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Abstract: Chromium dissolution in aqueous sulfuric acid solutions in the pH range

0.5 –3 was studied electrochemically by the potentiostatic or very slow potentio-

dynamic method, and by the analyses of the Cr ion concentrations in the electrolyte

formed during the experiments. It was shown that the electrochemical anodic disso-

lution follows a common Tafel line with a slope of ca. 120 mV dec-1, independent of

the solution pH and the hydrodynamics, while the passivation potentials and passi-

vation currents were independent on hydrodynamics but strongly dependent on the

pH. In parallel with the electrochemical dissolution, a considerable “anomalous” or

chemical Cr dissolution process occurs, as evidenced by the spectrophotometric

analyses of the electrolytes for Cr ions after prolonged potentiostating of the elec-

trodes at different potentials, as well as by measuring the electrode weight losses.

All these results indicate the existence of a potential independent reaction of Cr dis-

solution occurring in parallel to the anodic dissolution process. Mechanisms for both

the electrochemical and the chemical process are proposed. The consequences of

these phenomena on the behavior of some practical systems where chromium or a

chromium alloy (e.g., stainless steels) are used are discussed.

Keywords: chromium, acid solutions, anodic dissolution, anomalous dissolution,
chemical dissolution, reaction mechanisms.

INTRODUCTION

The corrosion stability and electroplating properties of Cr when used either as

protective or decorative coatings, or, as a dominant component of stainless steels is

certainly dependent on the kinetics of the electrochemical dissolution of Cr and ac-

companying phenomena. The good protective properties of Cr coatings are due to

the ease with which Cr reacts with O2 from air with the formation of a stable pas-
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sive film. This film, however, can be easily removed either by cathodic polariza-

tion with hydrogen evolution,1 or by mechanical action on Cr,2 or stainless steel

surface. This might happen also inside the cracks, which form during the action of

force on stainless steel parts, causing damages due to corrosion fatigure or even

stress corrosion cracking.

The purpose of this communication is to shed more light onto the rather con-

tradictory interpretations of the anodic dissolution processes in the active potential

dissolution range, and to separate in a quantitative way the contribution of the elec-

trochemical process, its kinetics and reacton products, from a parallel “anomalous”

(chemical) dissolution process which occurs at a considerable rate.1,3,4

EXPERIMENTAL

The experiments were performed with metallic Cr (Merck, lumps). The electrodes were made ei-

ther in the form of a piece of metal sealed in epoxy resin (exposed surface 2 cm2) or as a Cr disc inserted

into the metal disc of a PINE rotating system. PINE potentiostat RDE 4 and a two-channel Philips X-Y

plotter were used. All the experiments were performed in aqueous mixtures of 0.1 M Na2SO4 + H2SO4

(pH 0.5 – 3). Merck p.a. chemicals and doubly distilled water were used for the preparation of the solu-

tions. An all-glass three compartment electrochemical cell with a Pt foil as the counter electrode and a

saturated calomel reference electrode (SCE) was used. All the potentials are referred to SCE. The solu-

tions were continuously deaerated with purified nitrogen.1 The experiments were carried out at ambient

temperature (22 ± 2 °C). The potential scan rate of the Cr electrode was 2 mV s
-1, which appeared to be

sufficiently slow to consider the polarization curves to have been obtained under quasi-steady state con-

dition. Prior to the measurements, the electrodes were activated by cathodic polarization at – 0.9 V for 90

s, since the spontaneously formed open circuit potential of an electrode which had previously been in

contact with air was about –0.450 V, which corresponds to the passive state of the chromium surface.

For the determination of chromium ion concentration by means of a Hewlett-Packard HP8452A

spectrophotometer a quartz cell with a stopper was used in order to eliminate the possibility of oxi-

dation of Cr(II) ions by air oxygen. Also, care was taken when removing the samples from the cell,

which had a stopcock at the bottom for passing the solution samples directly into the quartz cell. De-

tails on the difficulties involved in the spectrophotometry of Cr(II) ions and mixtures of Cr(II) and

Cr(III) ions have been presented elsewhere.1

The crystalline structure of the electrode sample was studied by optical microscopy and by

back scattering X-ray diffracton. A Unicam-Cambridge S.25 goniometer for monocrystals with

Philips PW generator with copper anticathode (�CuK�1, 40 kV, 20 mA) was used. Morphology of

the surface after corrosion or anodic polarization was observed using optical microscopy, scanning

electronic microscopy (SEM) (Jeol T20) and atomic force microscopy (AFM) techniques (AFM-Au-

toprobe CP Research, Thermomicroscopes, Ca, USA).

