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Total π-electron energy and Laplacian energy: 
How far the analogy goes? 
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Abstract: The Laplacian energy LE is a newly introduced molecular-graph-based 
analog of the total π-electron energy E. It is shown that LE and E have a similar 
structure-dependency only when molecules of different sizes are compared, when a 
good linear correlation between them exists. Within classes of isomers, LE and E 
are either not correlated at all or (as in the case of acyclic systems) are inversely 
proportional. The acyclic graphs and molecular graphs having the greatest and smal-
lest LE values (determined in this work) differ significantly from those (previously 
known) having the greatest and smallest E values. 
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INTRODUCTION 

The total π-electron energy E, as calculated within the Hückel molecular 
orbital (HMO) model, is one of the most thoroughly studied quantum–chemical 
characteristics of large polycyclic conjugated molecules. Details on the theory 
and applications of E can be found in the literature1–3 and in the references cited 
therein. It was recognized a long time ago that the various π-electron descriptors 
of the HMO model, including E, can be calculated from the eigenvalues λ1, λ2, 
…, λn of the underlying molecular graph.4,5 In particular, in the case of alternant 
hydrocarbons: 
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where, as usual,1,2,4,5 E is expressed in the units of the HMO carbon–carbon 
resonance integral β. 

Formula (1) served as a motivation for the definition of the so-called graph 
energy. Namely, whereas within the HMO model E is meaningful only in the ca-
se of a restricted class of molecular graphs,5 the right-hand side of (1) is a well-de-
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fined quantity for all graphs. In view of this, the energy of a graph (also denoted 
by E) is defined as the sum of the absolute values of all eigenvalues of this graph, 
and this definition extends to all graphs. This seemingly insignificant change in 
the interpretation of Eq. (1) resulted in a great expansion of research in this area 
and has advanced the theory of total π-electron energy greatly; for details see the 
reviews1,6 and some of the most recent publications dealing with graph energy.7−14 

By Eq. (1), the graph energy is defined in terms of the graph eigenvalues λ1, 
λ2, …, λn. Recall that these are just the eigenvalues of the adjacency matrix.15 In 
graph spectral theory, the eigenvalues of several other matrices have been stu-
died, of which the Laplacian matrix attracted the greatest attention in both ma-
thematics15 and chemistry.16−21 In view of this, a Laplacian analog of E has re-
cently been conceived,22 defined as: 
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where µ1, µ2, …, µn are the Laplacian eigenvalues, m is the number of edges and 
n the number of vertices of the underlying graph. At the first glance, the forms of 
the right-hand sides of Eqs. (1) and (2) are different. However, both are special 
cases of the general expression: 
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where x  is the average value of the eigenvalues x1, x2, …, xn. Indeed,1−18 λ = 0 
whereas µ = 2m/n. 

Both in the first paper22 on the Laplacian energy and in two consecutive pa-
pers23,24 it could be shown that several mathematical properties of LE are fully 
analogous (or even identical) to properties of E. However, with regard to some 
other properties, LE and E differ significantly. Hitherto, no detailed numerical 
testing of the relation between LE and E has been reported. The aim of this work 
is to contribute towards filling this gap. 

RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY IN 
BENZENOID AND ACYCLIC SYSTEMS 

It is known that the main parameters determining the value of the total π-ele-
ctron energy E are n (= the number of carbon atoms, i.e., the number of vertices 
of the molecular graph) and m (= the number of carbon–carbon bonds, i.e., the 
number of edges of the molecular graph).1,2,25,26 In order to test if, in the case of 
molecular graphs, the same parameters also influence the value of the Laplacian 
energy, E and LE have been correlated for benzenoid molecules (Fig. 1) and acy-
clic systems (Fig. 2). In Fig. 1, the standard set1,26 of 106 Kekuléan benzenoids 
from the book27 is employed. Figure 2 shows the correlation between E and LE 
for the set consisting of all n-vertex trees with n between 2 and 14, for which 
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n0 = 0. Here n0 stands for the number of zero eigenvalues, which in the HMO 
model are equal to the number of non-bonding molecular orbitals. The choice 
n0 = 0 was made because earlier studies28−30 revealed that the energy of trees is 
significantly influenced by the value of n0, whereas LE was found to be practi-
cally independent of this value. 

Fig. 1. The Laplacian energy (LE) 
of Kekuléan benzenoid molecules 
versus the respective total π-elec-
tron energy (E). The data set is ta-
ken from the book27 and consists 
of 106 benzenoids of various sizes. 
The regression line reads LE = 
= (1.043±0.002)E − (0.42±0.08) and 
the correlation coefficient is 0.9998. 
For details, see the text. 

Fig. 2. The Laplacian energy (LE) 
of trees without zero eigenvalues 
(n0 = 0) versus the respective E va-
lue. The data set consists of all 253 
such systems with n vertices, 
2 ≤ n ≤ 14. Recall that from the 
requirement n0 = 0 follows that n 
must be even.15 The regression line 
reads LE = (1.14±0.02)E − (0.0±0.3) 
and the correlation coefficient is 
0.969. For details, see the text. 

