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Abstract: The results presented here suggest the existence of correlations in the se-

quence data of proteins. 32 proteins, both globular and fibrous, both monomeric and

polymeric, were analyzed. The primary structures of these proteins were treated as

time series. Three spatial series of data for each sequence of a protein were gener-

ated from numerical correspondences between each amino acid and a physical prop-

erty associated with it, i.e., its electric charge, its polar character and its dipole mo-

ment. For each series, the spectral coefficient, the scaling exponent and the Hurst co-

efficient were determined. The values obtained for these coefficients revealed

non-randomness in the series of data.

Keywords: sequences of proteins, long-range correlation, spectral coefficient, scal-
ing exponent, Hurst coefficient.

INTRODUCTION

Proteins are polymers or long chains built from a basic set of amino acids. The

most common 20 amino acids and their sequence within protein chains are suffi-

cient to create a wide variety of proteins, each suited for its unique function. The

amino acids chains are held together by peptide bonds, while particular physical

forces existing between the side chains determine the specific spatial structure of a

protein.1 The physical forces involved are:

1) Electrostatic forces. Firstly, five amino acids are charged under natural con-

ditions of pH and ionic strength,1 the two negatively charged amino acids are as-

partic acid (Asp) and glutamic acid (Glu) and the three positively charged amino

acids are arginine (Arg), lysine (Lys) and histidine (His). This property of amino

acid residues determines the electrostatic interactions in proteins.
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Secondly, some amino acid residues are more electronegative than others and

this fact creates local dipoles. The side-chain dipole is one of the strongest contri-

butors to the stability of local structures in proteins. Six of the amino acid

side-chains have significant dipole moments,2 serine (Ser), threonine (Thr), cy-

steine (Cys), tyrosine (Tyr), asparagine (Asn) and glutamine (Gln).

2) The hydrophobic forces. The hydrophobicity of the side-chain is also im-

portant for building the spatial structure of proteins. The hydrophobicity is deter-

mined by the polarity and size of the amino acid. The less polar a residue is, the

more hydrophobic it is. Charged residues and those with strong dipoles are hydro-

philic. Neutral residues that do not have polar functional groups are hydrophobic:2

glycine (Gly), alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), methio-

nine (Met), phenilalanine (Phe) and tryptophan (Trp). As a result of the hydropho-

bic effect, the hydrophobic residues tend to be in the interior of a protein and the

hydrophilic residues tend to be on the surface of a protein.

It is very important to know the rules or energy functions involved in this

transformation of pieces of one-dimensional information (sequences) into three-di-

mensional structures (folded proteins).3 This is not a simple task. The properties of

proteins must be considered as complex, heterogenous systems. They can be

thought of as disordered systems, but altempts must be made to reveal those

non-random features of proteins which are essential for their folding kinetics and

native structures.

The aim of this study was to analyze the presence of long-range correlations in

sequence data of both globular proteins, enzymes, and fibrous proteins, structural

proteins. It is based on treating the protein sequences as time series generated from

numerical correspondence between each amino acid and a physical property asso-

ciated with it: electric charge, dipole moment and polar character. The literature

abounds in such type of studies. The nucleotide sequences in deoxyribonucleic ac-

ids (DNA) always reveal correlations with different characteristics for the coding

and non-coding regions.4,5 For proteins, a few of them reveal that protein sequ-

ences are random and others reveal the contrary, as follows:

i) using the standard run test, White and Jacobs showed that the distribution of

hydrophobic residues along sequences was random,6

ii) using the non-linear prediction method, Huang and Xiao, on average, did

not find significant determistic structures in protein sequences,7

iii) using random walk and statistical methods, Pande et. al. showed pro-

nounced deviation from pure randomness in the protein sequences, related to the

minimization of the energy of the spatial structure,8

iv) using spectral analysis, fractal analysis, and statistical thermodynamical

tests, Rani and Mitra revealed the presence of regularities on protein sequences,9

v) using a correlation function, Weiss and Herzel showed strong correlation re-

lated to the hydrophobicity of helix propensity,10
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vi) there are also many other studies related to the fractal11–13 and multifractal

aspects of the amino acids arrangements.14

These conflicting results presented in the literature might be due to inconsis-

tencies in choosing the data sets and algorithms. For example, Pande et al.8 and

White and Jacob6 obtained different results but they used different mapping

schemes and different algorithms to test the randomness of the protein sequences.

