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Abstract: In this communication it is shown that the widely held opinion that com-
pact program packages for quantum–mechanical calculations of molecular structure 
can safely be used as black boxes is completely wrong. In order to illustrate this, the 
results of computations of equilibrium bond lengths, vibrational frequencies and 
dissociation energies for all homonuclear diatomic molecules involving the atoms 
from the first two rows of the Periodic Table, performed using the Gaussian pro-
gram package are presented. It is demonstrated that the sensible use of the program 
requires a solid knowledge of quantum chemistry. 

Keywords: molecular structure calculations, Gaussian, dissociation energy. 

INTRODUCTION 

Some thirty years ago, when the senior author of this paper began working in 
the field of quantum chemistry and his coworkers were not yet born, no compact 
program packages for performing molecular structure calculations were avaiable. 
More precisely, several scientists had developed their own algorithms for solving 
approximately the electronic Schrödinger equation but even for the members of 
their working groups the use of these programs was impossible without deep 
knowledge of quantum chemistry, group theory, linear algebra and related topics. 
As a rule, any step beyond the computation of equilibrium geometries, vertical 
electronic spectra and potential energy surfaces (e.g., consideration of nuclear 
dynamics, spin-orbit or non-adiabatic couplings) was connected with the ne-
cessity of inventing new methods and writing by oneself the corresponding com-
puter programs. In the meantime considerable progress has been achieved and 
now several complete program packages for molecular structure calculations, 
such as Gaussian, MOLPRO, MOLCAS and TURBOMOL, developed by a num-
ber of experts in quantum chemistry, can be provided and, thanks to the corres-
ponding more or less detailed manuals, employed by a broad class of users. A 
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consequence of this development is that nowadays many chemists, without pro-
found knowledge of quantum mechanics, can (or at least believe they are able to) 
carry out quantum–chemical computations to support or explain their experimen-
tal results. The goal of the present study is to show that the “blind” use of these 
program packages and uncritical belief in the reliability of the results produced 
by them can be very dangerous. 

COMPUTATION OF STRUCTURE PARAMETERS FOR DIATOMIC HOMONUCLEAR 
MOLECULES INVOLVING THE ATOMS FROM THE FIRST AND SECOND ROW OF 

THE PERIODIC TABLE, BY MEANS OF THE GAUSSIAN PROGRAM PACKAGE 

The primary goal of the present study was not to achieve the best possible 
numerical results obtainable with the Gaussian program package1 but instead to 
discuss the results of typical results and their accuracy. Presented here are the 
equilibrium bond lengths, harmonic vibrational frequencies and the dissociation 
energies for all homonuclar diatomic (neutral) molecules involving the atoms 
from the first two rows of the Periodic Table, obtained by means of the restricted 
Hartree–Fock (RHF) formalism, density functional theory (DFT) and, in the case 
of the H2 molecule, using the configuration interaction (CI) approach. The ato-
mic orbital (AO) basis 6−311+G(d,p) and the B3LYP functional were employed. 
The results are presented in Table I. They are compared with the corresponding 
experimental findings taken from Ref. 2. 
TABLE I. Equilibrium bond lengths (re), harmonic vibrational frequencies (ω) and dissociation 
energies ( 0

0D ) for homonuclear diatomic molecules involving the atoms from the first two rows of 
the Periodic Table, obtained by means of the Gaussian program package (RHF, DFT) and derived 
from experimental data (exp.).2 The symbol “–“ means that the experimental or theoretical result is 
missing – the latter because the energy of the isolated atoms was not computed to be higher than 
that of the molecule and/or the potential curve did not converge to a constant value at the dissoci-
ation limit (actually at the internuclear distance of 20 Å). 

Molecule GS El. conf. Method re / Å ω / cm-1 0
0D / eV 

0
0D / eV 

molat2 EE −  

H2 
+Σg

1 2)1( gσ  
RHF 
DFT 
exp. 