RESULTS

Figure 1 depicts typical polarization curves for chromium in acid solutions

(aqueous Na2SO4 + H2SO4, pH 0.5 – 3), in this case for pH 1. The corrosion poten-

tial Ecorr,1 obtained directly after the introduction of Cr electrode into the electro-

lyte was in the range of – 0.400 V, while after cathodic pretreatment and activation

of the Cr surface, Ecorr,2, was in the range – 0.680 to – 0.840 mV, which means that

the corrosion potential, Ecorr,2, changes by about – 60 mV/pH (see Ref. 3). In the

same diagram the filled squares represent the spectrophotometric (analytic) data
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recalculated into the equivalent jtot,anal. Besides, at the corrosion potential, i.e., for

the corrosion rate, analytical data were also obtained, for the cathodically and an-

odically polarized electrode. After correction of the analytically obtained data for

the simultaneous anodic dissolution current, the corrected jan,anal, i.e., “anoma-

lous” dissolution rates (open squares) were obtained. These points lie on a vertical

(double dot dash) line, indicating the independence of the dissolution process on

potential. In a solution of pH 1, this process is rather fast, and is ca. 10 times faster

than the electrochemical corrosion rate, jcorr, el.

Superimposed polarization diagrams for three different pH values, 1,2 and 3,

are presented in Fig. 2. As can be seen, the cathodic Tafel lines for H2 evolution are

shifted, as expected, for by the discharge of H3O+ ions, while the anodic Tafel lines

are rather short, but all lie on the same line with an anodic slope of ca. 120 mV

dec–1. This also shows that the anodic reaction does not depend on pH, the posi-

tions of the experimental anodic lines being determined by the pH dependence of

the cathodic Tafel lines and the pH dependence of the passivation potentials. The

experiments with the rotating Cr disc electrode revaled that the passivation cur-

rents did not depend on the rotation speed, while the passivation potential de-

pended on pH, dEp/dpH � 100 mV.
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Fig. 1. Anodic and cathodic polarization curves and corrosion potential for an activated (Ecorr.2)

Cr electrode at pH 1.0. (0.5 M Na2SO4 + H2SO4), (— —) H2 evolution rates on active Cr

calculated from volumetric data. (- - -) Partial anodic and cathodic Tafel lines. Total corrosion

current densities determined: (�)-volumetrically, (�)-gravimetically and (�)-analytically.

Electrochemical corrosion current density – jcorr.el. The anomalous dissolution current

densities (vertical dash and double dots line) are the differences between the total and the

electrochemical corrosion current densities. (� – calculated from analytical; � – from

volumetric data). Sweep rate 2 mV s-1.



Figure 3 depicts the dependence of the “anomalous” dissolution reaction on

pH, showing a slope of – 0.89. Bearing in mind the possible experimental errors in

determining the values, it can be interpreted as that the reaction order of this reac-
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Fig. 2. Cathodic and anodic polarization curves for three different pH values: 1, 2 and 3.

Fig. 3. Dependence of the logarithm of the rate (expressed as the equivalent current density,

jan,anal, of the “anomalous” chromium dissolution reaction on pH.



tion regarding H3O+ ions is practically 1, and that the “anomalous” dissolution rate

decreases with increasing pH in the range studied. In an experiment at pH 1, the

Na2SO4 concentration was increased from 0.1 M to 1.0 M, but the “anomalous”

dissolution rate was not affected, i.e., sulfate ions do not participate in the “anoma-

lous” process.

The chromium electrode used in these experiments was sealed in epoxy resin

and the microphotograph of it is shown in Fig. 4. After fine polishing and etching

(for 120 min at the open circuit potential after cathodic activation), the micropho-

tograph shows two large more or less homogeneous surfaces, marked with the

numbers 1 and 2. A in Fig. 4 marks the epoxy holder. It is obvious that the electrode

material at the surface exposed to the electrolyte consists practically of two large

separate crystals, marked as surface 1 and surface 2. The lauegram presented in

Fig. 5a does not show any reflection even after 8 h of exposure, while Fig. 5b repre-

sents the result of a 2 h exposure of the surface 2 under the same angle. Except the

network of points, this diffracton photograph shows a very intensive reflection un-

der an angle of 22°. Therefore, it can be concluded that the part of the electrode

marked by 2 represents the single crystal structure of the body-centered cubic lat-

tice of chromium with an interlayer distance of 0.83 Å, which according to the data

for chromium card in card catalog JSPDS No. 06-0694, corresponds to the Miller
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Fig. 4. Photograph of the electrode specimen used in the
electrochemical and structural investigation. After etch-
ing in sulfuric acid, two distinct surfaces appeared, mar-
ked with 1 and 2. A designates the epoxy holder.

