU(U-
KOBaHMX TECTOBA CaBUjaka eNpyBeTa YHUANPEKIIMOHNX KOMIIO3UTA KapOOHCKa BIIaKHA/EIo-
KCUJHA cMoJia. 3aBUCHOCT MOJyJIa 3aTe3ama of fepopMalnje yrIbaHNIHUX BIaKaHa U3BO-
bena je m3 mopaTaka AOOMjeHWX y TECTOBMMaA 3aTe3ama KapOOHCKHX MOHO(MIaMeHaTa.
YTBpbeHo je fa je cTeleH HelUHeapHe eJacTHYHOCTH BlaKaHa MamU KOJ BilakaHa Beher
MOJIyJia ¥ Jla OTlajia ca CMambemheM pacTojarmba n3Meby rpadeHcKux ciojeBa U ca mopacToM
BENMYMHE KPUCTAINTA y KapOOHCKHM BIIakKHEMA. [TopacT AuMeH3nje KpUcTaluTa y MpasIily
yIIpaBHOM Ha rpadeHCKe paBHU ofipeheH je Ha OCHOBY CMambMBarha IIMPHUHE HA TOJOBUHH
MakcUMalHOT uHTeH3urera pediekcuje (002) paBHu Ha udpakTOrpaMuma.

(ITpumibero 24. janyapa, peupupaso 15. jyna 2006)
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