0.735
0.744
0.741 

4595 
4421 
4401 

10.80 
7.400 
4.478 

3.340 
4.500 
4.478 

He2 
+Σg

1 22 )1()1( ug σσ  
RHF 
DFT 
exp. 

3.368
4.668
2.970a 

13 
9.0 
– 

– 
– 

0.00090a 

– 
– 

0.0090a 

Li2 
+Σg

1 [ ] 2
2 )2( gHe σ  

RHF 
DFT 
exp. 

2.785
2.705
2.673 

337 
343 
351 

– 
1.67 
1.04 

0.15 
0.88 
1.04 

Be2 
+Σg

1 [ ] 22
2 )2()2( ugHe σσ  

RHF 
DFT 
exp. 

1.810
2.491

– 

921 
285 
– 

– 
0.17 

– 

– 
0.17 

– 

B2 
−Σg

3 [ ] 2
2 )1( uBe π  

RHF 
DFT 
exp. 

1.639
1.616
1.590 

942 
1002 
1051 

– 
2.52 
3.00 

0.80 
2.52 
3.00 
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TABLE I. Continued 

Molecule GS El. conf. Method re / Å ω / cm-1 0
0D / eV 

0
0D / eV 

molat2 EE −  

C2 
+Σg

1  [ ] 4
2 )1( uBe π  

RHF 
DFT 
exp. 

1.245
1.252
1.242 

1907
1868
1854 

– 
10.0 
6.21 

0.29 
4.98 
6.21 

C2 +Σg
1  [ ] 4

2 )1( uBe π  
RHF 
DFT 
exp. 

1.245
1.252
1.242 

1907
1868
1854 

– 
10.0 
6.21 

0.29 
4.98 
6.21 

N2 
+Σg

1  [ ] 24
2 )3()1( guBe σπ  

RHF 
DFT 
exp. 

1.071
1.096
1.098 

2735
2445
2359 

32.10 
18.02 
9.759 

4.830 
9.600 
9.759 

O2 
−Σg

3  
[ ]

2

24
2

)1(

)3()1(

g

guBe

π

σπ
 

RHF 
DFT 
exp. 

1.152
1.206
1.208 

2025
1634
1580 

20.43 
10.19 
5.115 

0.980 
5.09 
5.12 

F2 
+Σg

1  
[ ]

4

24
2

)1(

)3()1(

g

guBe

π

σπ
 

RHF 
DFT 
exp. 

1.329
1.409
1.412 

1225 
982.0 
916.6 

– 
5.230 
1.602 

– 
1.32 
1.60 

Ne2 
+Σg

1  
[ ]

24

24
2

)3()1(

)3()1(

ug

guBe

σπ

σπ
 

RHF 
DFT 
exp. 

3.3 
3.1 
3.1 

28 
39 
14b 

– 
– 

0.00202b 

– 
– 

0.00202b 
aDerived from electron scattering experiments; buncertain results 

Before going into the qualitative analysis of the results shown in Table I, 
some trends should be noted. The equilibrium bond lengths are generally quite 
reasonably computed by both the HF and DFT approach, with the DFT results 
being superior in most cases. In the case of the noble-gas molecules He2 and Ne2, 
as well as for Be2, the reliability of both the theoretical and experimental results 
is questionable. The same trends are found for the harmonic vibrational frequent-
cies, except in the case of H2, B2, N2, O2 and F2, for which the HF results are 
inaccurate. The dissociation energies were computed in two different ways: a) as 
the energy difference between the dissociation limit of the molecular potential 
energy curve and the zeroth vibrational level and b) as the difference between the 
energy of the isolated atoms in their ground states and that of the molecule in its 
equilibrium geometry, corrected by the zero-point vibrational energy. The first 
set of results is generally in very bad agreement with the experimental data in 
both the HF and DFT calculations. The HF results obtained by applying the se-
cond approach are again poor (they are close to those generated in the HF calcu-
lations employing saturated AO basis sets3), while their DFT counterparts are 
(except for C2 and F2) in reasonable agreement with the experimental values. 

