CONTENTS

Biochemistry
V. D. Dragićević, S. Sredojević, M. B. Spasić and M. M. Vrvić: Ageing-induced changes of reduced and oxidized glutathione in fragments of maize seedlings ... 911

Inorganic Chemistry

Physical Chemistry
I. Gutman, B. Furtula and J. Belić: Note of the Hyper-Wiener index (Note) 943
I. Gutman: Hyper-Wiener index and Laplacian spectrum ... 949
I. Hinić, G. Stanić and Z. Popović: Influence of the synthesis conditions on the photoluminescence of silica gels .. 953
B. F. Abramović, V. B. Anderluh, A. S. Topalov and F. F. Gál: Direct photolysis and photocatalytic degradation of 2-amino-5-chloropyridine ... 961
M. M. Aćanski: Normal-phase high performance liquid chromatography of estradiol derivatives on amino- and diol-columns .. 971

Electrochemistry
V. V. Panić, A. B. Dekanski, V. B. Mšković-Stanković, S. K. Milonjić and B. Ž. Nikolić: The role of the concentration profile of titanium oxide on the electrochemical behavior of RuO2-TiO2 coatings obtained by the sol-gel procedure ... 979
K. Babić-Samardžija, S. P. Sovilj and V. M. Jovanović: Comparative electrochemical study of some cobalt(III) and cobalt(II) complexes with azamacrocycles and β-diketono ligands .. 989

Materials

Book Review
M. M. Vrvić: Comprehensive enzyme kinetics by V. Leskovac .. 1011
Contents of Volume 68 ... 1013
Subject index .. 1021
Author index .. 1025

Published by the Serbian Chemical Society, Karnegijeve 4/III,
P. O. Box 35-08, 11001 Belgrade, Serbia and Montenegro
Printed by the Faculty of Technology and Metallurgy, Karnegijeve 4,
P. O. Box 35-03, 11001 Belgrade, Serbia and Montenegro
Ageing-induced changes of reduced and oxidised glutathione in fragments of maize seedlings

VESNA D. DRAGIČEVIĆ*, SLOBODANKA SREDOJEVIĆ†, MIHAJLO B. SPASIĆ‡ and MIROSLAV M. VRIĆ§

1Maize Research Institute “Zemun Polje”, 11185 Belgrade-Zemun, Slobodana Bajića 1, 2Institute for Biological Research “Siniša Stanković”, 11000 Belgrade, 29. Novembra 142 and 3Faculty of Chemistry, University of Belgrade, 11001 Belgrade, Studentski trg 16, P. O. Box 158, Serbia and Montenegro

(Received 15 April 2003)

Abstract: A trial with four maize inbred lines with the ability to have different durations of seed germination in the course of the accelerated ageing (AA) treatment was set up. Changes of the content of total, reduced and oxidized glutathione (expressed as monomers) were observed in the seeds and seedlings before and after the treatment. For the first time, changes of glutathione in whole seedlings, as well as in the rest of the seed, were analysed. It was noticed that maize inbreds with a smaller decrease of the total glutathione but with an increase of the oxidized form had the ability of prolonged germination. In the control seedlings, the amount of total glutathione was lower than in the treated ones. Maize seeds which lost germination faster had greater losses of total glutathione with an increased content of the oxidized form in seedlings. The ability of prolonged germination together with the possibility of glutathione synthesis in seedlings are genotypic traits.

Keywords: ageing, maize seedling, reduced and oxidised glutathione.

INTRODUCTION

The processes of ageing have primarily been investigated in anthropo-animal organisms, as they were initially observed in them. The development of new trends in agriculture required ageing processes in plant organisms to be investigated, firstly in seed material for biological (germplasm conservation) and economic reasons (production of commercial seeds). The reason for this phenomenon lies in complex biochemical changes of the reserve substances of seeds, the production of toxic reactants and inhibitory substances (free radicals, methyl jasmonates, etc.). Glutathione is synthesized in living systems as a highly important antioxidant for the maintenance of equilibrium.

The role of glutathione has been much more investigated within anthropo-animal systems, but in recent times the increase in the knowledge of its functions in plants has be-
come more essential. The glutathione system is one of the most important non-enzymic protective factors.4 From a biochemical point of view, it is a small, mobile molecule consisting of three amino acids: glutamine, cysteine and glycine, and it is important in oxidation-reduction reactions in tissues. In physiologically active tissues, reduced glutathione (GSH) presents a reducing substrate, whereby oxidized glutathione (GSSG) is generated. Then glutathione reductase catalyses the NADPH-dependent reduction of GSSG to glutathione GSH by a reversible reaction. Water elimination out from a system over a series of reactions is known as the ascorbate-glutathione cycle.4 Since there is no free ascorbate in seeds, GSH directly participates in the oxidation, by the proposed mechanism of substitution:5,6

\begin{equation}
\text{Propagation: } *\text{OH} + \text{GSH} \rightarrow \text{GS}^* + \text{H}_2\text{O}
\end{equation}

\begin{equation}
\text{Termination: } 2\text{GS}^* \rightarrow \text{GSSG}
\end{equation}

The GS* radical is relatively stable, while the formed GSSG is non-toxic to living systems.

