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Abstract: A model on a feed forward back propagation neural network was em-
ployed to calculate the isobaric vapour—liquid equilibrium (VLE) data at 40, 66.67,
and 101.32 + 0.02 kPa for the methylcyclohexane — toluene and isopropanol —
methyl isobutyl ketone binary systems, which are composed of different chemical
structures (cyclic, aromatic, alcohol and ketone) and do not show azeotrope behav-
iour. Half of the experimental VLE data only were assigned into the designed frame-
work as training patterns in order to estimate the VLE data over the whole composi-
tion range at the mentioned pressures. The results were compared with the data cal-
culated by the two classical models used in this field, the UNIFAC and Margules
models. In all cases the deviations the experimental activity coefficients and those
calculated by the neural network model (NNET) were lower than those obtained us-
ing the Margules and UNIFAC models.

Keywords: vapour—liquid, neural network, activity coefficients, UNIFAC, Margules
model.

INTRODUCTION

The neutral network model proposed in this work is an alternatively intensively
used method for most prediction problems in engineering calculations and/or for dif-
ferent purposes. Many studies have claimed the potent applicability of neural net-
works for the analysis of some complex systems. Neural networks have succeeded in
coping with a few biological and chemical problems, such as control of bio-reactors
with unstable parameters,! prediction of the secondary dimensional structure of pro-
teins,2 analysis of overlapped spectra or chromatograms,3 property prediction of
compounds,* phase equilibrium prediction in aqueous two-phase extractiond and the
design of a combined mixing rule for the prediction of vapor—liquid equilibria.® In
the last work, where the prediction of VLE is handled, the design of an intelligent
mixing rule formed by the combination of the Wong and Sandler mixing rule and the
Huron and Vidal of order 1 mixing rule was performed using the basic principles of
neural networks. In this work, the feed forward back propagation neural network
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was employed for VLE-data prediction, assigning some experimental VLE-data di-
rect (without using any mixing rule) into the designed framework as training pat-
terns. It should be noticed that in this procedure the neural network is unable to offer
any parameters such as the second virial coefficients in a thermodynamic meanings
or any energy paramenter in a detailed mechanism.

THERMODYNAMIC BASIS

At low pressures, the experimental activity coefficients can be obtained from
vaporu—liquid (VLE) measurements using the equation:

yi=2if X
1
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where y; is the mole fraction of component 7 in the vapour phase, x; is the mole fraction in
the liquid phase, P is the total pressure, v; is the activity coefficient of i in the fluid phase
and PS is the saturation (vapour) pressure.

NEURAL NETWORK MODEL

A neural network mimics the structure of human synapse connections to imi-
tate the work of the brain. A typical structure of a neural net consist of multiple lay-
ers, each of them having a group of computing neurones. Every neurone in one
layer is completely connected with others in the adjacent layers but not with ones
in th same layer. The first layer merely stores and transports the values of the input
features to the next layer, the last layer calculates the output values, and between
them are the hidden layers.
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Fig. 1. A neurone model.
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One typical neurone in such a neural net is shown in Fig. 1. The inputs X; are
the product of the incoming neurone values L; and the synaptic weights w;:

X;=Lw; 2

The inputs are then summed and the activation function is applied to the ob-
tained sum to reach the output value Y-

N
Y—f(;)LiWi]=f(Z) 3

where fis the activation function:

fiz) = L 4)
l+e™?

Here, N is the number of incoming values from different neurones, and L is the
vector of incoming neurones. There are a number of activation functions available
to be adopted for a net. In this work, the log sigmoid function shown in Eq. (4) was
preferred. As result of this preference, the input values can be any value in the
range — o to + oo, but the output values are limited to between 0 and 1. In this sense,
normalisation to the vapour—liquid equilibrium data was performed in order to
obey the output ranges.

RESULTS AND DISCUSSION

In this work, the feature of the neural network has been adapted to deal with
the prediction of the VLE data of the methylcyclohexane—toluene and isopro-
panol—-methyl isobutyl ketone systems at (40, 66.67 and 101.32 £ 0.02) kPa. The
experimental data of the binary systems were taken from our preceeding studies
and the systems are of significance as they present various chemical structures (cy-
clic, aromatic, alcohol and ketone).”-8

TABLE I. Absolute mean deviations between the experimental and chalculated activity coefficients

AY,, Margules AY,, UNIFAC AYi, NNET¢
System/Pressure (kPa) Lit. Lit.
Y1 Y2 Y1 Y2 Y1 Y2

MCH-T?/101.32 0.0099  0.0136 0.0106  0.0157 0.0102  0.0097
MCH-T / 66.67 0.0620  0.0300 0.0250  0.0369 0.0142  0.0113
MCH-T / 40.00 0.0817  0.1004 0.0499  0.0528 0.0200  0.0092