INTERPRETATION OF THE RESULTS OF COMPUTATIONS 

Correlation energy error 
As seen by inspection of Table I, the most serious computation errors for the 

molecules considered in the present study concern their dissociation energies. In this 
and the following subsection, explanations of the reasons for this are given.4,5 
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The HF energy of the ground electronic state of N2 at its equilibrium geo-
metry is computed to be −2965.19 eV. This value is very close to the HF limit 
(i.e., to the HF energy obtained using an infinitely large basis set) of −2965.62 eV 
and simultaneously 99.5 % of the exact non-relativistic energy, −2980.58 eV. For 
the SCF energy of a nitrogen atom, a value of −1480.10 is obtained; the HF limit 
is −1480.22, and the exact energy −1485.39 eV. Thus, the energy of the atom is 
calculated with a relative error of only 0.35 %. In spite of this, the HF dissocia-
tion energy obtained as E(2N) – E(N2), 5.00 eV (or 4.83 eV if the energy of the 
zeroth vibrational level is taken into account) is only about 50 % of the experi-
mental value (Edis = 9.90 eV). The problem is namely that the experiments give 
information not about the total energies but about the energy differences and the 
latter are unfortunately only a very small part (say 1 %) of the total energy. Thus, 
an error of 1 % in the total energy can cause a huge error (say 50 %) in the ener-
gy difference actually measured. Moreover, if the dissociation energy is defined 
as the energy difference between the dissociation limit of the potential energy 
curve and its minimum, the HF value becomes as large as 32.10 eV! 

The reasons for such an inaccuracy of the computed dissociation energies lie 
in the nature of the HF approach. First, this method assumes the total electronic 
wave function as an (anti-symmetric) product of individual one-electron wave 
functions (spin-orbitals) and as such it is not capable of taking properly into ac-
count the correlation of electronic motions; the real mutual interaction of indi-
vidual electrons is simulated by an interaction of one particular electron with the 
mean field produced by all the other ones. This approximation works well as long 
as the electrons are far away from one another. However, when two electrons 
build a molecular orbital (MO), i.e., when they form a chemical bond, they are 
found close to each other and the HF philosophy, which allows them to be arbi-
trarily close to each other, becomes unrealistic. The quantitative measure of this 
effect is the “dynamical correlation error”, being of different magnitude for diffe-
rent atoms and molecules, but also for different electronic states of the same mo-
lecular or atomic system. The electronic configuration of the nitrogen molecule at 
its equilibrium geometry represents a “closed shell” system (see Table I); the 
ground state of the nitrogen atom is, on the other hand, 1s2 2s2 2p3 (4S3/2), i.e., 
two nitrogen atoms involve six open shells. This means that the dissociation of 
N2 into two N atoms is characterized by the breaking of three bonds and this 
causes extremely different correlation errors when calculating these systems in 
the framework of the HF approach. 

Another, usually even more serious, drawback of the HF method is a con-
sequence of representing the electronic wave function by a Slater determinant 
corresponding to a particular electronic configuration. The closed-shell Slater de-
terminant, reasonably approximating the electronic wave function not far from 
the equilibrium geometry, is totally inadequate for describing two open-shell 
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nitrogen atoms in their ground states. The closed-shell determinant employed 
leads thus into a “wrong” (much higher energy) dissociation channel. 

The DFT energy at the equilibrium geometry of N2 is computed to be 
−2981.12, i.e., −2980.97 eV, with the zero-point vibrational energy correction. 
Thus the calculation error is only 0.01 %. For the energy of an isolated nitrogen 
atom the applied DFT approach gives −1485.68 eV (error of 0.02 %). A cones-
quence of this improved accuracy, when compared with the HF treatment, is the 
dissociation energy E(2N) – E(N2) = 9.75 (9.60) eV, which is in close agreement 
with the experimental value. The high accuracy of the DFT results in this case is 
a consequence of the fact that this method properly accounts for the correlation 
of the electronic motions. Note that the DFT results for absolute energies are in 
the present case slightly below the exact results; this may occur because the DFT 
(as opposed to the HF method) is not a completely variational approach. How-
ever, if the dissociation energy is computed as the difference between the asy-
mptotic energy of the potential curve for N2 and its minimum, the wrong value of 
18.17 (18.02) eV is obtained. This means that the DFT method does not eliminate 
the “non-dynamical correlation error”. 

