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Total n-electron energy and Laplacian energy:
How far the analogy goes?
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Abstract: The Laplacian energy LE is a newly introduced molecular-graph-based
analog of the total mn-electron energy E. It is shown that LE and E have a similar
structure-dependency only when molecules of different sizes are compared, when a
good linear correlation between them exists. Within classes of isomers, LE and E
are either not correlated at all or (as in the case of acyclic systems) are inversely
proportional. The acyclic graphs and molecular graphs having the greatest and smal-
lest LE values (determined in this work) differ significantly from those (previously
known) having the greatest and smallest E values.
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INTRODUCTION

The total n-electron energy E, as calculated within the Hickel molecular
orbital (HMO) model, is one of the most thoroughly studied quantum-chemical
characteristics of large polycyclic conjugated molecules. Details on the theory
and applications of E can be found in the literaturel-3 and in the references cited
therein. It was recognized a long time ago that the various m-electron descriptors
of the HMO model, including E, can be calculated from the eigenvalues A1, 4o,
..., An Of the underlying molecular graph.4° In particular, in the case of alternant
hydrocarbons:

n
E= zl | 2 | 1)

1=
where, as usual, 1,245 E is expressed in the units of the HMO carbon—carbon

resonance integral f5.

Formula (1) served as a maotivation for the definition of the so-called graph
energy. Namely, whereas within the HMO model E is meaningful only in the ca-
se of a restricted class of molecular graphs,® the right-hand side of (1) is a well-de-

# Serbian Chemical Society member.
* Corresponding author. E-mail: gutman@kg.ac.yu
doi: 10.2298/JSC0712343R

1343



1344 RADENKOVIC and GUTMAN

fined quantity for all graphs. In view of this, the energy of a graph (also denoted
by E) is defined as the sum of the absolute values of all eigenvalues of this graph,
and this definition extends to all graphs. This seemingly insignificant change in
the interpretation of Eq. (1) resulted in a great expansion of research in this area
and has advanced the theory of total n-electron energy greatly; for details see the
reviews:6 and some of the most recent publications dealing with graph energy.”-14

By Eq. (1), the graph energy is defined in terms of the graph eigenvalues 41,
22, ..., 2n. Recall that these are just the eigenvalues of the adjacency matrix.1° In
graph spectral theory, the eigenvalues of several other matrices have been stu-
died, of which the Laplacian matrix attracted the greatest attention in both ma-
thematics® and chemistry.16-21 In view of this, a Laplacian analog of E has re-
cently been conceived,22 defined as:

n
LE=Y
i=1l

where [, Ho, ..., Un are the Laplacian eigenvalues, m is the number of edges and
n the number of vertices of the underlying graph. At the first glance, the forms of
the right-hand sides of Egs. (1) and (2) are different. However, both are special
cases of the general expression:

2m

My ——— 2)
n

n
i —X
i=1

where X is the average value of the eigenvalues X1, Xy, ..., Xn. Indeed,1718 1 =0
whereas = 2m/n.

Both in the first paper22 on the Laplacian energy and in two consecutive pa-
pers23.24 jt could be shown that several mathematical properties of LE are fully
analogous (or even identical) to properties of E. However, with regard to some
other properties, LE and E differ significantly. Hitherto, no detailed numerical
testing of the relation between LE and E has been reported. The aim of this work
is to contribute towards filling this gap.

RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY IN
BENZENOID AND ACYCLIC SYSTEMS

It is known that the main parameters determining the value of the total n-ele-
ctron energy E are n (= the number of carbon atoms, i.e., the number of vertices
of the molecular graph) and m (= the number of carbon—carbon bonds, i.e., the
number of edges of the molecular graph).12:25.26 |n order to test if, in the case of
molecular graphs, the same parameters also influence the value of the Laplacian
energy, E and LE have been correlated for benzenoid molecules (Fig. 1) and acy-
clic systems (Fig. 2). In Fig. 1, the standard set126 of 106 Kekuléan benzenoids
from the book2’ is employed. Figure 2 shows the correlation between E and LE
for the set consisting of all n-vertex trees with n between 2 and 14, for which
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no = 0. Here ng stands for the number of zero eigenvalues, which in the HMO
model are equal to the number of non-bonding molecular orbitals. The choice
no = 0 was made because earlier studies28-30 revealed that the energy of trees is
significantly influenced by the value of ng, whereas LE was found to be practi-

cally independent of this value.
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Fig. 1. The Laplacian energy (LE)
of Kekuléan benzenoid molecules
versus the respective total n-elec-
tron energy (E). The data set is ta-
ken from the book?” and consists
of 106 benzenoids of various sizes.
The regression line reads LE =
=(1.043+0.002)E — (0.42+0.08) and
the correlation coefficient is 0.9998.
For details, see the text.

Fig. 2. The Laplacian energy (LE)
of trees without zero eigenvalues
(ng = 0) versus the respective E va-
lue. The data set consists of all 253
such systems with n vertices,
2 < n < 14. Recall that from the
requirement ng =0 follows that n
must be even.15 The regression line
reads LE = (1.14+0.02)E — (0.0£0.3)
and the correlation coefficient is
0.969. For details, see the text.

From Figs. 1 and 2, it can be seen that a very good linear correlation exists
between LE and E, which means that the gross part of both the total n-electron
energy and the Laplacian energy are determined by the parameters n and m. Fur-
thermore, both LE and E depend on n and m in essentially the same way. As the
(n,m)-dependence of E is well understood,12:31 it may be said that the (n,m)-de-

pendence of the Laplacian energy is also known.
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RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY IN SETS OF ISOMERS

Many graph-based molecular structure descriptors have the property that
their value is mainly determined by the parameters n and m. In order to envisage
the finer details of their structure-dependence, the standard procedure is to exa-
mine their behavior within sets of molecular graphs with equal n and m, i.e.,
within sets of isomers.

In Figs. 1 and 2, isomers correspond to points that lie very near to each
other. In Fig. 1, the spread of these points cannot be seen at all, implying that in
the case of benzenoid molecules, structural details other than n and m have a very
small influence on the values of E and LE. In the case of acyclic systems, this
influence is somewhat stronger and the deviation of the data-points from the re-
gression line is easily recognized.

Various sets of benzenoid isomers were examined and in all cases it was
found that their Laplacian energies and total n-electron energies are completely
unrelated. A characteristic example is shown in Fig. 3.

37.80
E
37.75 .
37.70
. 1
3765
- ' * » .
37,60 2 : s Fig. 3. The Laplacian energy ver-
x sus the total w-electron energy for
* the set of all 36 (isomeric) catacon-
37.55 ' T T : . . . densed benzenoids with 6 hexa-
%1362 63 364 65 66 BT B8 gons all having the formula CogH1g.
LE There is no correlation.

The fact that in the case of trees an inverse correlation between LE and E
exists has already seen from Fig. 2. In Fig. 2, the group of near-lying data-points
corresponds to a fixed value of n and, since for trees m =n-1, also to a fixed
value of m. Note that all trees with odd number of vertices have the property ng >0,
and therefore for all acyclic systems shown in Fig. 2, the parameter n is even.

A detailed examination showed that for acyclic isomers with a fixed value of
no, the (LE,E) data-points are linearly correlated. A characteristic example is shown
in Fig. 4.

The finding that the slopes of the (LE,E) regression lines are negative is re-
markable and (for the authors of this paper) was fully unexpected. It implies that
within sets of acyclic isomers, the structural factors which increase the total n-ele-
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ctron energy decrease the Laplacian energy, and vice versa. It has been known
for a long time32.33 that the extent of branching is the main such structural factor
which decreases E. As a consequence of this, the more branched an acyclic sys-
tem is, the greater will be its Laplacian energy. Thus, as far as the effect of bran-
ching is concerned, E and LE exhibit a different and opposite structure-depen-
dence. Further consequences of this finding are outlined in the subsequent section.