Pande et al.8 considered Lys, His, Arg, Asp and Glu as being hydrophilic amino ac-

ids and the others as hydrophobic.7 In the work of White and Jacob,6 Phe, Met,

Leu, Ile, Val, Cys, Ala, Pro, Gly, Trp and Tyr were considered as hydrophobic and

the others as hydrophilic.

It seems that the question whether protein sequences are random, or not, re-

mains open and any new result in this field may contribute to its answer. Here a dif-

ferent mapping scheme from those used by Pande et al.8 and White and Jacob,6

which corresponded to hydrophobicity, were used. The present mapping schemes

were based on the physical properties of each amino acid as presented by Bryn-

gelson and Billings.2 Also, both statistical and non-linear dynamics methods were

employed to analyze the randomness in the series of data. The statistical methods

employed were not only the spectral analysis (SA) method,15 but also the detren-

ded fluctuation analysis (DFA) method,16 in order to improve the analysis by re-

moving any drift term from fluctuations. The non-linear dynamics method in-

volved the determination of the Hurst coefficient.17 The presence of long-range

correlation in a set of 32 randomly chosen proteins, both globular and fibrous, both

monomeric and polymeric polymers were analyzed.

METHOD

The primary structures of the proteins were taken from the Protein Data Bank

(http://www.rcsb.org/pdb), the codes entry being:

– 1A3N, 1FAW, 1HBH, 1HDA and 1QPW for haemoglobines belonging to human, bovine,

arctic fish, goose and pig, respectively. The multiple sequence alignment for these structures per-

formed using CLUSTALW18 program showed 62 % mean identity between the primary structures in

this case.

– 1LZR, 1HEW, 186L, 1DKJ, 1GD6, 1EL1 and 1BB6 for lysozymes belonging to human,

chicken, bacteriophage T4, bobwith quail, Bombix mori, Canis and trout, respectively. The mean se-

quences identity in this case was 40 %.

– 1A29, 3CLN, 4CLN and 1CFC for calmodulines belonging to Bos taurus, rat, Drosophila

melanogaster and african frog, respectively. The mean sequences identity in this case was 96 %.

– 1MBA, 5MBN, 2MM1, 1EMY, 1LHS and 1MYT for myoglobins belonging to sea hare,

sperm, whale, human, elephant, sea turtle and yellowfin tuna, respectively. The mean sequences

identity in this case was 58 %.

– 1BKV for human triple helix of collagen.

– 1NAY for bacterial collagen-like protein.

– 1L9H, 1DZE for bovine and Heliobacterium rhodopsins. The sequences identity was 12 %.

– 1GB1 for the B1 domain of Streptococcus protein G.

– 1AO6 for human serum albumin and 1ALC for lactalbumin. The sequences identity was 7 %.

– 456C for human metaloprotease.
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– 1BR1 and 1N2D for gallus and Dyctiostelium discoideum heavy chains of myosin. The se-

quences identity was 34 %.

The primary sequences of the selected proteins were treated as time series, where the natural

succession of the terms in the series may involve a certain correlation. The ideas of the time series

were extended to our spatial case of amino acid sequences. The resulting time series were analyzed

using methods that enable a correlation in the sequences to be revealed. Three spatial series of data

for each sequence of a protein were generated from numerical correspondences between each amino

acid and a physical property associated with it. These correspondences generate sequences of num-

bers. In the present case, the properties were: the electric charge of the amino acid, its polar charac-

ter, and its dipole moment. The correspondences were as follows:

i) an uncharged amino acid was assigned the number 0, a positively charged one, the number 1

and a negatively charged one, the number –1;

ii) a hydrophilic amino acid was assigned the number 0 and a hydrophobic one, the number 1;

iii) an amino acid with a significant dipole moment was assigned the number 1 and an amino

acid with a weak or without a dipole moment, the number 0.