Dissociation of the hydrogen molecule 
In this subsection, the problem of non-dynamic correlation is discussed on the 

example of the hydrogen molecule. The non-relativistic electronic Hamiltonian (in-
volving also the nuclear repulsion term) for the hydrogen molecules can be writ-
ten in the form (atomic units, me ≡ 1, e ≡ 1, h ≡ 1, are used throughout this paper): 

 
ABr

hhhH 1
1221 +++=  (1) 

where 

 

.1

,11
2
1

,11
2
1

12
12

22
22

11
11

r
h

rr
h

rr
h

BA

BA

=

−−∆−=

−−∆−=

 (2) 

The nuclei are denoted by A and B and the electrons by 1 and 2. h1 and h2 
are one-electron operators, while h12 is a two-electron operator. The Hamiltonian 
partitioned in such a form is adjusted to molecular orbital approaches, such as HF 
(and also DFT in its practical applications). For the discussion to follow, one can 
restrict oneself to the use of the minimal basis of AOs for the representation of 
the MOs; thus it is assumed that: 
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,)(

)1(2
1

,)(
)1(2

1

2

1

uBA

gBA

ss
S

ss
S

σψ

σψ

≡−
−

=

≡+
+

=

 (3) 

where Ψ1 and Ψ2 are the MOs, sA and sB the 1s AOs centered on the nuclei A 
and B, respectively, and 

 ∫ ∗≡≡ rdssssS BAAA
r

 (4) 

is the overlap integral. According to the Pauli principle, the two electrons of the 
hydrogen molecule can be distributed in six ways among the MOs σg and σu, 
resulting in six approximate total electronic functions in form of the Slater deter-
minants: 

[ ]

[ ]

[ ]

[ ]

[ ]

[ ] .2)2()1()2()1(
2

1)2()1(
)2()2(
)1()1(

2
1

),1()2()1()2()1()2()1(
2

1
)2()2(
)1()1(

2
1

,)2()2()1()1()2()2()1()1(
2

1
)2()2(
)1()1(

2
1'

,)2()2()1()1()2()2()1()1(
2

1
)2()2(
)1()1(

2
1'

),1()2()1()2()1()2()1(
2

1
)2()2(
)1()1(

2
1

,1)2()1()2()1(
2

1)2()1(
)2()2(
)1()1(

2
1

1
6

3
5

4

3

3
2

1
1

+

+

+

+

Σ≡−==Φ

−=Σ≡−==Φ

−==Φ

−==Φ

=Σ≡−==Φ

Σ≡−==Φ

guu
uu

uu

Suguug
ug

ug

guug
ug

ug

guug
ug

ug

Suguug
ug

ug

ggg
gg

gg

M

M

αββασσ
βσασ
βσασ

ββσσσσ
βσβσ
βσβσ

βσασασβσ
ασβσ
ασβσ

ασβσβσασ
βσασ
βσασ

αασσσσ
ασασ
ασασ

αββασσ
βσασ
βσασ

 

(5) 

α  and β  represent the spin Eigen functions of individual electrons. As in-
dicated in Eq. (5), the Slater determinants Φ1, Φ2, Φ5 and Φ6  are automatically 
Eigen functions of the total orbital and spin angular momenta; 3'Φ  and 4'Φ  are 
not, but these are their linear combinations, 

[ ] [ ]

