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Abstract: The total π-electron energy E of a conjugated hydrocarbon with n carbon 
atoms and m carbon–carbon bonds can be approximately calculated by means of the 
McClelland formula mngE 2≈ , where g is an empirical fitting constant, g ≈ 0.9. 
It was claimed that the good quality of the McClelland approximation is a con-
sequence of the fact that the π-electron molecular orbital energy levels are distribu-
ted in a nearly uniform manner. It will now be shown that the McClelland ap-
proximation does not depend on the nature of the distribution of energy levels, i.e., 
that it is compatible with a large variety of such distributions. 
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The total π-electron energy E is one of the most thoroughly studied theoreti-
cal characteristics of conjugated molecules that can be calculated within the Hü-
ckel molecular orbital (HMO) approximation.1,2 Research on E is currently very 
active.3–8 Long time ago McClelland proposed the simple approximate formula:9 

 mngE 2≈  (1) 

where n is the number of carbon atoms and m the number of carbon–carbon 
bonds, and where g is an empirically determined fitting parameter, g ≈ 0.9. In the 
meantime a large number of other (n,m)-type approximate expressions for E have 
been proposed, but, as demonstrated by detailed comparative studies,10−13 none 
of these could exceed the accuracy of Eq. (1). 

In 1983 the present author discovered14 that a result closely similar to Eq. (1) 
can be obtained by assuming that the HMO energy levels are uniformly distri-
buted. Eventually such a distribution-based approach to E was elaborated in more 
detail.15,16 The conclusion of the works14−16 was that the McClelland approxima-
tion (Eq. (1)) is connected with the assumption that the HMO π-electron energy 
levels of conjugated hydrocarbons are distributed in a (nearly) uniform manner. 
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The reasoning by means of which this conclusion was obtained will be brie-
fly repeated. 

If λ1, λ2,..., λn are the Eigen values of the molecular graph representing the 
respective conjugated molecule, then:1−3 
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As is well known,1,2 the graph Eigen values satisfy the relation: 
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Without loss of generality, Eqs. (2) and (3) may be rewritten as: 

 ∫
+∞

∞

Γ=
-

d )( ||   xxxnE  

and 

 mxxxnE 2  d )(   
-

2 =Γ= ∫
+∞

∞

 

where Γ(x) is the probability density of the distribution of the graph Eigen values. 
It should be mentioned in passing that the exact expression for Γ(x) is: 
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with δ denoting the Dirac delta-function. 
In situations when the actual form of the probability density Γ(x) is not 

known (i.e., when the spectrum of the molecular graph is not known), one tries to 
guess an approximate expression for it, denoted by Γ*(x), which must satisfy the 
conditions: 
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and, of course, Γ*(x) ≥ 0 for all values of x. Then the quantity E*, 
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is expected to provide a reasonably good approximation for the total π-electron ene-
rgy E. In the works,14,16 the simplest possible choice for Γ*(x) was tested, namely, 
 Γ*(x) = b    for    –a ≤ x ≤ +a    and otherwise    Γ*(x) = 0 (7) 
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The form of the function (7) is shown in Fig. 1. 
The parameters a and b can easily be determined from the conditions Eq. (4) 

and (5), resulting in 
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By inserting the conditions given by Eq. (7) back into Eq. (6), one obtains: 
 E* = a2bn 
which combined with Eq. (8) yields: 
 mngE 2* *=  (9) 
with g* being a constant equal to 23 / . Not only is the algebraic form of the 
expression (9) identical to the McClelland approximation (Eq. (1)), but also the 
value of the multiplier g* = 0.8660 is remarkably close to the (earlier) empiri-
cally determined value for g. 

Fig. 1. The form of the probability density 
(Eq. 7) for a = 3 and b = 1/6. The Eigen va-
lues of the molecular graph are assumed to 
be uniformly distributed within the interval 
(–a,+a), i.e., within the interval (a,–a), the 
probability density is assumed to be constant 
(equal to b). Outside this interval, the proba-
bility density is set to be equal to zero. 

Thus, it can be seen that by assuming a uniform distribution of the Eigen 
values of a molecular graph, the McClelland formula (Eq. (1)) can be reprodu-
ced. What has hitherto been overlooked is that formula (1) can also be deduced 
by using many other probability densities. 