Using the primary structure of the protein and taking into account the physical properties of its

amino acids, for each studied protein three series of data were obtained. Then, the following ap-

proaches were employed to examine whether there was a long-range correlation within the data set:

the SA method,15 the (DFA) method16 and the determination of the Hurst coefficient.17

The SA method involves the application of a fast Fourier transform to the series under

analyzis. This plot gives the power spectrum and for non-linear dynamics it obeys the power law dis-

tribution

P(f) � 1/ f
� (1)

where f is the frequency and � is called the spectral coefficient. By representing the power spectrum in a

double logarithmical scale, the spectral coefficient is obtained as the slope of the linear fit of the spec-

trum. As any given time series or spatial series may exhibit a variety of structures, the exponent � ranges

in the interval 0 < � < 2. If � = 2, a power spectral density of white noise is obtained and if � = 1, a

power spectral density of pink noise is obtained. A long-range correlation is present if 0 < � < 1.17

The DFA method has also proven useful in revealing the extent of long-range correlation in

seemingly irregular time series or spatial series of data. Using the DFA algorithm involves integra-

tion the series u(i), i = 1, 2, .... N:

y(i) = � �u i u

i

( )� � ��

1

(2)

where <u> is the mean value of u(i). Then the series is divided into boxes of equal size n and the lo-

cal trend, ylocal(i), is calculated for each of the segments by the least squares fit of the data. The local

trend is subtracted and the root mean square fluctuation for the given box size is calculated:

F(n) = � �y i y i N( ) ( ) /� local
2

(3)

If the data are long-range correlated then the relationship between the average fluctuation for a

given box, and the box size is of the form:

F(n) � n
� (4)

where � is a so-called scaling exponent. The scaling exponent takes the following values: � = 0.5 for

completely uncorrelated data (white noise), � = 1 for 1/f noise, � = 1.5 for brown noise; 0 < � < 0.5

for long-range anticorrelation and 0.5 < � < 1 for long-range correlation.15 Between the spectral

coeficient, �, and the scaling exponent, �, there exists the relation:19

� = 2� – 1 (5)
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In some cases, the DFA plot has a multislope character. In this work the DFA-1 method, where

1 represents the order of the polynomial function used to fit the local trend, was employed. It reveals

both the contribution of the stationary fluctuations and the trend to correlative properties.20

Hurst proposed a statistical method to study the time series. For any time series � 	xk k

N


1
and

any 2 � n � N, one can define16

x
n

n xi

i

N







�( / )1

1

(6)

X(i,n) = � 
xn x
n

n

i

�




�

1

(7)

R(n) = max X(i,n) – min X(i,n) (8)

and

S(n) = ( / ) ( )

/

1 2
1 2

n xi x
n

i

�

�

�

�

�

�

�

�

�

� (9)

Hurst found that

R(n) / S(n) � (n/2)H (10)

where H is called the Hurst coefficient. As n changed from 2 to N, N–1 points in the ln(n) versus

ln(R(n)/S(n)) plane are obtained. Using the least squares linear fit, the Hurst coefficient is obtained.
An exponent greater than 0.5 indicates persistence (past trends tend to persist in the future) whereas
an exponent less than 0.5 indicates antipersistence (past trends tend to reverse in the future). An ex-
ponent equal to 0.5 indicates randomness in the series of data.17

RESULTS

The calculated coefficients for the proteins considered in this study are pre-

sented in Table I and their mean values are given in Table II.

TABLE I. The values of the calculated coefficients for the investigated proteins

Protein/property Electric charge Hydrophobicity Dipole moment

SA DFA Hurst SA DFA Hurst SA DFA Hurst

186L 0.06 0.47 0.47 0.28 0.46 0.86 0.27 0.57 0.76

lHEW 0.09 0.44 0.48 0.26 0.43 0.82 0.14 0.52 0.83

lLZR 0.07 0.43 0.44 0.29 0.46 0.84 0.23 0.53 0.81

lEL1 0.20 0.6 0.54 0.33 0.47 0.86 0.19 0.54 0.84

lBB6 0.15 0.48 0.41 0.40 0.48 0.84 0.26 0.48 0.82

1DKJ 0.09 0.46 0.44 0.24 0.46 0.85 0.03 0.46 0.86

1GD6 0.09 0.54 0.54 0.08 0.45 0.79 0.21 0.47 0.79

1MBA 0.30 0.36 0.38 0.29 0.40 0.89 0.10 0.52 0.72

5MBN 0.06 0.6 0.5 0.31 0.49 0.86 0.10 0.42 0.60

2MM1 0.22 0.5 0.48 0.23 0.52 0.86 0.18 0.52 0.65

1EMY 0.03 0.48 0.46 0.12 0.45 0.82 0.12 0.46 0.71
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Protein/property Electric charge Hydrophobicity Dipole moment