[ ] [ ] .)2()1()2()1(
2

1)2()1()2()1(
2

1)''(
2

1

),0()2()1()2()1(
2

1)2()1()2()1(
2

1)''(
2

1

1
434

3
433

+

+

Σ≡−+=Φ−Φ≡Φ

=Σ≡+−=Φ+Φ≡Φ

uguug

Suguug M

αββασσσσ

αββασσσσ  
(6) 

In the vicinity of its equilibrium geometry, the ground electronic state of the 
hydrogen molecule is approximately described by the wave function Φ1, corres-
ponding to the doubly populated lower-energy MO, σg. Since the Hamiltonian 
does not involve the spin coordinates, the energy of this state is given by: 
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,12)2()1(1)2()1( 1221111
AB

ggggg
AB

gg r
Jh

r
hhhHE ++=+++=ΦΦ= σσσσ  (7) 

where 

 
.)2()1()2()1(

,)2()2()1()1(

12

21

gggggg

ggggg

hJ

hhh

σσσσ

σσσσ

≡

=≡
 (8) 

The lowest-lying excited state is +Σu
31 , corresponding to the wave functions 

Φ1, Φ2 and Φ5. Its energy is:  

,1

)2()1()2()1(1)2()1()2()1(
2
1

1221

5533225,3,2

AB
guguug

guug
AB

guug

r
KJhh

r
hhh

HHHE

+−++=

−+++−=

ΦΦ=ΦΦ=ΦΦ=

σσσσσσσσ  
(9) 

with 

.)2()1()2()1(

,)2()1()2()1(

,)2()2()1()1(

12

12

21

ugguuggu

uguguggu

uuuuu

KhK

JhJ

hhh

=≡

=≡

=≡

σσσσ

σσσσ

σσσσ
 (10) 

The second excited state is +Σu
11  with the energy: 

,1

)2()1()2()1(1)2()1()2()1(
2
1

1221444

AB
guguug

guug
AB

guug

r
KJhh

r
hhhHE

++++=

+++++=ΦΦ= σσσσσσσσ  
(11) 

and, finally, the third excited state corresponds to 6Φ  and has the energy: 

,12)2()1(1)2()1( 1221666
AB

uuuuu
AB

uu r
Jh

r
hhhHE ++=+++=ΦΦ= σσσσ  (12) 

where Juu is defined analogously to Jgg. 
In order to estimate the energy of the states in question in the dissociation 

limit ( ∞→ABr ),the energy formulae (7), (9), (11) and (12) are now presented in 
terms of the AOs. It is first found that: 

),(
1

1)()()()(
)1(2

1)()( ABAABABAggg hh
S

sshss
S

hh +
+

=++
+

== µµµµµσµσ µµ
 (13) 

with 

 
)()(

,)()()()(

µµ

µµµµ

µ

µµ

BAAB

BBBBAAAA

shsh

hshsshsh

≡

≡=≡
 (14) 
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and µ  taking the values 1 and 2. In the same way one obtains: 
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1)()(
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2

2

2
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ABABAAgu

ABABAAuu

ABABAAgg

ABAAuuu
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S
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KJJ
S

J
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S

J
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S

J
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S

hh

−
−

=

−+
−

=

−++
−

=

+++
+

=

−
−

== µσµσ µ

 (15) 

In Eq. (15), the notation: 

 

( ) ( ).)2()1()2()1(

,)2()1()2()1(

,)2()1()2()1(

,)2()1()2()1()2()1()2()1(

12

12

12

1212

BBABsshssAAAB

KsshssK

JsshssJ

JsshsssshssJ

AABA

BAABBAAB

BABABAAB

BBBBBBAAAAAA

=≡

=≡

=≡

≡=≡

 (16) 

is introduced. 
At ∞→ABr , all the S, hAB, JAB, KAB and ( )BBAB  tend to zero, whereas 

JAA takes the value denoted by ∞
AAJ ; consequently hg and hu  become equal to the 

energy of an isolated hydrogen atom, EH, and 2/,,, ∞→ AAguguuugg JKJJJ . 
Thus the dissociation limits of the energy formulae (7), (9), (11) and (12) are: 