14.2
E .
14.0 .
L]
13.8
136 Fig. 4. The Laplacian energy ver-
2 oo sus E for the set consisting of all
1+ o 10-vertex trees without zero eigen-
1324 * values (a total of 15); these graphs
< pertain to (isomeric) acyclic conju-
13.04 e gated hydrocarbons with formula
128 CqoH12- As a kind of surprise, there
is a decreasing linear correlation
1264 . between LE and E, implying that
e . 17 1s 19 1o | 121 acyclic isomers with large E have

small LE and vice versa. The cor-
LE relation coefficient is —0.980.

TREES AND CHEMICAL TREES WITH GREATEST AND
SMALLEST LAPLACIAN ENERGY
In graph theory, a connected acyclic graph is called a “tree”. A “chemical tree”
is a tree in which no vertex has degree greater than 4. A “path” is a tree in which
no vertex has degree greater than 2. A “star” is a tree in which all but one of the
vertices are of degree 1. An n-vertex path and an n-vertex star will be denoted by
Pn and Sy, respectively, see Fig. 5.
It is known34 that among all n-vertex trees, P,, and Sy, have, respectively, the
greatest and smallest energy, that is:

E(Pn) < E(Tn) <E(Sn) ©)

where Ty, is any n-vertex tree different from P, and Sp,.

It was found now (by means of a computer-aided systematic search of all
trees with n up to 17) that a relation opposite to (3) holds for the Laplacian
energy, viz.:

LE(Pp) > LE(Ty) > LE(Sy) 4)

In view of the Relations (3) and (4), one arrives at:

Rule 1. Among the n-vertex trees, the star S, has the greatest Laplacian ener-
gy. In contrast with this, the star has the smallest energy.34 Rule 1 holds for all
n >4, and in a trivial manner also for n=1,2,3.
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Rule 2. Among the n-vertex trees, the path Py has the smallest Laplacian
energy. In contrast with this, the path has the greatest energy.34 Rule 2 holds for
all n >4, and in a trivial manner also forn =1,2,3.

——s—2—o—+—

Sn R
{ % é} 12 n-2
So‘b n( ) Fig. 5. Trees with extreme Laplacian energy;
a+b+2=n for details, see the text.

The trees with the second-maximal, third-maximal, and fourth-maximal La-
placian energy have also been determined. Let DS, be a “double star” with
a+b+2 vertices, depicted in Fig. 5. Then one obtains:

Rule 3. If n is even, n >4, then among the n-vertex trees, the double star
DSa p with parameters a = (n—2)/2, b = (n—2)/2 has the second-greatest Laplacian
energy. If n is odd, n >5, then among the n-vertex trees, the double star DS, p
with parameters a = (n—1)/2, b = (n—3)/2 has the second-greatest Laplacian energy.

Rule 4. If n is even, n >6, then among the n-vertex trees, the double star
DSa b with parameters a = n/2, b = (n—4)/2 has the third-greatest Laplacian ener-
gy. If nis odd, n >7, then among the n-vertex trees, the double star DS, b with
parameters a = (n+1)/2, b = (n—5)/2 has the third-greatest Laplacian energy.

Rule 5. If n is even, n >8, then among the n-vertex trees, the double star
DSa b With parameters a = (n+2)/2, b = (n—6)/2 has the fourth-greatest Laplacian
energy. If n is odd, n >9, then among the n-vertex trees, the double star DS, p,
with parameters a = (n+3)/2, b = (n—7)/2 has the fourth-greatest Laplacian energy.

