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The McClelland approximation and the distribution of
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Abstract: The total n-electron energy E of a conjugated hydrocarbon with n carbon
atoms and m carbon—carbon bonds can be approximately calculated by means of the
McClelland formula E ~ g+/2mn, where g is an empirical fitting constant, g = 0.9.
It was claimed that the good quality of the McClelland approximation is a con-
sequence of the fact that the n-electron molecular orbital energy levels are distribu-
ted in a nearly uniform manner. It will now be shown that the McClelland ap-
proximation does not depend on the nature of the distribution of energy levels, i.e.,
that it is compatible with a large variety of such distributions.
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The total n-electron energy E is one of the most thoroughly studied theoreti-
cal characteristics of conjugated molecules that can be calculated within the Hii-
ckel molecular orbital (HMO) approximation.l-2 Research on E is currently very
active.3-8 Long time ago McClelland proposed the simple approximate formula:®

E~g~\2mn (D)

where 7 is the number of carbon atoms and m the number of carbon—carbon
bonds, and where g is an empirically determined fitting parameter, g =~ 0.9. In the
meantime a large number of other (n,m)-type approximate expressions for £ have
been proposed, but, as demonstrated by detailed comparative studies,!9~13 none
of these could exceed the accuracy of Eq. (1).

In 1983 the present author discovered!4 that a result closely similar to Eq. (1)
can be obtained by assuming that the HMO energy levels are uniformly distri-
buted. Eventually such a distribution-based approach to £ was elaborated in more
detail.15:16 The conclusion of the works!4-16 was that the McClelland approxima-
tion (Eq. (1)) is connected with the assumption that the HMO n-electron energy
levels of conjugated hydrocarbons are distributed in a (nearly) uniform manner.
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The reasoning by means of which this conclusion was obtained will be brie-
fly repeated.

If 4., 4,,..., 4, are the Eigen values of the molecular graph representing the
respective conjugated molecule, then:1=3

E=§MJ 2)
As is well known, -2 the graph Eigen values satisfy the relation:
E:é(gi)z —2m (3)
Without loss of generality, Egs. (2) and (3) may be rewritten as:
E:n+ﬂx|r(x)dx
and
E=n szl“(x) dx=2m

where I'(x) is the probability density of the distribution of the graph Eigen values.
It should be mentioned in passing that the exact expression for I'(x) is:

nm=%§6u—4)

with d denoting the Dirac delta-function.

In situations when the actual form of the probability density I'(x) is not
known (i.e., when the spectrum of the molecular graph is not known), one tries to
guess an approximate expression for it, denoted by I'*(x), which must satisfy the
conditions:

TF*(x)dle (4)

jm X *(x)dx =27m (5)

—00

and, of course, I'*(x) > 0 for all values of x. Then the quantity E£*,
+0
E*=n[|x|T*(x)dx (6)

is expected to provide a reasonably good approximation for the total n-electron ene-
rgy E. In the works,14.16 the simplest possible choice for I'*(x) was tested, namely,

I'*(x)=b for —-a<x<+a andotherwise I*(x)=0 7
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The form of the function (7) is shown in Fig. 1.
The parameters a and b can easily be determined from the conditions Eq. (4)
and (5), resulting in

a=|%" and b= | (8)
n 24 m
By inserting the conditions given by Eq. (7) back into Eq. (6), one obtains:
E*=a’bn

which combined with Eq. (8) yields:
E*=g*\2mn )

with g* being a constant equal to+/3 /2. Not only is the algebraic form of the
expression (9) identical to the McClelland approximation (Eq. (1)), but also the
value of the multiplier g* = 0.8660 is remarkably close to the (earlier) empiri-
cally determined value for g.
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Fig. 1. The form of the probability density

" (Eq. 7) for a=3 and b = 1/6. The Eigen va-
0.04+ lues of the molecular graph are assumed to
0.02 + be uniformly distributed within the interval
0.00 (-a,*a), i.e., within the interval (a,—a), the
ol . . . . . , probability density is assumed to be constant

6 4 2 0 2 4 6 (equal to b). Outside this interval, the proba-

X bility density is set to be equal to zero.

Thus, it can be seen that by assuming a uniform distribution of the Eigen
values of a molecular graph, the McClelland formula (Eq. (1)) can be reprodu-
ced. What has hitherto been overlooked is that formula (1) can also be deduced
by using many other probability densities.

OBTAINING FORMULA (1) FROM A VARIETY OF MODEL FUNCTIONS T"*(x)

Suppose that the model based on Eq. (7) is required to be upgraded by
including the information that the MO energies around the non-bonding level
(corresponding to x = 0) are more numerous than those far from the non-bonding
level, see diagram 1 in Fig. 2. This can be achieved by means of the function:

2
F*(x)zb[l—(ij] for —a<x<+a andotherwise I'*(x)=0 (10)
a

Then, by direct calculation in a fully analogous manner as described in the pre-
ceding section, formula (9) is obtained with g* = J5/4.
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If, however, the opposite is assumed, namely that the MO energies around
the non-bonding level are less numerous than those far from the non-bonding
level (see diagram 2 in Fig. 2), and therefore set

2
*(x)=»>5 (ﬁj for —a<x<+a andotherwise I'*(x)=0 (11)
a

then Eq. (9) is again obtained, this time for g* = V15/4 .
The model function I'* may be made still more complicated, with two mini-
ma or two maxima (diagrams 3 and 4 in Fig. 2), i.e.,

2 2
r*(x)zb(ﬁj [1—[% ] for —a<x<+a andotherwise T*(x)=0 (12)
a a

or
2
F*(x)zb[(i) —%]2 for —a<x<+a andotherwise I*(x)=0 (13)
a

but Eq. (9) is still obtained with g* = 5v21/(124/2) and g* = 5v7 /(24/187),
respectively.