From Figs. 1 and 2, it can be seen that a very good linear correlation exists 
between LE and E, which means that the gross part of both the total π-electron 
energy and the Laplacian energy are determined by the parameters n and m. Fur-
thermore, both LE and E depend on n and m in essentially the same way. As the 
(n,m)-dependence of E is well understood,1,2,31 it may be said that the (n,m)-de-
pendence of the Laplacian energy is also known. 



1346 RADENKOVIĆ and GUTMAN 

RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY IN SETS OF ISOMERS 

Many graph-based molecular structure descriptors have the property that 
their value is mainly determined by the parameters n and m. In order to envisage 
the finer details of their structure-dependence, the standard procedure is to exa-
mine their behavior within sets of molecular graphs with equal n and m, i.e., 
within sets of isomers. 

In Figs. 1 and 2, isomers correspond to points that lie very near to each 
other. In Fig. 1, the spread of these points cannot be seen at all, implying that in 
the case of benzenoid molecules, structural details other than n and m have a very 
small influence on the values of E and LE. In the case of acyclic systems, this 
influence is somewhat stronger and the deviation of the data-points from the re-
gression line is easily recognized. 

Various sets of benzenoid isomers were examined and in all cases it was 
found that their Laplacian energies and total π-electron energies are completely 
unrelated. A characteristic example is shown in Fig. 3. 

Fig. 3. The Laplacian energy ver-
sus the total π-electron energy for 
the set of all 36 (isomeric) catacon-
densed benzenoids with 6 hexa-
gons, all having the formula C26H16. 
There is no correlation. 

The fact that in the case of trees an inverse correlation between LE and E 
exists has already seen from Fig. 2. In Fig. 2, the group of near-lying data-points 
corresponds to a fixed value of n and, since for trees m = n–1, also to a fixed 
value of m. Note that all trees with odd number of vertices have the property n0 > 0, 
and therefore for all acyclic systems shown in Fig. 2, the parameter n is even. 

A detailed examination showed that for acyclic isomers with a fixed value of 
n0, the (LE,E) data-points are linearly correlated. A characteristic example is shown 
in Fig. 4. 

The finding that the slopes of the (LE,E) regression lines are negative is re-
markable and (for the authors of this paper) was fully unexpected. It implies that 
within sets of acyclic isomers, the structural factors which increase the total π-ele-
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ctron energy decrease the Laplacian energy, and vice versa. It has been known 
for a long time32,33 that the extent of branching is the main such structural factor 
which decreases E. As a consequence of this, the more branched an acyclic sys-
tem is, the greater will be its Laplacian energy. Thus, as far as the effect of bran-
ching is concerned, E and LE exhibit a different and opposite structure-depen-
dence. Further consequences of this finding are outlined in the subsequent section. 

Fig. 4. The Laplacian energy ver-
sus E for the set consisting of all 
10-vertex trees without zero eigen-
values (a total of 15); these graphs 
pertain to (isomeric) acyclic conju-
gated hydrocarbons with formula 
C10H12. As a kind of surprise, there 
is a decreasing linear correlation 
between LE and E, implying that 
acyclic isomers with large E have 
small LE and vice versa. The cor-
relation coefficient is −0.980. 

TREES AND CHEMICAL TREES WITH GREATEST AND 
SMALLEST LAPLACIAN ENERGY 

In graph theory, a connected acyclic graph is called a “tree”. A “chemical tree” 
is a tree in which no vertex has degree greater than 4. A “path” is a tree in which 
no vertex has degree greater than 2. A “star” is a tree in which all but one of the 
vertices are of degree 1. An n-vertex path and an n-vertex star will be denoted by 
Pn and Sn, respectively, see Fig. 5. 

It is known34 that among all n-vertex trees, Pn and Sn have, respectively, the 
greatest and smallest energy, that is: 
 E(Pn) < E(Tn) < E(Sn) (3) 
where Tn is any n-vertex tree different from Pn and Sn. 

It was found now (by means of a computer-aided systematic search of all 
trees with n up to 17) that a relation opposite to (3) holds for the Laplacian 
energy, viz.: 
 LE(Pn) > LE(Tn) > LE(Sn) (4) 

In view of the Relations (3) and (4), one arrives at: 
Rule 1. Among the n-vertex trees, the star Sn has the greatest Laplacian ener-

gy. In contrast with this, the star has the smallest energy.34 Rule 1 holds for all  
n ≥ 4, and in a trivial manner also for n = 1,2,3. 
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Rule 2. Among the n-vertex trees, the path Pn has the smallest Laplacian 
energy. In contrast with this, the path has the greatest energy.34 Rule 2 holds for 
all n ≥ 4, and in a trivial manner also for n = 1,2,3. 

Fig. 5. Trees with extreme Laplacian energy; 
for details, see the text. 