Fig. 5. Lauegrams of: (a) surface; 1; (b) surface 2.

a) b)
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Fig. 6. SEM Micrograph of the electrode at the boundary between surfaces 1 and 2.

Fig. 7. Atomic force microscopy (AFM) images of: (a) surface 1, (b) surface 2. Black lines indi-

cate the tip moving tracks. Diagrams represent the tip oscillation along the tracks.

a)

b)



indices (222) positioned under 22° towards the electrode surface exposed to the

electrolyte. On the other hand, lauegram in Fig. 5a shows no reflections, which al-

lows, with a great probability, the conclusion that the part of the electrode marked 1

has no crystalline structure.

Figure 6 is the SEM microphotograph of the electrode surface after etching

(the same as for Fig. 4) at the position of the boundary between the two large crys-

tals at a magnification of 2000. The right-hand side belongs to the crystal marked

with 2 in Fig. 4, and a rough crystalline surface characteristic for the cubic lattice is

seen after the etching. The left-hand side of the same microphotograph shows a

quite different morphology of a more amorphous character at this level of magnifi-

cation of the surface marked with 1 in Fig. 4. Three interesting features should be

noticed here: a thin white boundary between surfaces 1 and 2 (marked with A), a

deep narrow channel right behind the boundary layer (B), and long thin cracks (C)

of considerable length on a part of surface 1, not visible on a part 2.

AFM images obtained with the same electrode specimen are shown in Figs. 7a

for surface 1, and 7b, for the surface 2. It is obvious that surface 1 is rougher than

surface 2. This can be seen in a more quantitative manner in Fig. 8 when an image

of the surface at the boundary was made and the standard roughnesses of both sur-

faces are graphically and numerically presented. The average roughness Ra of the

surface 1 is 0.218 �m, which is about 1.4 times rougher surface than surface 2 (Ra =

0.156 �m).

The second, more important conclusion from the surface image shown in Fig.

8 is that the rate of anodic dissolution is different for the different surfaces. For the

same dissolution time, the level of the surface 1 became about 2 �m deeper than the

level of the surface 2, indicating different rates of the anodic reaction at these two

different surfaces.

CHROMIUM ELECTROCHEMISTRY.IV. 1105

Fig. 8. AFM image of the boundary between the surfaces 1 and 2. Black line indicates the tip mov-

ing track.



DISCUSSION

Anodic dissolution process

It was shown elsewhere1 that the reaction products of the corrosion and anodic

dissolution of Cr are Cr(II) and Cr(III) ions in the ratio of ca. 7:1; independently of

the potential. Hence, the following general reaction scheme can be considered

Bearing in mind the experimentally obtained anodic Tafel slope which can be

considered to correspond to a value of 120 mV dec–1, the theoretically expected are

for a single electron charge exchange step, and the independence of the rate on pH,

three reaction schemes can be proposed:

(i). The sequence I, II and 1/8 of the product by III, with step I being the rate

determining one (rds). Reactions IV and V are not of importance since, as experi-

mentally proved the anodic co-evolution of H2 does not depend on anodic polar-

ization.3 According to the mechanism, the rates of reactons IV and V would be ex-

pected to increase as the anodic current and polarization increase, since the surface

concentration of the intermediates Cr(I) and Cr(II) should increase with increasing

anodic polarization. As was seen, this is not the case.

(ii). The sequence I, II and 1/8 of the product by III, with step II as the rds, if

the surface coverage of adsorbed Cr(I) is large (��1).

