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Abstract: The Estrada index EE is a recently proposed molecular structure-descrip-
tor, used in the modeling of certain features of the 3D structure of organic mole-
cules, in particular of the degree of folding of proteins and other long-chain biopo-
lymers. The Estrada index is computed from the spectrum of the molecular graph. 
Therefore, finding its relation with the spectral radius r (= the greatest graph eigen-
value) is of interest, especially because the structure-dependency of r is relatively 
well understood. In this work, the basic characteristics of the relation between EE 
and r, which turned out to be much more complicated than initially anticipated, was 
determined. 
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INTRODUCTION 

The Cuban–Spanish scholar Ernesto Estrada designed in the year 2000 a new 
structure descriptor,1 capable of representing certain features of the 3D structure 
of organic molecules, especially those of biochemical importance. Eventually, 
this structure descriptor was named the Estrada index, and is usually denoted by 
EE. It could be shown2,3 that the EE is particularly suitable for characterizing the 
degree of folding of proteins and similar long-chain biopolymers. More recently, 
several other applications of the Estrada index were reported,4−7 which are, how-
ever, of lesser chemical relevance. 

As the Estrada index is, in a relatively simple manner, computed from the 
spectrum of the corresponding molecular graph, efforts have been made to use 
the powerful mathematical apparatus of graph spectral theory8 for determining 
the dependence of the EE on molecular structure. The hitherto obtained results 
are available in the literature.9−12 
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Let λ1, λ2,…, λn be the eigenvalues of the molecular graph G (which in 
biochemical applications1−3 may possess weighted edges).8,13 These eigenvalues 
form the spectrum of G and will be labeled as λ1 ≥ λ2 ≥ ⋅⋅⋅ ≥ λn. 

The greatest graph eigenvalue λ1 has the propertyλ1 ≥ |λk|, k = 2,3,…,n, and 
is therefore referred to as the spectral radius of the graph G. In what follows, λ1 is 
denoted by r. 

The spectral radius has been much investigated in graph spectral theory8,14 
and its dependence on the structure of the underlying graph is relatively well 
understood. This, in particular, applies to molecular graphs.15,16 

The Estrada index is defined as:1−7,9−12 
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Thus EE is equal to the sum of terms of the form ex, where x = λk, 
k = 1,2,…,n, of which the greatest is er. Therefore it is plausible to expect that 
there is a relation (or, at least, a correlation) between the Estrada index and the 
spectral radius. However, this relation is not simple, as seen from the example 
shown in Fig. 1. The fact that the data points in Fig. 1 are grouped on several (al-
most) horizontal lines indicates that, in addition to the spectral radius, EE de-
pends in a lesser manner on structural factors other than r. 

In the subsequent section we elaborate an approach aimed at revealing the 
fine details of the structure-dependence of the EE is elaborated. 

Fig. 1. The Estrada index (EE) of 
10-vertex trees, plotted versus the 
spectral radius (r). There is an ap-
parent (curvilinear) correlation bet-
ween the data points. However, nu-
merous data points lie on almost 
horizontal lines, indicating that fac-
tors other than r also influence the 
value of EE. In the case of ben-
zenoid and acyclic molecules, the 
main among these “less important” 
factors have been identified.10,11 

A POWER-SERIES-EXPANSION APPROACH 

Formula (1) can be rewritten as: 
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and then, in view of the arguments outlined in the preceding section, it may be 
expect that the “less important” structural details influencing the value of the Es-
trada index are contained in the term ∑

=

−n

k
rke

1
λ . Expanding rke −λ into a power 

series, one obtains: 
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with Mj denoting the j-th spectral moment: 
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The structure dependences of the first few spectral moments of molecular 
graphs are known.17−24 For instance: 
 M0 = n; M1 = 0; M2 = 2m; M3 = 6t 
where n, m, and t stand, respectively, for the number of vertices, edges, and 
triangles. For benzenoid molecules, M4 = 18m – 12n, whereas for acyclic mole-
cular graphs, M4 = 2Zg – 2n + 2, where Zg is the Zagreb index, the sum of the 
squares of the vertex degrees.17,25–27 It is worth noting that for alternant hydro-
carbons (e.g., for acyclic and benzenoid systems), Mj = 0 whenever j is odd. 

In view of this, the summation on the right-hand side of (2) is truncated, 
arriving at a series of approximate expressions for the Estrada index, viz. 
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If so, then EE(p) will depend on the spectral radius r and on the first 2p 
spectral moments (of which many are equal to zero). 

It was previously shown that in the case of alkanes, EE(2) is a monotonically 
increasing function of the variable r and it was concluded that alkanes with ma-
ximal EE value will be those possessing maximal spectral radius.12 The latter 
alkanes were earlier characterized by Simić and Tošić,16 who established that 
these correspond to the so-called Volkmann trees.28,29 In a study12 it was (erro-
neously) assumed that )2(EEEE ≈ . To obtain the correct conclusion (concer-
ning Volkmann trees), it was sufficient that there is a positive correlation bet-
ween EE and EE(2). That this is indeed the case can be seen from Fig. 2. 

Numerical testing revealed that for the first few values of p, in particular for 
p = 2, the approximation )( pEEEE ≈ is highly inaccurate and should not have 
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been used. In the subsequent section, this matter is clarified and it is also shown 
that for any value of p, p ≥ 2, there is a reasonably good, yet non-linear, correla-
tion between EE and EE(p). 

Fig. 2. The Estrada indexes (EE) of 
10-vertex trees, plotted versus the 
approximate formula EE(2), cf. Eq. 
(3). The correlation coefficient is 
equal to 0.993. 

