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Relating Estrada index with spectral radius
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Abstract: The Estrada index EE is a recently proposed molecular structure-descrip-
tor, used in the modeling of certain features of the 3D structure of organic mole-
cules, in particular of the degree of folding of proteins and other long-chain biopo-
lymers. The Estrada index is computed from the spectrum of the molecular graph.
Therefore, finding its relation with the spectral radius r (= the greatest graph eigen-
value) is of interest, especially because the structure-dependency of r is relatively
well understood. In this work, the basic characteristics of the relation between EE
and r, which turned out to be much more complicated than initially anticipated, was
determined.
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INTRODUCTION

The Cuban-Spanish scholar Ernesto Estrada designed in the year 2000 a new
structure descriptor,! capable of representing certain features of the 3D structure
of organic molecules, especially those of biochemical importance. Eventually,
this structure descriptor was named the Estrada index, and is usually denoted by
EE. It could be shown2:3 that the EE is particularly suitable for characterizing the
degree of folding of proteins and similar long-chain biopolymers. More recently,
several other applications of the Estrada index were reported,4~7 which are, how-
ever, of lesser chemical relevance.

As the Estrada index is, in a relatively simple manner, computed from the
spectrum of the corresponding molecular graph, efforts have been made to use
the powerful mathematical apparatus of graph spectral theory8 for determining
the dependence of the EE on molecular structure. The hitherto obtained results
are available in the literature.9-12
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Let A1, 4p,..., 4n be the eigenvalues of the molecular graph G (which in
biochemical applications1—3 may possess weighted edges).8:13 These eigenvalues
form the spectrum of G and will be labeled as 41> Ay > -+ > Aj,.

The greatest graph eigenvalue A1 has the property 41 > |4/, k = 2,3,...,n, and
is therefore referred to as the spectral radius of the graph G. In what follows, 11 is
denoted by r.

The spectral radius has been much investigated in graph spectral theory8.14
and its dependence on the structure of the underlying graph is relatively well
understood. This, in particular, applies to molecular graphs.1516

The Estrada index is defined as:1-7.9-12

n n
EE = Y ek + Y ek D)
k=1 k=2
Thus EE is equal to the sum of terms of the form eX, where x = J,
k=1,2,...,n, of which the greatest is e'. Therefore it is plausible to expect that
there is a relation (or, at least, a correlation) between the Estrada index and the
spectral radius. However, this relation is not simple, as seen from the example
shown in Fig. 1. The fact that the data points in Fig. 1 are grouped on several (al-
most) horizontal lines indicates that, in addition to the spectral radius, EE de-
pends in a lesser manner on structural factors other than r.
In the subsequent section we elaborate an approach aimed at revealing the
fine details of the structure-dependence of the EE is elaborated.
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factors have been identified.10:11

A POWER-SERIES-EXPANSION APPROACH
Formula (1) can be rewritten as:

n
EE=e") ek~T
k=1
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and then, in view of the arguments outlined in the preceding section, it may be
expect that the “less important™ structurg| details influencing the value of the Es-
trada index are contained in the term Y e ~'. Expanding e/« ~"into a power

series, one obtains: k=1
o0
EE=e" ) F, )
h=0
where
n -nh b (—ph-i )
Fh=z(/1k "y OO rh=im;
k=1 N j=o0 j'(h—j)!
with M; denoting the j-th spectral moment:
oy
Mj=2 24y
k=1

The structure dependences of the first few spectral moments of molecular
graphs are known.17-24 For instance:

Mg =n; M1 =0; My =2m; M3 = 6t

where n, m, and t stand, respectively, for the number of vertices, edges, and
triangles. For benzenoid molecules, M4 = 18m — 12n, whereas for acyclic mole-
cular graphs, Mg = 2Zg - 2n + 2, where Zg is the Zagreb index, the sum of the
squares of the vertex degrees.17.25-27 |t is worth noting that for alternant hydro-
carbons (e.g., for acyclic and benzenoid systems), M; = 0 whenever j is odd.