The trees with the second-maximal, third-maximal, and fourth-maximal La-
placian energy have also been determined. Let DSa,b be a “double star” with 
a+b+2 vertices, depicted in Fig. 5. Then one obtains: 

Rule 3. If n is even, n ≥ 4, then among the n-vertex trees, the double star 
DSa,b with parameters a = (n−2)/2, b = (n−2)/2 has the second-greatest Laplacian 
energy. If n is odd, n ≥ 5, then among the n-vertex trees, the double star DSa,b 
with parameters a = (n−1)/2, b = (n−3)/2 has the second-greatest Laplacian energy. 

Rule 4. If n is even, n ≥ 6, then among the n-vertex trees, the double star 
DSa,b with parameters a = n/2, b = (n−4)/2 has the third-greatest Laplacian ener-
gy. If n is odd, n ≥ 7, then among the n-vertex trees, the double star DSa,b with 
parameters a = (n+1)/2, b = (n−5)/2 has the third-greatest Laplacian energy. 

Rule 5. If n is even, n ≥ 8, then among the n-vertex trees, the double star 
DSa,b with parameters a = (n+2)/2, b = (n−6)/2 has the fourth-greatest Laplacian 
energy. If n is odd, n ≥ 9, then among the n-vertex trees, the double star DSa,b 
with parameters a = (n+3)/2, b = (n−7)/2 has the fourth-greatest Laplacian energy. 

Note that the trees described in Rules 3–5 are different from those with the 
second-minimal, third-minimal, and fourth-minimal energy.34 On the other hand, 
the tree with the second-minimal Laplacian energy coincides with the tree with 
the second-maximal energy: 

Rule 6. Among the n-vertex trees, the graph Pn(2), the structure of which is 
depicted in Fig. 5, has the second-smallest Laplacian energy. In contrast with 
this, the same tree has the second-greatest energy.34 Rule 6 holds for n ≥ 13. 

The trees specified in Rules 2 and 6 are molecular graphs. Therefore, these 
rules also automatically determine the chemical trees with the minimal and se-
cond-minimal Laplacian energy. A search for chemical trees with maximal La-
placian energy lead to another unexpected finding: 
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Rule 7. Among the n-vertex chemical trees, the trees the structure of which is 
depicted in Fig. 6 have the greatest Laplacian energy. Rule 7 holds for all k ≥ 2, 
that is for n ≥ 6 if n = 3k, for n ≥ 7 if n = 3k+1 and for n ≥ 8 if n = 3k+2. 

Fig. 6. Chemical trees with the grea-
test Laplacian energy; for details, 
see the text. 

One should note that the chemical trees shown in Fig.6 with the maximal-La-
placian-energy are different from those having minimal energy.35 

CONCLUDING REMARKS 

The results outlined in the preceding sections reveal some quite unusual fea-
tures of the relation between the Laplacian energy LE and the total π-electron 
energy (or graph energy) E. Whereas both LE and E have the same (n,m)-depen-
dence (as seen from the good linear correlations shown in Figs. 1 and 2), this 
analogy breaks down when classes of isomers are considered, having equal (n,m). 
Then the correlation between LE and E may be completely lost (cf. Fig. 3) or an 
inverse correlation is found (cf. Fig. 4). In the case of trees, this inverse behavior 
of LE and E is best manifested in Rules 1 and 2 (and also in Rule 6). However, 
such an inverse analogy between LE and E is not generally obeyed, as seen in 
Rules 3, 4, 5, and 7. 

In summary, the Laplacian energy and the total π-electron energy were found 
to be only weakly related. In other words: the analogy between LE and E does 
not go very far. This implies that the Laplacian energy depends on molecular 
structure in a manner that is different, but not completely different, from the (now-
adays well understood1,2) structure-dependence of the total π-electron energy. 
Elucidation of the details of these differences remains a task for the future. 

И З В О Д  

УКУПНА π-ЕЛЕКТРОНСКА ЕНЕРГИЈА И ЛАПЛАСОВА ЕНЕРГИЈА: 
ДОКЛЕ ИДЕ АНАЛОГИЈА? 

СЛАВКО РАДЕНКОВИЋ и ИВАН ГУТМАН 

Prirodno-matemati~ki fakultet Univerziteta u Kragujevcu 

Лапласова енергија LЕ је недавно уведен, на молекулском графу заснован, аналог укуп-
не π-електронске енергије Е. У раду је показано да LЕ и Е имају сличне особине само када се 
упоређују молекули различитих величина, када међу њима постоји добра линеарна корела-
ција. Унутар класа изомера, LЕ и Е или уопште нису корелирани или су (као што је случај 
код ацикличних система) инверзно пропорционални. Ациклични графови и молекулски гра-
фови са највећим и најмањим LЕ вредностима (одређени у овом раду) битно се разликују од 
(раније познатих) ацикличних графова са највећим и најмањим Е вредностима. 

(Примљено 23. јула 2007) 
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