Note that the trees described in Rules 3-5 are different from those with the
second-minimal, third-minimal, and fourth-minimal energy.34 On the other hand,
the tree with the second-minimal Laplacian energy coincides with the tree with
the second-maximal energy:

Rule 6. Among the n-vertex trees, the graph P,(2), the structure of which is
depicted in Fig. 5, has the second-smallest Laplacian energy. In contrast with
this, the same tree has the second-greatest energy.34 Rule 6 holds for n > 13.

The trees specified in Rules 2 and 6 are molecular graphs. Therefore, these
rules also automatically determine the chemical trees with the minimal and se-
cond-minimal Laplacian energy. A search for chemical trees with maximal La-
placian energy lead to another unexpected finding:
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Rule 7. Among the n-vertex chemical trees, the trees the structure of which is
depicted in Fig. 6 have the greatest Laplacian energy. Rule 7 holds for all k > 2,
that is for n >6 if n = 3k, for n > 7 if n = 3k+1 and for n > 8 if n = 3k+2.

11111 1111 11111
R '_I | 1 1 11 1 Fig 6. Chemical trees with the grea-

test Laplacian energy; for details,
ﬂ=3k n:3|(+1 n=3k+2 see the text.

One should note that the chemical trees shown in Fig.6 with the maximal-La-
placian-energy are different from those having minimal energy.3>

CONCLUDING REMARKS

The results outlined in the preceding sections reveal some quite unusual fea-
tures of the relation between the Laplacian energy LE and the total w-electron
energy (or graph energy) E. Whereas both LE and E have the same (n,m)-depen-
dence (as seen from the good linear correlations shown in Figs. 1 and 2), this
analogy breaks down when classes of isomers are considered, having equal (n,m).
Then the correlation between LE and E may be completely lost (cf. Fig. 3) or an
inverse correlation is found (cf. Fig. 4). In the case of trees, this inverse behavior
of LE and E is best manifested in Rules 1 and 2 (and also in Rule 6). However,
such an inverse analogy between LE and E is not generally obeyed, as seen in
Rules 3, 4, 5, and 7.

In summary, the Laplacian energy and the total n-electron energy were found
to be only weakly related. In other words: the analogy between LE and E does
not go very far. This implies that the Laplacian energy depends on molecular
structure in a manner that is different, but not completely different, from the (now-
adays well understoodl:2) structure-dependence of the total m-electron energy.
Elucidation of the details of these differences remains a task for the future.

U3BOJ

VKVIIHA n-EJIEKTPOHCKA EHEPTMJA U JIAIIJNTACOBA EHEPIT'MJA:
JOKIJIE UJE AHAJIOTUJA?

CJIABKO PAJIEHKOBWH n UBAH T'YTMAH
IpupooHo-maitiemaitiuuku axyaitieiti Yrnueepauitieitia y Kpazyjesyy

JlammnacoBa enepruja LE je HenaBHO yBeleH, Ha MOJIEKYJICKOM rpady 3aCHOBaH, aHAJIOT YKYTI-
HE T-eTeKTPOHCKe eHepruje E. Y pamy je mokazano na LE u E umajy cnumaHe ocoOMHE camo Kaja ce
ynopelyjy MosiekynM pa3iIMuUTHX BEJIMYUHA, Kaja Mehy mHMa 1moctoju no0pa JimHeapHa Kopea-
uuja. YHyTap Kinaca uzomepa, LE v E win yoruiTe HUCY KOPEIUpaHu Wi ¢y (Kao WITO je ciiy4aj
KOJ| alIMKJIMYHUX CHCTEMa) HHBEP3HO MPOMOPLUHOHATHN. AIUKINYHH 'PadOBH U MOJIEKYJICKH Ipa-
¢oBu ca Hajeelium U HajMamuM LE BpeaHoctiMma (oxpeheHr y 0BOM pajy) OUTHO ce pasiuKyjy of
(panuje mo3HATHX) alMKIMYHUX IpadoBa ca HajsehuM U HajMambuM E BpEIHOCTUMA.
(Mpumsseno 23. jymaa 2007)
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