SA DFA Hurst SA DFA Hurst SA DFA Hurst

1HLS 0.08 0.42 0.44 0.32 0.54 0.84 0.05 0.53 0.68

1MYT 0.10 0.44 0.52 0.40 0.57 0.88 0.36 0.52 0.68

1A3N 0.03 0.44 0.47 0.37 0.43 0.89 0.19 0.55 0.81

1FAW 0.01 0.47 0.48 0.02 0.43 0.89 0.10 0.62 0.84

1HBH 0.05 0.42 0.45 0.15 0.57 0.89 0.19 0.48 0.76

lQPW 0.16 0.42 0.54 0.09 0.45 0.89 0.16 0.53 0.75

lHAD 0.15 0.44 0.46 0.15 0.53 0.91 0.23 0.52 0.76

1N2D 0.05 0.42 0.49 0.18 0.50 0.89 0.08 0.58 0.85

lBRl 0.07 0.47 0.52 0.11 0.44 0.89 0.09 0.57 0.83

lBKV 0.03 0.39 0.69 0.09 0.45 0.85 0.25 0.69 0.65

1NAY 0.56 0.45 0.18 0.03 0.42 0.82 0.03 0.55 0.68

1GB1 0.08 0.4 0.55 0.03 0.55 0.79 0.09 0.56 0.72

lL9H 0.04 0.45 0.45 0.17 0.62 0.91 0.15 0.58 0.81

1DZE 0.08 0.45 0.46 0.16 0.58 0.86 0.18 0.54 0.88

3CLN 0.21 0.57 0.54 0.20 0.42 0.85 0.08 0.49 0.68

4CLN 0.16 0.56 0.57 0.18 0.54 0.84 0.21 0.48 0.75

1A29 0.18 0.57 0.63 0.16 0.53 0.85 0.17 0.54 0.71

1CFC 0.25 0.57 0.63 0.17 0.57 0.83 0.32 0.59 0.76

456C 0.09 0.46 0.43 0.23 0.54 0.85 0.31 0.55 0.77

1A06 0.30 0.46 0.48 0.03 0.52 0.88 0.10 0.46 0.81

lALC 0.04 0.58 0.44 0.10 0.46 0.84 0.13 0.52 0.83

TABLE II. The mean values of the calculated coefficients

Property Spectral coefficient Scaling exponent Hurst coefficient

Electric charge 0.13±0.02 0.47±0.06 0.48±0.08

Hydrophobicity 0.19±0.02 0.48±0.05 0.85±0.03

Dipole moment 0.17±0.01 0.54±0.05 0.76±0.07

The great majority of the values presented in Table I suggests correlations in

the data sets for the considered proteins and their mean values clearly indicate it.

Application of the previously mentioned methods are illustrated for sea hare

myoglobin. When the SA method is applied, the power spectrum for the electric

charges of the amino acids in the sequence of sea hare myoglobin is presented in

Fig. 1 on a double logarithmic scale. It can be observed that it shows a power-law

distribution. The linear fit of the power spectrum gives the spectral coefficient, �,

as the slope of the line. In this case � = 0.30 ± 0.012.

Applying the DFA method for the same series, Fig. 2 is obtained. The linear fit

of the distribution F(n) versus n gives the scaling exponent, �. In this case � = 0.36
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± 0.09. The Relationship (5) between the scaling exponent and the spectral coeffi-

cient was fulfilled in this case but not for all the series.

For 30 % of the investigated proteins, the DFA plot shows two linear regions.

The mean values for the slope of the first region are: 0.38 ± 0.04 for the series ob-

tained using the electric charge, 0.54 ± 0.012 for the series obtained using the

hydrophobicity and 0.58 ± 0.07 for the series obtained using the dipole moment.
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Fig. 1. Determination of the spectral coefficient for the series of electric charges of the amino
acid sequence of sea hare myoglobin.