 

).(
2
12

),(2

),(2

),(
2
12

1
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1
4

3
5,3,2

1
111

+∞∞∞

+∞∞∞

+∞∞

+∞∞∞

Σ≡+=

Σ≡+=

Σ≡=

Σ≡+=

gAAH

uAAH

uH

gAAH

HJEE

EJEE

EEE

HJEE

 (17) 

It can be seen that at ∞→ABr , the two states of the same spin and spatial 
symmetry, +Σ g

1 , have the same energy, in contrast to the situation around the 
equilibrium geometry, where they are clearly separated from each other. There-
fore, at very large internuclear distances, the interaction of these two species can-
not be neglected. Thus, in order to obtain the correct dissociation channels for the 
states of +Σ g

1  symmetry one has to apply the configuration interaction approach, 
i.e., to solve the system of equations: 
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where 
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One obtains: 
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Therefore, in the dissociation limit, the lower state of +Σ g
1  symmetry runs 

into the same dissociation channel as the +Σu
3  species, while the +Σ g

12  states 
dissociates into the same products as the +Σu

11  state. 
Let us inspect the form of the approximate wave functions for the two +Σ g

1  
species considered. The spatial parts of the functions 1Φ  and 6Φ  are 
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+=Ψ  (22) 

Thus, both of these wave functions correspond to the dissociation scheme 
according to which the dissociation into the ions (H+ + H−) is equally probable as 
that into neutral atoms (H + H), with the consequence that the energy of the 
dissociation channel is: 

 [ ] ,
2
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The wave functions corresponding to the asymptotic energies )(1
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The first of the wave functions (24) describes the dissociation of H2 into H + H, 
and the second one corresponds to the dissociation into the higher-energy chan-
nel involving H+ and H− ions. 
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Thus, it can be concluded that the configuration interaction treatment (or 
some alternative approach which accounts for both the dynamic and non-dy-
namic correlation energy) is inevitable for the correct dissociative behavior of the 
ground electronic state of H2 to be obtained. In other words, the one-determinant 
approaches, such as HF or DFT, unavoidably lead to erroneous dissociation ener-
gy if it is computed as the difference between the asymptotic ( ∞→ABr ) energy 
and the energy at the equilibrium geometry (see Fig. 1). 

Fig.1. Potential energy curves for 
the H2 molecule computed by 
means of the HF, DFT and CI 
method and the exact potential 
energy curve as obtained by 
Kolos and Wolniewicz.6 

Towards larger molecules 
In the two preceding subsections, some of the problems which arise by using 

compact program packages, such as Gaussian, for the calculation of molecular 
structure parameters were pointed out. There, as examples, only very small mole-
cules built up of very light atoms and only the molecular (in majority of cases 
closed-shell) ground electronic states were considered as examples. When hand-
ling larger systems and/or excited electronic states, a number of additional pro-
blems have to be solved. Several of them will now be mentioned. 

A typical quantum–mechanical task is to find the equilibrium geometry and 
the corresponding structure parameters of a large molecule (i.e., a molecule com-
posed of many atoms).The first problem which is encountered is the choice of the 
initial molecular geometry at which the calculation should commence. Theoreti-
cally, an ab initio quantum–mechanical approach does not require any infor-
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mation about the molecule considered except of the number of its electrons and 
the number, the charges (and possibly masses) of its nuclei. However, in praxis 
some initial geometry has to be given. The program packages being considered 
normally incorporate some subroutines, such as e.g., MOLDEN, which more or 
less automatically guess a reasonable initial geometry, but all the problems can-
not be solved in this way. A molecule of say 100 atoms has a potential energy 
surface depending on 294 nuclear coordinates. It is to be expected that such a po-
tential surface has a large number of local minima and the optimization of the 
molecular geometry is usually technically completed when one of these minima 
is attained. The local minimum which is found is to a great extent prejudiced by 
the choice of the initial geometry, i.e., there is usually no guarantee that the glo-
bal minimum of the potential surface, i.e., the real equilibrium geometry, has 
been obtained. Another question is the physical/chemical meaning of local mini-
ma and the global minimum of a many-dimensional potential surface; how to in-
terpret the results if there are several minima separated by very high or extremely 
low potential barriers? 