IP-MIBKY/ 101.32  0.0388  0.0389 0.1243  0.1076 0.0224  0.0144

IP-MIBK / 66.67 0.1993  0.0740 0.0935  0.1439 0.0404  0.0132

IP-MIBK / 40.00 0.5767  0.1097 0.2020  0.1541 0.0728  0.0232

[c B B I N e
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aMethylcyclohexane — toluene; PIsopropanol — methyl isobutyl ketone; “Neural network
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The application of the neural network model to the prediction of VLE data was
performed using the MATLAB program (version 6.0), a widely used calculation
and programming tool for engineering applications. For the purpose of gaining
promising predictability, an approach based on the optimum neural network archi-
tecture was determined. The problem was handled as a generalization problem and
the neural network calculations employed a feed-forward algorithm to calculate
the output, along with back-propagation to recursively correlate the weights. The
learning process, whereby the weights of the model are adjusted, is the most impor-
tant part in the establishment of a predictable neural network. As the objective
function in the learning process, the total squared error in each vector was taken as
0.001 (Eq. (5)).

n
Total squared error = Z; 04 l.eXp -Y ical )2 ©)
i=
where YXP — experimental value; Y3l — calculated value; 7 — number of experiments.

Only half of the experimentally determined VLE data points were assigned
into the designed framework as training patterns in order to estimate the whole sys-
tems. The results were verified by examining the distribution of the output errors
and the dynamic response of the learning process. In the application, concentra-
tions of the low boiling component in the liquid phase (x;) were given as input val-
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Fig. 2. Comparison of the calculated and experimental activity coefficients at 40.00 kPa, for the
methylcyclohexane + toluene system.

ues to the net and, as result, the concentrations of the low boiling component in the
vapour phase (y) and the liquid phase activity coefficients (y, y,) were taken as
output values.
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The experimental activity coefficients, y; and y,, were calculated applying the
experimental 7—x;—y; values to Eq. (1). The experimentally observed activity co-
efficients were compared with the values estimated from the neural network, the
UNIFAC-orginal® model and the two-parameter Margules equation. !0 The UNIFAC
model is presented in detail in mentioned reference, from where the group-volume
and surface-area parameters of the considered chemicals were taken as well. Table
I presents a quantitative assessment of the calculations achieved by each model
with respect to the absolute mean deviation of the activity coefficients. This devia-

tion, taken as described elsewhere,!! is shown in Eq. (6).
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Fig. 3. Comparison of the calculated and experimental activity coefficients at 40.00 kPa, for the
isopropanol + methyl isobutyl ketone system.

n
Mean deviation =AY} = ) |Y f:p -Y l-ffél |/n ©)
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In all cases the deviations between the experimental activity coefficients and
those calculated by the neural network (NNET) were lower than the deviations ob-
tained using the Margules and the UNIFAC models for the calculations (see also
Figs. 2 and 3). From this point of view, although the experimental database was re-
stricted in this study, a neural network can be treated as an efficient tool for estimat-
ing the VLE data over a wide range of pressure and for different multiple mixtures
which will be considered in the future.

NOMENCLATURE

L — Vector of incoming neurones
n — Number of experiments
N — Number of incoming values in a neural net
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P — Pressure (kPa)

P;S — Saturation (vapour) pressure of pure liquid i

T — Temperature (K)

w — Synaptic weights

x; — Mole fraction of componenet 7 in the liquid phase
v; — Mole fraction of componenet i in the vapour phase

AY; — Absolute mean deviation
v; — Activity coefficient of i in the fluid phase

U3BOJ

N3PAYYHABAIKE N30BAPCKUX [TAPA - TEHHOCT PABHOTEXKHNX
ITOJATAKA 3A BUHAPHE CUCTEME KOPUIIREILEM HEYPOHCKE MPEXE

MEHMET BILGIN

Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Avcilar, Istanbul, Turkey

Monen 3acHoBan Ha feed forvard back propagation neural network kopunrheH je 3a u3pa-
YyHaBame N300apHUX MMOflaTaka 3a paBHOTeXe Mapa —reuHoct (VLE) 3a 40, 66,67 u 101,32 +
0.02 kPa GuHapHe cucteMe METHILIUKIOXEKCAHTONYEeH U U30MPOIAHOI — METUI U300y THI
KETOH, KOJU Cy CAUMILE€HH OJf PAa3IUUYUTUX XEMHjCKUAX CTPYKTypa (LUKJIWIHE, apOMaTCKe,
aJIKOXOJIHE M KETOHCKE), a HeMajy a3eO0TPOIICKO MOHaIame. [10J0BrHA eKCIIepUMEHTATHX
nojlaTaka yHeTa je y MpojeKTOBaH! OKBHP y OKBUPY IIpUIpeMHe (a3e Kako 01 ce MPOLeHUIH
ofroBapajyhu mojaiy 3a 11eo orcer KOHIEHTpallyje pU MOMEHYTUM IpuTucuuMa. [1o6ujeHn
pe3yararu cy ynopebeHu ca nojganumMa u3padyHaTiuM noMohy JiBa KjacluuHa Mojiesa KOju ce y
0Boj obnactu Kopucte, UNIFAC u Margules. Y cBuM ciiydyajeBUMa pasiiuke usmeby excnepu-
MEHTAIIHO ofipeheHnx KoeduuujeHaTa aKTUBHOCTU U M3pavyyHATHX NOMOhy Mojena Hey-
poncke Mpexe (NNET) cy Mame Hero npu npumeHu Mojesa Margules umu INIFAC.

(ITpumibeno 13. HoBeMmOpa, peBupnpano 3. mapra 2004)
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