OBTAINING FORMULA (1) FROM A VARIETY OF MODEL FUNCTIONS Γ*(x) 

Suppose that the model based on Eq. (7) is required to be upgraded by 
including the information that the MO energies around the non-bonding level 
(corresponding to x = 0) are more numerous than those far from the non-bonding 
level, see diagram 1 in Fig. 2. This can be achieved by means of the function: 
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Then, by direct calculation in a fully analogous manner as described in the pre-
ceding section, formula (9) is obtained with g* = 45 / . 
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If, however, the opposite is assumed, namely that the MO energies around 
the non-bonding level are less numerous than those far from the non-bonding 
level (see diagram 2 in Fig. 2), and therefore set 
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then Eq. (9) is again obtained, this time for g*  = 415 / . 
The model function Γ* may be made still more complicated, with two mini-

ma or two maxima (diagrams 3 and 4 in Fig. 2), i.e., 
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but Eq. (9) is still obtained with g* = )212/(215  and g* = )1872/(75 , 
respectively. 

Hitherto, it was required that the model function be symmetric with regard to 
x = 0, i.e., that Γ*(–x) = Γ*(x), i.e., that the pairing theorem be obeyed.1,2 How-
ever, even this plausible restriction is not necessary, as shown by the examples: 
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Also the functions (14) and (15) imply the validity of Eq. (9), with g* = 1633 /  
and g* = )216/(59 , respectively. The forms of the functions (14) and (15) are 
shown in diagrams 5 and 6 in Fig. 2. 

In order to further demonstrate the arbitrariness of the form of the model 
function that leads to the McClelland approximation, an example with a singu-
larity at x = 0 was constructed (see diagram 7 in Fig. 2): 
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In spite of the (physically impossible) property of the model function (16) 
that Γ(x) → ∞ for x → 0, Eq. (9) is also obtained with g* = 35 / . 
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Fig. 2. Several probability densities resulting in approxi-
mate expressions for the total π-electron energy of the McClel-
land type. Note that whereas in the models 1 (Eq. (10)), 2 
(Eq. (11)), 3 (Eq. 12)), 4 (Eq. (13)) and 7 (Eq. (16)), the 
probability density is symmetric with respect to x = 0. In 
the models 5 (Eq. (14)) and 6 (Eq. (15)), it is chosen to be 
highly asymmetric. In the models 1 and 2, the probability 
density is chosen so as to have, respectively, a maximum 
and a minimum at x = 0. In the models 3 and 4, there are 
two maxima and two minima, respectively. In the model 7, 
the probability density has a singularity at x = 0. The para-
meters a and b are chosen to be the same as in Fig. 1. 
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CONCLUDING REMARKS 

In the seven examples for Γ*(x) given in the preceding section, Eq. (9) is 
always arrived at, but the multiplier g* assumes different numerical values. In 
our opinion this detail is of lesser importance. Namely, it is possible to construct 
model functions Γ*(x), such that g* in Eq. (9) has any desired value. 

For instance, if for some t ≥ –1,  
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By varying the parameter t, the multiplier in Eq. (9) assumes values between 
8/53 = 0.8385 and 415 / = 0.9682, see Fig. 3. Therefore, the model function 

(17) can always be chosen so as to exactly “reproduce” the empirically deter-
mined value of g in the McClelland formula (Eq. (1)). This, of course, would be 
fully artificial and without any scientific justification. 

Fig. 3. Dependence of the multiplier g* in 
Eq. (9) on the parameter t of the probability 
density (17). In order that Γ*(x) be positive 
valued, it must be t > –1. 

The main conclusion of the present work is that the McClelland approxi-
mation (Eq.(1)) has nothing to do with the distribution of the HMO π-electron 
energy levels and that no inference on this distribution can be made based on the 
fact that Eq. (1) in a surprisingly accurate manner reproduces the actual E-values. 
Acknowledgement: This work was supported by the Serbian Ministry of Science, through Grant No. 
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И З В О Д  

МЕКЛЕЛАНДОВА АПРОКСИМАЦИЈА И РАСПОДЕЛА π-ЕЛЕКТРОНСКИХ 
МОЛЕКУЛСКО ОРБИТАЛНИХ ЕНЕРГЕТСКИХ НИВОА 

ИВАН ГУТМАН 

Prirodno–matemati~ki fakultet Univerziteta u Kragujevcu 

Укупна π-електронска енергија Е конјугованих угљководоника са n угљеникових атома 
и m угљеник–угљеник веза може се приближно израчунати помоћу формуле mngE 2≈ , где 
је g емпиријска константа, g ≈ 0,9. Раније је изнета тврдња да је добар квалитет Мекле-
ландове апроксимације заснован на чињеници да су π-електронски молекулско орбитални 
енергетски нивои расподељени приближно униформно. Сада показујемо да Меклеландова 
апроксимација не зависи од природе расподеле енергетских нивоа, то јест да је она компати-
билна са бројним, веома различитим расподелама. 

(Примљено 29. марта 2007) 
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