Another difficult problem is the choice of the optimal approach and technical 
parameters (e.g., AO bases, one-electron based functions in post-HF calculations, 
DFT functionals) for the system considered. As already mentioned, the HF and 
DFT approaches are usually not appropriate for calculating excited electronic sta-
tes and the employment of methods accounting for the electron correlation more 
properly (Configuration Interaction, Coupled Cluster) is often not feasible for 
large molecules. Reliable computation of some structure parameters, such as 
hyperfine coupling constants, requires the use of special (typically compact) AO 
based functions; on the other hand, in the handling of negative ions and parti-
cularly a Rydberg electronic state, a standard AO basis must be augmented by se-
veral diffuse basis functions. By the choice of the method and the corresponding 
technical parameters, a fine balance between the desired accuracy of the final re-
sults and the computational requirements has to be achieved. 

Special care is necessary when interpreting the obtained numbers. We men-
tion only several questions which have to be answered: Does the computed pro-
perty depend on the choice of the coordinate system (such as, e.g., the dipole 
moment of an ion or the components of the hyperfine tensor)? Do the results 
depend on the choice of the subgroup of the actual point group of the molecule, 
employed in calculations? Why the components of a spatially degenerate electro-
nic state of a linear molecule are sometimes computed to have different energy? 
Are the computed harmonic vibrational frequencies reliable? The answer to the 
last question necessitates knowledge of the manner in which the program com-
putes them – by use of the second derivatives of the energy at equilibrium, 
energy gradients or in some other way. What is the reason for obtaining different 
values for two components of the bending vibrations in a spatially degenerate 



1340 MRAKOVIĆ et al. 

electronic stale of a linear molecule? Which results are physically/chemically 
justified and not simply artifacts? 

CONCLUSIONS 

The general conclusion which follows from the preceding analysis is that the 
employment of the available compact program packages for calculating mole-
cular structure parameters and particularly the interpretation of results of such 
calculations requires a profound knowledge of chemistry, quantum mechanics, 
molecular dynamics and related topics. Although written by the experts in the 
field and accompanied with detailed manuals, these programs are by no means 
easy to handle. In order to obtain reliable results and to understand them, the user 
is often forced to obtain insight into the structure of the programs and underlying 
quantum–chemical methods, which cannot be learnt solely by studying the ins-
tructions for their use. 
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И З В О Д  

ДА ЛИ СУ ПРОГРАМСКИ ПАКЕТИ ЗА РАЧУНАЊЕ СТРУКТУРЕ МОЛЕКУЛА 
ЗАИСТА “ЦРНЕ КУТИЈЕ”? 

АНА МРАКОВИЋ, МИЛИЦА ДРВЕНЏИЈА, АЛЕКСАНДРА САМОЛОВ, 
МИЛЕНА ПЕТКОВИЋ и МИЉЕНКО ПЕРИЋ 

Fakultet za fizi~ku hemiju, Univerzitet u Bogradu, p. pr. 137, 11000 Beograd 

У овом раду показујемо да је широко распрострањено мишљење да се компактни про-
грамски пакети за квантномеханичко рачунање структуре молекула могу безбрижно корис-
тити као “црне кутије” потпуно погрешно. Да бисмо то илустровали, приказујемо резултате 
рачунања дужине веза, вибрационих фреквенција и енергија дисоцијације за све 
хомонуклеарне двоатомске молекуле који укључују атоме из прве две периоде Периодног 
система, добијене помоћу програмског пакета Gaussian. Показано је да разумно коришћење 
програма претпоставља солидно познавање квантне хемије. 

(Примљено 26. септембра 2007) 
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