Fig. 2. Determination of the scaling exponent for the series of electric charges of the amino acid
sequence of sea hare myoglobin.



The value of the slope for the plots obtained using the electric charge indicated

anticorrelation and the values of the slope for the series obtained using hydro-

phobicity and dipole moment indicated weak correlation. The DFA plot for the se-

ries obtained using the dipole moments of the amino acids in the primary sequence

of bacteriophage T4 lysozyme, is shown in Fig. 3.

The value of the slope for the second region is lower that that for the first region.

This indicates a lower correlation at long distances in the series of data. The crossover

of the lines occurs at log (n) = 1.22. This means that n = 16.59, which corresponds to

the length of the dominant long-range correlation measured here for a number of

amino acids. Asimilar result was obtained for the correlation in a series of temperature

factors of atoms belonging to the backbones of 50 randomly chosen proteins.21

DISCUSSION AND CONCLUSIONS

Proteins are informational molecules and their primary sequences hold the key

to their tertiary structure and to their biological activity. The tertiary structure is

folded and it can be extended, semi-compact or compact.1 Protein folding can

bring together some amino acid residues which may be physically distant in the

primary structure and such a correlation is ussually very important for retaining the

folded form.1 The role of long-range interactions of the residues in defining the

secondary structure of a protein has already been demonstrated.23

Each protein can be considered as arising from a dispersion of amino acids in

the sequence space. Each amino acid begins to search its own local region of the se-

quence space using physical criteria.1 Here, the electric charge of the amino acid,
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lysozyme.



its polarity and its dipole moment, were considered as criteria. There are three ba-

sic types of behavior that might be expected. The investigated sequences can be

random, they might indicate a persistent or an antipersistent behavior. A random

trajectory expresses that the sequence has no memory.

Almost all the values for the calculated coefficients indicate correlation in the

sequences of proteins (see Table I). The values obtained for all the Hurst coeffi-

cients clearly reveal correlations in the data sets. The values of the spectral coeffi-

cients and scaling exponents do not indicate this very clearly, some of their values

are closer to those corresponding to random series. However, the main difficulty

when such studies are employed is that the transformation of the amino acid ar-

rangement into numerical sequences based on different physical properties does

not conserve all the statistical properties of the initial sequence. Thus, Fourier

transformation might miss some periodicities of the sequence. There are other ex-

amples in the literature where the SA technique does not clearly reveal correlation,

although other techniques did.22 As mentioned before, some of the DFA plots had a

multi-slope character and the non-stationarity in the series affects the values of the

scaling exponents. The mean value of the spectral coefficient with respect to that of

the scaling exponent indicates correlation in the data sets.

In the cases of the series obtained using the dipole moment and the hydro-

phobicity of the amino acids, the values of the Hurst coefficients indicate persis-

tence (see Table I). This was also the case for the mean values of the scaling expo-

nents of the series obtained using the dipole moment. For the series obtained using

the hydrophobicity of the amino acids, the mean value of the scaling exponents

was very close to that indicating randomness of the series, but this may be the result

of non-stationary fluctuations in many series of data. In a persistent behavior, the

presence of one characteristic type of amino acid in the primary structure of a pro-

tein increase the probability of the further appearance of an amino acid with the

same characteristic. The results are in good agreement with the experiments and

simulation data, which indicate the presence of packed hydrophobic regions in the

interior of proteins and of hydrophilic regions exposed to the solvent. Also to be

expected are regions with dipolar amino acids in the protein structure.

In case of the series obtained using the electric charge as the characteristic property

of an amino acid, the mean values of the Hurst coefficients and the scaling coefficients

indicate a weak antipersistence. An antipersistent behavior means that the appearance of

an amino acid with a characteristic property increases the probability of the appearance

of an amino acid with the opposite property. This result is also not surprising because

proteins require favorable electrostatic interactions to build their tertiary structures.