(iii). The following scheme could be considered bearing in mind the great in-

teraction of Cr with H2O (as is the case with Fe, Ni and Co5):

Cr + H2O � CrOHads + H+ + e– (2)

CrOHads � Cr
2+ + OH– + e– (3)

Cr2+
� Cr

3+ + e– (only 1/8) (4)

in which the second step is the rds and the surface coverage with CrOHads is large

(��1). This is similar to the mechanism proposed for the anodic dissolution of

Fe.
6 The change of the corrosion potential with pH of dEcorr,2/dpH � – 60 mV/pH

is in accordance with the proposed anodic dissolution mechanism and the hydro-

gen evolution reaction occurring by the discharge of H
+ ions as proposed in Part II

of this series.4 This also confirms that the effective corrosion potential Ecorr,2 is a

true electrochemically controlled value, in accordance with the Wagner-Traud

model of electrochemical corrosion.8
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It should be pointed out here that this similarity of the two mentioned reaction

mechanisms is not unexpected, bearing in mind that the interaction of metals with

water molecules increases as the position of the metal in the Volta line becomes

more negative. This is obvious in the case of alkali and alkaline earth metals which

readily react with water and which are very electronegative, as is well known. Also

Al and Ti, known for their high reactivity with oxygen from the air and water mole-

cules belong here, as well. All of them are very electronegative metals, having ex-

perimentally unmeasurable equlibrium potentials in aqueous solutions. Chromium

with an equilibrium potential of E0
r = – 0.913 V (SHE) (or – 1.155 V (SCE))7 is

much more negative than the members of the iron groups of metals, and hence the

expected interaction with water or oxygen should be more intensive. The case of

chromium is rather interesting since more negative elements, such as Al or Ti, are

typical so-called valve metals, having oxide film which conducts electronically

only in one direction, and are electrochemically irreducible. Chromium as a less

electronegative metal behaves as a passive, or a valve metal when introduced into

the electrolyte after previously being in contact with air, and exibits a stable corro-

sion potential, Ecorr,1, in the range of –0.4 to –0.5 V. As in the case of Al, this is a

mixed potential of the Wagner–Traud type8 with the cathodic hydrogen evolution

reaction occuring on the oxide covered surface (see Ref. 4). However, after cath-

odic polarization to about – 0.9 V for some time (see Experimental), the surface of

chromium starts behaving as an electrochemically active metal with a second sta-

ble corrosion potential, Ecorr,2 in the range of – 0.7 to – 0.85 V, depending on the

pH of the solution. Such a dual electrochemical behavior is not common for other

electrode materials. Also, the pH dependence of the passivation potential, Ep, indi-

cates that the passive layer formed during the passivation process includes OH

groups, in some way, into the passive layer formed during the anodic reaction.4

The independence of the passivation current densities on the rotation speed of the

rotating disc electrodes indicates that the mechanism of the passivation process is

not of the dissolution-precipitation type but rather of a direct surface reaction.

“Anomalous” dissolution process

Our experimental results support the mechanism of the “anomalous” dissolu-

tion of metals proposed by Kolotyrkin and coworkers9–16 who observed that for a

number of metals such as Fe, Ni, etc., an “anomalous” dissolution process occurs,

which is independent of the potential when the overall dissolution rate was mea-

sured by increasing the metal ion concentration during the change of cathodic po-

larization. They assumed that this process proceeds as a simple chemical reaction

of metal atoms from the surface of a solid phase and water molecules adjacent to

the surface of the metal in contact with the aqueous elctrolyte. Hence, they termed

this reaction also “chemical” pointing that there is no electron exchange between

the metal and species reacting within the double layer, which is present, should
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obey the laws of electrochemical kinetics (i.e., the process should be potential de-

pendent). It should also be mentioned that recently one of the authors of this series

of papers proposed a new term “electroless” for this type of reaction15 in an at-

tempt to stress the difference between the electrochemical dissolution processes

and the observed “anomalous” behavior. However, it turned out, that this was an

unfortunate translator’s mistake, but it certainly did not help the already existing

ignorance in the Anglo-Saxon literature �e.g., Ref. 17� for Kolotyrkin’s view on the

possibility of a chemical explanation for the “anomalous” behavior of a number of

important metals. It should also be pointed out than in some cases Kolotyrkin and

coworkers observed that for some metals (e.g., Cr and Fe14), the chemical reaction

was pH dependent with and approximate reaction order regarding H3O+ ions of 1

or 0.5. Bearing all this in mind, we propose the following reaction mechanism for

the chemical dissolution process

Cr + H2O � CrOHads + H (5)

CrOHads + H3O+
� CrOH

+ + H + H2O (6)

CrOH+ + H3O+
� Cr

2+ + 2H2O (7)

with the second step being the rds, and probably with a large surface coverage with

CrOHads (��1). It has the same first step as the electrochemical reaction (reaction (2)).