In view of this, the summation on the right-hand side of (2) is truncated,
arriving at a series of approximate expressions for the Estrada index, viz.

2p
EE(p)=e" > F,, p=12,... (3)
h=0

If so, then EE(p) will depend on the spectral radius r and on the first 2p
spectral moments (of which many are equal to zero).

It was previously shown that in the case of alkanes, EE(2) is a monotonically
increasing function of the variable r and it was concluded that alkanes with ma-
ximal EE value will be those possessing maximal spectral radius.12 The latter
alkanes were earlier characterized by Simi¢ and T03i¢,16 who established that
these correspond to the so-called Volkmann trees.28.29 In a study?? it was (erro-
neously) assumed that EE ~ EE(2). To obtain the correct conclusion (concer-
ning Volkmann trees), it was sufficient that there is a positive correlation bet-
ween EE and EE(2). That this is indeed the case can be seen from Fig. 2.

Numerical testing revealed that for the first few values of p, in particular for
p = 2, the approximation EE ~ EE(p)is highly inaccurate and should not have
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been used. In the subsequent section, this matter is clarified and it is also shown
that for any value of p, p > 2, there is a reasonably good, yet non-linear, correla-
tion between EE and EE(p).
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1 - Fig. 2. The Estrada indexes (EE) of
&l 10-vertex trees, plotted versus the

0 100 200 300 400 500 600 700 800 900 approximate formula EE(2), cf. Eq.
(3). The correlation coefficient is

EE(z) equal to 0.993.

NUMERICAL WORK

The accuracy of the approximation EE ~ EE(p) was tested for the first few va-
lues of the parameter p. Some characteristic results of this kind, pertaining to tre-
es with 8, 10 and 12 vertices (23, 106 and 551 trees, respectively) are given in Table 1.
TABLE |. Average relative errors (ARE) and maximal observed errors (MRE) in % of the

approximations EE ~ EE(p), p=1,2,...,7, for 8-, 10- and 12-vertex trees. Recall that there are 23,
106, and 551 such trees, respectively.

p 8 10 12
ARE MRE ARE MRE ARE MRE

1 739.36 1426.1 886.83 2327.2 935.76 5092.9
2 617.94 1545.1 792.43 2969.7 1004.33 3506.9
3 281.47 1006.5 387.25 2391.5 475.01 4824.5
4 81.84 410.6 122.53 1245.3 56.42 3044.4
5 16.56 110.2 27.55 430.6 36.90 1287.2
6 2.47 20.7 4.46 104.3 6.67 382.2
7 0.28 2.9 0.63 18.6 0.97 83.5

The data in Table I clearly show that the approximation EE ~ EE(p) is highly
inaccurate and that only for very large values of p, say p > 5, are some more-or-
less satisfactory results obtained. In other words, the expressions EE(p) cannot be
used for approximating the Estrada index. This is the bad news.
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The good news is that the quantities EE and EE(p) are reasonably well cor-
related. The correlation between EE and EE(2) is essentially linear, as can be
seen from Fig. 2. For greater values of the parameter p, the correlation becomes
pronouncedly curvilinear. Two typical examples are shown in Figs. 3 and 4.
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Fig. 3. (a) The Estrada index (EE) of 12-vertex trees, plotted versus the approximate formula
EE(4). (b) Linearization of the correlation is achieved by plotting EEX vs. EE(4),
for x = 7.3; the correlation coefficient is 0.995.
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Fig. 4. Same data as in Fig. 3 for p = 7 and x = 7.8; correlation coefficient = 0.9995.

The curvature of the EE-EE(p) correlation is best eliminated by plotting EEX
versus EE(p), for some appropriately chosen value of x. This value depends both
on p and on the sample for which it is determined. For instance, for the sample
consisting of 10-vertex trees and for p = 7, x has the value 5.6, in which case, the
correlation coefficient for EEX vs. EE(p) is as high as 0.9997. Two further exam-
ples are given in Figs. 3 and 4.