Pastori and Trippi7 and Kocsy \textit{et al.}8 indicated in their studies that plants with a higher resistance to stress factors are characterized by an increased level of glutathione. Furthermore, changes in the content of the total, as well as the reduced and oxidized glutathione were observed in aged seed.9–11 Therefore, it is important to determine the influence of seed age on changes of the content of total, as well as of reduced and oxidised glutathione in maize genotypes of different germination ability. Additionally, changes of the glutathione levels in seedlings retarded in growth, originating from aged seeds, should be determined and, therefore, these are also the objectives of this investigation.

\section*{EXPERIMENTAL}

The following four maize inbreds were used in the experiment: two dent inbreds (ZP PL 175-L\textsubscript{1} and ZP PL. 188-L\textsubscript{2}) and two sweet maize inbreds (ZP PL51-L\textsubscript{3} and ZP PL67-L\textsubscript{4}). Maize seeds were subjected to the AA treatment12 at a temperature of 42 \textdegree C and a relative air humidity of 100 \%, for a duration of three, six or nine days up to the moment when the slope of the germination curve becomes steep and the seedlings are significantly retarded in growth. This occurred with L\textsubscript{1} and L\textsubscript{2} after 9 and 6 days (germination decreased from the initial 91.5 to 46 \%, \textit{i.e.}, 89 to 15.2 \% respectively), while with the inbreds L\textsubscript{3} and L\textsubscript{4} it was registered after 3 days (germination decreased from the initial 28.7 to 13.7 \%, \textit{i.e.}, 88.5 to 77 \%, respectively). Further exposure of the seeds to the treatment led to germination hold-up.

A further step was to determine the germination capacity according to the ISTA Rules13 in four replicates of 100 uniform seeds. The germination capacity was evaluated seven days later. All seedlings were grouped into four replicates of 25 plants, and then the radicle, shoots and the rest of seed were fractioned. Also, four replicates of 25 uniform seeds were formed of the treated and untreated seeds, and average weight of a seed was determined.

The plant material was dried in a ventilation drier at 60 \textdegree C to constant weight from which the average weight of each fraction individually was determined and expressed per unit, \textit{i.e.}, seedling. Then, the plant material was pulverised (pulveriser Fritsch IZP-119-UP\textsubscript{11}).

The content of reduced (GHS) and oxidized glutathione (GSSG) was determined according to the method of Kok \textit{et al.}14 After shaking 1 g of sample with 10 mL 0.15 \% Na ascorbate solution in a shaker, the sample was centrifuged at 20,000 g for 20 minutes, and then the supernatant was deproteinised in a water bath.
at 95 °C for 3 min. After repeated centrifugation at 15,000 g for 15 min, the content of total glutathione in the supernatant was analysed in the following manner: 1.5 mL 0.2 M potassium phosphate buffer (pH 8.0) and 0.2 mL 10 mM DTNB [5,5’-dithiobis(2-nitrobenzoic acid)] were added to 1.5 mL of the extract, as well as to 1.5 mL 0.02 M potassium phosphate buffer (pH 7.0). The absorbance was read at 415 nm. In the other 1.5 mL of supernatant, 0.5 mL 0.25 M potassium phosphate buffer (pH 6.8), 0.3 mL albumin, 0.02 mL glyoxalase I (Sigma grade IV) and 0.08 mL 0.1 M methylglyoxal are added. After incubation at 30 °C for 15 min, the content of reduced glutathione (GHS) was determined in the above described manner. GSH (Sigma Ultra 98–100 %) in the concentration range 0–0.1 μmol GSH mL⁻¹ was used as the standard. The content of oxidized glutathione (GSSG), calculated as the difference between the total and the reduced glutathione, was expressed as monomer.

Statistical evaluation was performed using the Student’s t-test. The control without AA treatment was used as the reference. The minimum level of statistical significance accepted was p < 0.05.

RESULTS

Changes of the GSH and GSSG contents were observed in seeds, as well as in parts of the seedlings originating from the seeds, before and after AA treatment.