Electrodes structure and morphology analysis

X-Ray analysis, shown in Figs. 5a and b, revealed that the part of the electrode

marked with 2 (Fig. 5b) showed Laue patterns belonging to a single crystal struc-

ture of a bcc crystal of Cr. Contrary to this, the surface 1 (Fig. 5a) did not show any

indication of a crystalline sructure even after a rather long exposure time (8 h),

hence it may be concluded that this part of the electrode did not have sufficient time

to crystallize during cooling and remained in a more or less amorphous or

subcrystalline state. This difference in the structure of the two surfaces can also be

seen on the SEM microphotograph shown in Fig. 6. Surface 2 shows clear crystal-

line etching patterns, corresponding to the cubic crystalline system of chromium.

This cannot be seen for surface 1. The boundary layer A in Fig. 6 consists of chro-

mium sulfide as was shown by EDEX analysis, which obviously appeared as the

result of a precipitation reaction of Cr with a small amount of impurities in the bulk

of the crystal. The deep channels B appearing behind the sulfide boundary layer on

surface 1 are of interest. The increased dissolution rate at these places close to the

sulfide boundary layer might be due to a kind of local action cells. However, when

attempts were made to observe local hydrogen gas evolution on the sulfide bound-

ary by using an optical microscope, no gassing could be seen. Of course, it could be

that the gas evolution rate was smaller than that necessary for bubble formation.
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Also, thin cracks C appearing on the surface 1, and not visible on surface 2 proba-

bly are connected with the amorphous unstable structure of solid Cr at surface 1. It

could be that the brittleness of Cr is at least partly due to the existence of these

small cracks.

The surface roughness and surface profile analyses made by using AFM (see

Figs. 7a,b and Fig. 8) also show that the amorphous surface is somewhat rougher

(about 1.4 times), and for some reason, dissolves anodically (or corrodes) faster

than the crystalline part of the electrode. It can be concluded that the crystalline

structure and orientation has a certain influence on the rate of corrosion. However,

a proper conclusion can only be made if a real single crystal Cr electrode were used

for the experiments and if the experiments were made with surfaces oriented in a

very defined manner. Attempts in this direction will be made in the future.
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IZVOD

ELEKTROHEMIJA AKTIVNOG HROMA. DEO IV. RASTVARAWE HROMA U

DEAERIRANOM VODENOM RASTVORU SUMPORNE KISELINE

D. M. DRA@I]
1

, J. P. POPI]
1

, B. JEGDI]
2

i D. VASIQEVI]-RADOVI]
3
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3
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metalurgiju – Centar za mikroelektronske tehnologije i monokristale, Wego{eva 12, 11000 Beograd

Prou~avano je anodno rastvarawe hroma u vodenim rastvorima sumporne kise-

line u oblasti pH 0,5 – 3 potenciostatskom i vrlo sporom potenciodinami~kom meto-

dom, kao i analiti~kim pra}ewem promene koncentracije Cr jona tokom eksperime-

nata. Pokazano je da elektrohemijsko anodno rastvarawe prati uobi~ajeno Tafelovo

pona{awe sa nagibom Tafelove prave od oko 120 mV dec-1
, kao i da je nezavisno od pH i

hidrodinamike. Me|utim, potencijali pasivacije i struje pasivacije tako|e su neza-

visni od hidrodinamike, ali vrlo zavisne od pH. Jednovremeno sa elektrohemijskim

rastvarawem odigrava se i zna~ajno "anomalno" ili hemijsko rastvarawe hroma. Ovo

je potvr|eno i spektrofotometrijskim analizama rastvora tokom du`eg potencio-

statskog odr`avawa katodnih i anodnih polarizacija, kao i merewem gubitka mase

elektrode. Svi ovi rezultati ukazuju na odigravawe nezavisne reakcije rastvarawa

hroma koja nije zavisna od potencijala, kao {to je slu~aj sa elektrohemijskom reak-

cijom. Predlo`eni su mehanizmi odigravawa oba navedena procesa. Razmotrene su i

posledice postojawa oba navedena fenomena na pona{awe nekih prakti~nih sistema u

kojima se koristi hrom ili legure hroma (npr. ner|aju}i ~elik).

(Primqeno 28. maja 2004)
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