NUMERICAL WORK 

The accuracy of the approximation EE ≈ EE(p) was tested for the first few va-
lues of the parameter p. Some characteristic results of this kind, pertaining to tre-
es with 8, 10 and 12 vertices (23, 106 and 551 trees, respectively) are given in Table I. 
TABLE I. Average relative errors (ARE) and maximal observed errors (MRE) in % of the 
approximations EE ≈ EE(p), p = 1,2,…,7, for 8-, 10- and 12-vertex trees. Recall that there are 23, 
106, and 551 such trees, respectively. 

n 
8 10 12 p 

ARE MRE ARE MRE ARE MRE 
1  739.36  1426.1  886.83  2327.2  935.76  5092.9 
2  617.94  1545.1  792.43  2969.7  1004.33  3506.9 
3  281.47  1006.5  387.25  2391.5  475.01  4824.5 
4  81.84  410.6  122.53  1245.3  56.42  3044.4 
5  16.56  110.2  27.55  430.6  36.90  1287.2 
6  2.47  20.7  4.46  104.3  6.67  382.2 
7  0.28  2.9  0.63  18.6  0.97  83.5 

The data in Table I clearly show that the approximation EE ≈ EE(p) is highly 
inaccurate and that only for very large values of p, say p > 5, are some more-or-
less satisfactory results obtained. In other words, the expressions EE(p) cannot be 
used for approximating the Estrada index. This is the bad news. 
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The good news is that the quantities EE and EE(p) are reasonably well cor-
related. The correlation between EE and EE(2) is essentially linear, as can be 
seen from Fig. 2. For greater values of the parameter p, the correlation becomes 
pronouncedly curvilinear. Two typical examples are shown in Figs. 3 and 4. 

 
 (a) (b) 

Fig. 3. (a) The Estrada index (EE) of 12-vertex trees, plotted versus the approximate formula 
EE(4). (b) Linearization of the correlation is achieved by plotting EEx vs. EE(4), 

for x = 7.3; the correlation coefficient is 0.995. 

 
 (a) (b) 

Fig. 4. Same data as in Fig. 3 for p = 7 and x = 7.8; correlation coefficient = 0.9995. 

The curvature of the EE–EE(p) correlation is best eliminated by plotting EEx 
versus EE(p), for some appropriately chosen value of x. This value depends both 
on p and on the sample for which it is determined. For instance, for the sample 
consisting of 10-vertex trees and for p = 7, x has the value 5.6, in which case, the 
correlation coefficient for EEx vs. EE(p) is as high as 0.9997. Two further exam-
ples are given in Figs. 3 and 4. 

CONCLUSIONS 

The expressions EE(p), given by Eq. (3), provide unacceptably inaccurate 
approximations for the Estrada index. Only for large values of the parameter p 
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(namely, for p > 5) does the approximation EE ≈ EE(p) have an average error be-
low 10 %. However, for such large values of p the usage of the formula EE(p) 
would be impractical and inferior to the direct (exact) calculation of EE from its 
definition. 

On the other hand, for any p ≥ 2, a reasonably good correlation exists bet-
ween the Estrada index and EE(p). This correlation is curvilinear, except for p = 2 
when it is linear (see Fig. 2). Thus, the Estrada index is (in a statistical sense) a 
monotonically increasing function of the expressions EE(p), p = 2,3,….. As a 
consequence, if EE(p) is a monotonically increasing function of some variable 
(say, of the spectral radius r, as in the case of trees and p = 2), then is (in a sta-
tistical sense) also the Estrada index. 

In summary: the present analysis confirms the validity of the conclusion 
drawn in a previous work12 that the n-vertex Volkmann tree28,29 has the greatest 
Estrada index among all n-vertex chemical trees. More generally: our analysis 
implies that it is justified to use EE(2) and EE(3) in the study of the structure de-
pendence of the Estrada index. In other words – the structural features on which 
EE(2) and EE(3) depend (i.e., on which the first few spectral moments depend, 
which all are known17−24) are to a great extent those on which the Estrada index 
depends. Therefore the employment of the expressions EE(2) and EE(3) enables 
the finer details of the structure dependency of the Estrada index to be resolved. 
This task has already been accomplished for benzenoid molecules10 (using EE(3)) 
and alkanes11,12 (using EE(2)), and now it can be achieved for any other class of 
molecules for which there is a chemical interest. 

И З В О Д  

ВЕЗА ЕСТРАДИНОГ ИНДЕКСА И СПЕКТРАЛНОГ РАДИЈУСА 

ИВАН ГУТМАН1, СЛАВКО РАДЕНКОВИЋ1, БОРИС ФУРТУЛА1, TOUFIK MANSOUR2 и MATTHIAS SCHORK3 
1Prirodno–matemati~ki fakultet Univerziteta u Kragujevcu, Srbija, 2Department of Mathematics, 

University of Haifa, 31905 Haifa, Israel i 3Camillo–Sitte–Weg 25, 60488 Frankfurt, Germany 

Естрадин индекс ЕЕ је један недавно предложени молекулски структурни дескриптор, 
који је примењен при моделирању извесних тродимензионалних структурних карактерис-
тика органских молекула, нарочито степена савијања протеина и других биополимера дугач-
ког ланца. Естрадин индекс се израчунава из спектра молекулског графа. Због тога је од ин-
тереса налажење релације између ЕЕ и спекралног радијуса r (= највеће сопствене вреднос-
ти). Ово тим пре што је зависност r од молекулске структуре релативно добро истражена. У 
раду су одређене основне карактеристике релације између ЕЕ и r, која се показала много 
сложенијом него што се претпостављало. 

(Примљено 3. јула 2007) 
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