Hitherto, it was required that the model function be symmetric with regard to
x=0, i.e., that [*(—x) = I'*(x), i.e., that the pairing theorem be obeyed.'” How-
ever, even this plausible restriction is not necessary, as shown by the examples:

2
I'*(x)=>b[ (ﬁJ —1* for —a<x<+a and otherwise [*(x)=0 (14)
a
and
Rt
*(x)=»5[ (—) +17 for —a<x<+a andotherwise I'*(x)=0 (15)
a

Also the functions (14) and (15) imply the validity of Eq. (9), with g* = 343 /16
and g* =9\/§ /(164/2), respectively. The forms of the functions (14) and (15) are
shown in diagrams 5 and 6 in Fig. 2.

In order to further demonstrate the arbitrariness of the form of the model
function that leads to the McClelland approximation, an example with a singu-
larity at x = 0 was constructed (see diagram 7 in Fig. 2):

-1/2
I'*(x)= b(mj for —a<x<+a andotherwise I'*(x)=0 (16)
a

In spite of the (physically impossible) property of the model function (16)
that I'(x) — oo for x — 0, Eq. (9) is also obtained with g* =5/3.
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Fig. 2. Several probability densities resulting in approxi-
mate expressions for the total m-electron energy of the McClel-
land type. Note that whereas in the models 1 (Eq. (10)), 2
(Eq. (11)), 3 (Eq. 12)), 4 (Eq. (13)) and 7 (Eq. (16)), the
probability density is symmetric with respect to x =0. In
the models 5 (Eq. (14)) and 6 (Eq. (15)), it is chosen to be
highly asymmetric. In the models 1 and 2, the probability
density is chosen so as to have, respectively, a maximum
and a minimum at x = 0. In the models 3 and 4, there are
two maxima and two minima, respectively. In the model 7,
the probability density has a singularity at x = 0. The para-
meters a and b are chosen to be the same as in Fig. 1.



972 GUTMAN

CONCLUDING REMARKS

In the seven examples for ['*(x) given in the preceding section, Eq. (9) is
always arrived at, but the multiplier g* assumes different numerical values. In
our opinion this detail is of lesser importance. Namely, it is possible to construct
model functions I'*(x), such that g* in Eq. (9) has any desired value.

For instance, if for some ¢ > —1,

2
*(x)=>5b[1+ t[ﬁj ] for —a<x<+a andotherwise I'*(x)=0 (17)
a

then

*:3\/5 t+2
4 J(t+3)3t+5)

By varying the parameter ¢, the multiplier in Eq. (9) assumes values between
34/5/8=0.8385 and /15 /4=0.9682, see Fig. 3. Therefore, the model function
(17) can always be chosen so as to exactly “reproduce” the empirically deter-
mined value of g in the McClelland formula (Eq. (1)). This, of course, would be
fully artificial and without any scientific justification.
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Fig. 3. Dependence of the multiplier g* in
o) Eq. (9) on the parameter ¢ of the probability
2 0 2 2 6 8 10 density (17). In order that I'*(x) be positive

) valued, it must be ¢ > —1.

The main conclusion of the present work is that the McClelland approxi-
mation (Eq.(1)) has nothing to do with the distribution of the HMO m-electron
energy levels and that no inference on this distribution can be made based on the
fact that Eq. (1) in a surprisingly accurate manner reproduces the actual E-values.
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N3BOJ

MEKIJIEJTJAH/IOBA AITPOKCUMAIIMJA U PACIIOJEJIA n-EJIEKTPOHCKUX
MOJIEKVYJICKO OPBUTAJIHUX EHEPI'ETCKNX HUBOA

VBAH I'YTMAH
Prirodno—matemati~ki Fakultet UniverzitetauKragujevcu

YKyHHa T-CJICKTPOHCKA eHeerja E KOijFOBaHI/IX YTJbKOBOJOHHUKA Ca 1 YIJbEHUKOBUX aTOMa

1 m YTJbeHUK—YTJbEHHUK Be3a MOXKE e NPUOIIKHO M3padyHaty nomohy dopmyrne E = g+/2mn, Tae
je g emmnmpHjcka KoHcTaHTa, g~ 0,9. Panmje je m3Hera TBpAma na je modap kBaimuTeT Mekie-
JIAHJIOBE aNPOKCHUMAlMje 3aCHOBAH Ha YMECHHULM Jla Cy M-eJICKTPOHCKH MOJICKYJICKO OpOUTAIIHU
CHEPreTCKM HHMBOM PAacClojie/beHH NpuOmmkHO yHu(popMHO. Cana mokasyjemMo na MekienaHnosa
arnpoKcUMalyja He 3aBUCH Ol IPUPOJIE PAcIoJielie eHePreTCKUX HUBOA, TO jeCT Jia je OHA KOMIIaTu-
OmHa ca OpojHHM, BEOMa Pa3IMIUTHM paclofenama.

15.
16.
17.

(ITpumsseno 29. mapra 2007)
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