The AA treatment lowered the level of total glutathione in the seeds (Table I). Thus, the total glutathione in L1, L2, L3 and L4 decreased by 12 %, 20 %, 30 % and even 55 %, compared to the control. Furthermore, the treatment resulted in an increase of the GSSG content in seeds of L1 and L2 from 90 to 395 and from 716 to 726 nmol g⁻¹. In contrast, the levels of GSH and GSSG decreased significantly from 814 to 619 and from 161 to 62 nmol g⁻¹, respectively, in L3, and from 894 to 548 and from 822 to 222 nmol g⁻¹, respectively, in L4.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Ageing treatment</th>
<th>Seed</th>
<th>Radicle</th>
<th>Shoot</th>
<th>Rest of seed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GSH</td>
<td>GSSG</td>
<td>Σ</td>
<td>GSH</td>
<td>GSSG</td>
</tr>
<tr>
<td>L1</td>
<td>control</td>
<td>963</td>
<td>90</td>
<td>1053</td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>treatment</td>
<td>528</td>
<td>395</td>
<td>923</td>
<td>1312</td>
</tr>
<tr>
<td>L2</td>
<td>control</td>
<td>793</td>
<td>716</td>
<td>1509</td>
<td>553</td>
</tr>
<tr>
<td></td>
<td>treatment</td>
<td>474</td>
<td>726</td>
<td>1200</td>
<td>1196</td>
</tr>
<tr>
<td>L3</td>
<td>control</td>
<td>619</td>
<td>62</td>
<td>681</td>
<td>4019</td>
</tr>
<tr>
<td></td>
<td>treatment</td>
<td>814</td>
<td>161</td>
<td>975</td>
<td>5778</td>
</tr>
<tr>
<td>L4</td>
<td>control</td>
<td>894</td>
<td>822</td>
<td>1716</td>
<td>4900</td>
</tr>
<tr>
<td></td>
<td>treatment</td>
<td>548</td>
<td>222</td>
<td>770</td>
<td>4509</td>
</tr>
</tbody>
</table>

p < 0.05 18 21 37 44 86 130 43 66 108 28 72 101

*Significant differences from controls (t-tests)

It is interesting that the employed treatment provided a classification of the seedlings into two groups. Namely, the content of total glutathione increased from 4,675 to 5,550 nmol g⁻¹ and from 6,193 to 6,528 nmol g⁻¹ in the whole seedlings of L1 and L2 respectively (Table I). On the other hand, this content decreased in L3 and L4 from 20,322 to 19,166 nmol g⁻¹ and from 14,255 to 13,722 nmol g⁻¹ in the whole seedlings of L3 and L4.
respectively. The increase in the level of total glutathione in L1 and L2 was pronounced in
the radicle (39 and 10 %) and the rest of the seed (41 and 43 %), while in L3 and L4 it was
in the shoots (20 and 16 %) and the rest of the seed (15 %).

In order to express the changes in the glutathione levels in maize seeds and seedlings
after AA treatment more clearly, the GSH:GSSG ratio was calculated (Fig. 1).

The GSH:GSSG ratio in the seeds of L1 (the genotype most resistant to the treatment
in whose seeds the ability to germinate is preserved for up to 9 days) decreased from 10.7:1
to 1.3:1 (Fig.1). There were no significant changes of this ratio in seeds of L2 (the ability
to germinate is preserved for up to 6 days in the course of accelerated ageing), i.e. the share of
GSH in relation to GSSG decreases only from 1.1:1 to 0.7:1. However, this ratio increases
in L3 and L4 (inbreds with the shortest ability to germinate, up to 3 days) from 5.1:1 to
10.3:1, and from 1.1:1 to 2.4:1, respectively.

The GSH:GSSG ratio distinguishes seedlings of L1 from seedlings of the other
inbreds (Fig. 1) - the GSH share in relation to GSSG decreases in the radicle from 1.6:1 to
1.2:1, while it increases in the shoots from 0.3:1 to 0.7:1, and shows no changes in the rest
of the seed. Significantly higher variations of this ratio were recorded for all other inbreds.
Thus, the treatment increased the GSH level in the radicle by 94 % on average, and in-
creased the GSSG level in the shoots and the rest of the seed on average by 32 and 72 %,
respectively.