CONCLUSIONS

The expressions EE(p), given by Eq. (3), provide unacceptably inaccurate
approximations for the Estrada index. Only for large values of the parameter p
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(namely, for p > 5) does the approximation EE ~ EE(p) have an average error be-
low 10 %. However, for such large values of p the usage of the formula EE(p)
would be impractical and inferior to the direct (exact) calculation of EE from its
definition.

On the other hand, for any p > 2, a reasonably good correlation exists bet-
ween the Estrada index and EE(p). This correlation is curvilinear, except for p = 2
when it is linear (see Fig. 2). Thus, the Estrada index is (in a statistical sense) a
monotonically increasing function of the expressions EE(p), p=2,3,..... As a
consequence, if EE(p) is a monotonically increasing function of some variable
(say, of the spectral radius r, as in the case of trees and p = 2), then is (in a sta-
tistical sense) also the Estrada index.

In summary: the present analysis confirms the validity of the conclusion
drawn in a previous work12 that the n-vertex Volkmann tree2829 has the greatest
Estrada index among all n-vertex chemical trees. More generally: our analysis
implies that it is justified to use EE(2) and EE(3) in the study of the structure de-
pendence of the Estrada index. In other words — the structural features on which
EE(2) and EE(3) depend (i.e., on which the first few spectral moments depend,
which all are known17-24) are to a great extent those on which the Estrada index
depends. Therefore the employment of the expressions EE(2) and EE(3) enables
the finer details of the structure dependency of the Estrada index to be resolved.
This task has already been accomplished for benzenoid molecules!O (using EE(3))
and alkanes1:12 (using EE(2)), and now it can be achieved for any other class of
molecules for which there is a chemical interest.

N3BOJ
BE3A ECTPAJIVHOI' MTHIEKCA U CIIEKTPAJIHOI' PAINIYCA

WBAH I'YTMAH?Y, CJIABKO PAJIEHKOBURY, BOPUC ®VPTYJIAL, TOUFIK MANSOUR? 1 MATTHIAS SCHORK3

YIpupoono—waitiemaitiuuiu axyaitieins Ynusepsuiteiia y Kpazyjesyy, Cpouja, 2Department of Mathematics,
University of Haifa, 31905 Haifa, Israel u 3Camillo-Sitte-Weg 25, 60488 Frankfurt, Germany

Ectpanun unnexc EE je jenaH HEAABHO NPEUIOKEHU MOJIEKYJICKH CTPYKTYPHHU IECKPHIITOD,
KOjH je NPUMEHEH NPH MOJENUpamky NW3BECHUX TPOAMMEH3HOHAIHUX CTPYKTYPHHMX KapaKTepHC-
THKa OPTaHCKHMX MOJIEKYJIa, HAPOYUTO CTEIIeHa CaBHjara IPOTEHHA U JPYTUX OMONOJIMMEpa Jyrad-
Kor yaHua. Ectpanun nHIeKc ce u3pauyHaBa M3 CIeKTpa MoJjeKyJckor rpada. 306or Tora je ox UH-
Tepeca HaJlaxeme peranuje uamehy EE U criekpaiHor panujyca I (= Hajsehe concTBeHe BpeqHOC-
tH). OBO THUM IIp€ IITO je 3aBUCHOCT I' OJ] MOJICKYJICKE CTPYKTYpPE PEIaTUBHO I00pPO HCTpaxeHa. Y
paxy cy oxmpeheHe ocHOBHE KapakTepucTuke penanuje usmely EE u I, Koja ce Mmokaszaja MHOTO
CIJIOXKEHHJOM HETO LITO €€ MPETIOCTABIbAIIO.

(IIpumsbeno 3. jyma 2007)
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