The results presented here indicate correlation and non-randomness in the se-

quences of the investigated proteins. This result is important becaus it may be re-

lated to the laws of protein folding and may contribute to a better understanding of

the processes which enable a protein to perform its function.
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I Z V O D

ANALIZA KORELACIJE DUGOG DOMETA U PODACIMA O SEKVENCIJI

PROTEINA

ADRIANA ISVORAN,
1 LAURA UNIPAN,2 DANA CRACIUN3

i VASILE MORARIU
4
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West University of Timisoara, Department of Chemistry, Str. Pestalozzi 16, 300115, Timisoara Romania,
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Teacher Training Department, Blvd. V. Parvan 4, 300223 Timisoara i 4
National R&D Institute for Isotopic and Molecular

Technology, Department of Molecular i Biomolecular Physics, P. O. Box 700, 400293 Cluj Napoca, Romania

Prikazani rezultati sugeri{u postojawe korelacija u podacima o sekvenciji pro-

teina. Analizirana su 32 proteina, kako globularna tako i fibrilna, kako monomerna

tako i polimerna. Primarna struktura proteina tretirana je kao vremenski uspostav-

qeni niz. Za svaku sekvenciju proteina generisana su tri prostorna niza podataka

kori{}ewem povezanosti izme|u svake amino kiseline i fizi~ke veli~ine (naelektri-

sawe, polarni karakter i dipolni moment) koja joj odgovara. Za svaki niz odre|en je

spektralni koeficijent, eksponent skalirawa i Hurst-ov koeficijent. Vrednosti dobi-

jene za ove koeficijente pokazale su da nema slu~ajnosti unutar nizova podataka.

(Primqeno 9. novembra 2005, revidirano 19. jula 2006)

REFERENCES

1. D. Voet, J. G. Voet, C. W. Pratt, Fundamentals of Biochemistry, J. Wiley, New York, 2002, p. 77

2. J. D. Bryngelson, E. M. Billings, in Physics of Biologic Systems, H. Flybjerg, Ed., Springer, Berlin,

1997, p. 23

3. P. G. Walymes, in Physics of Biologic Systems, H. Flybjerg, Ed., Springer, Berlin, 1997, p. 56

4. M. Martinis, in Supramolecular Structures and Functions, G. Pifat-Mrzljac, Ed., Kluwer Aca-

demic/ Plenum Publishers, New York, 2001, p. 185

5. Y. Zu-Guo, A. Vo. L. Ka-Sing, Phys. Rev. E. 64 (2001) 031903

6. S. T. White, R. E. Jacobs, Biophys. J. 57 (1990) 911

7. Y. Huang, X. Yi, Chaos Solutions Fractals 17 (2003) 895

8. V. S. Pande, A. Y. Grosberg, T. Tanaka, Proc. Nat. Acad. Sci. USA 91 (1994) 12972

9. M. Rani, C. K. Mitra, J. Biomol. Struct. Dyn. 13 (1996) 935

10. O. Weiss, H. Herzel, J. Theor. Biol. 4 (1998) 341

11. T. G. Dewey, Fractals in Molecular Biophysics, Oxford University Press, New York, 1997, p. 72

12. C. X. Wang, F. H. Huang, Phys. Rev. A 41 (1990) 7043

13. A. Isvoran, A. Licz, L. Unipan, V. V. Morariu, Chaos Solitons Fractals 12 (2001) 757

14. A. Isvoran, Chaos Solitons Fractals. 19 (2004) 141

15. P. Szendro, G. Vincze, A. Szasz, Eur. Biophys. J. 30 (2001) 227

16. C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, Phys. Rev. E

49 (1994) 1685

17. J. C. Sprott, G. Rowlands, Physics Academic Software, American Institute of Physics, 1995

18. C. Ramu, S. Hideaki, K. Tadashi, L. Rodrigo, G. Toby, D. Higgins, J. Thompson, Nucleic Acids

Res. 31 (2003) 3497

19. K.Hu, P. C. Ivanov, Z. Chen, P. Carpena, H. E. Stanley, Phys. Rev. E. 64 (2001) 011114

20. J. Argyris, G. Faust, M. Haase, An Exploration of Chaos, North-Holland, Amsterdam, 1994, p. 124

21. Y. Zu-Guo, B. Wang, Chaos Solitons Fractals 12 (2001) 519

22. M. A. Korotkova, E. V. Korotkov, V. M. Rudenko, J. Mol. Mod. 5 (1999) 103

23. D. Kihara, Protein Sci. 14 (2005) 1955.

392 ISVORAN et al.