DISCUSSION

The inbreds investigated under the effects of AA treatment were classified into the
following groups: more sensitive (L3 and L4), in whose seeds the level of total
 glutathione decreased (Table I), in accordance with the results observed in tomatoes10
and less sensitive (L1 and L2), in which the decrease of the level of total glutathione in
the seeds was not significant, but with increased share of GSSG, similar to sunflower
seeds.11 The increase in the content of GSSG dimers in the seeds of the maize inbreds
more resistant to the treatment can indicate an interruption of further propagation of rad-
cials by the mechanism of substitution.5,6 The antioxidative capacity of glutathione
should be based on this mechanism.4,7,8

Considering numerous studies of other authors, such as Narayan et al.,1 McDona-
dl,5 Torres et al.,11 Walters,15 seed ageing is foremost oxidative stress that leads to a de-
cline of germination and to the loss of viability. In contrast to seeds, where metabolic
processes are mild and slow, seedlings are an active metabolic system in which catabolic
and anabolic processes are simultaneously present. Therefore, changes of the glutathione
content in seedlings are more complex. Oxidation of the greatest part of the GSH into
GSSG in the fractions of seedlings originating from treated L1 seeds (Fig. 1) did not af-
fect changes of the GSH:GSSG ratio. It can be assumed that a lower content of total
 glutathione (Table I) and a smaller range of the GSH:GSSG ratio in seeds (Fig. 1) of
other genotypes result in a lowering of the total glutathione content in the whole seed-
lings, with an increased accumulation of GSSG in the radicle and its decrease in the
shoots and the rest of the seed in comparison with control seedlings, which is in accordance with the results of De Vos et al.,9 De Paula et al.,10 and Torres et al.,11 obtained with sunflowers and tomatoes. These results were also confirmed by investigations of Pastori and Trippi7 and Kocsy et al.,8 according to which the accumulation of total glutathione in the radicle and shoots of maize seedlings increased after they had been subjected to a stress factor. In the presented studies, changes of glutathione in the rest of the seed were analysed for the first time. Based on the significant share of glutathione in this part of seedlings, especially in inbreds more sensitive to the treatment, it seems that the seed rest plays a significant role in the synthesis and distribution of glutathione in 7-day old maize seedlings. This was confirmed by studies of Ruegsegger and Brunold16 who determined that synthesis of GSH de novo in the 7-day period is mainly done in the scutellum (as a maize seed fraction).

According to our results, maize inbreds with a prolonged ability to germinate (9 and 6 days of treatment of L1 and L2) are characterized by a slower decrease of the total glutathione with an increased GSSG share, in contrast to seeds of L3 and L4, which lose their ability to germinate after a 3-day treatment, with the greatest decrease of the total glutathione. On the other hand, seedlings originating from treated seeds have a higher or a
lower content of total glutathione depending on their sensitivity to the treatment. The total glutathione in seedlings of L3 and L4, as sensitive inbreds, was lower, while the equilibrium was shifted towards GSSG accumulation, in contrast to seedlings of L1 and L2 where total glutathione was higher, with the equilibrium shifted towards GSH accumulation. Therefore, the obtained results indicate that seeds of dent maize inbreds (L1 and L2) can preserve their ability to germinate for a longer period of time due to both the smaller loss of total glutathione and a greater GSH synthesis \textit{de novo} and/or GSSG reduction during germination and emergence, which could be binned to the rest of the seed. Seeds of sweet maize inbreds (L3 and L4) are less capable of preserving germination, which is probably a result of the greater loss of total glutathione during the ageing treatment. The significantly higher share of GSSG in these seedlings indirectly indicates oxidative stress which makes germination more difficult.

CONCLUSION

From the obtained results, it could be assumed that changes in content and form of the glutathione redox system have a significant influence on the retention of germination ability of seeds. Firstly, the degree of sensitivity of an individual genotype (maize inbreds) to the treatment can be caused by the decrease of total glutathione in the seeds, and, on the other hand, by its uneven distribution and \textit{de novo} synthesis in certain parts of formed seedlings (greater glutathione content in the rest of the seed), as well as by the increased share of GSSG within the total glutathione. These processes result in the classification of maize genotypes into more sensitive, such as sweet maize (L3 and L4) and less sensitive, such as dent maize (L1 and L2); furthermore, within each group, more sensitive (L2 and L4) and less sensitive genotypes (L1 and L3) are observed. Based on the presented results, it could be purported that the retention of germination ability, as well as the potential of GSH synthesis \textit{de novo} are genotypic traits, and as such, could be used in practice, \textit{i.e.}, in selection of less sensitive genotypes, as carriers of these traits.

IZVOD

УТИЦАЈ УБРЗАНОГ СТАРЕЊА НА ПРОМЕНЕ РЕДУКОВАНОГ И ОКСИДОВАНОГ ГЛУТАТИОНА У КЛЯИАНЦИМА КУКУРУЗА

ВЕСНА Д. ДРАГИЋЕВИЋ, СЛОБОДАНКА СРЕДОЈЕВИЋ, МИХАЙЛО Б. СПАСИЋ и МИРОСЛАВ М. ВРВИЋ

1 Институт за кукуруз "Земун Поле", 11185 Београд-Земун, Слободана Барића 1, 2 Институт за биолошки истраживања "Спина Станковић", 11000 Београд, 29. новембра 142 и 3 Хемијски факултет, Универзитет у Београду, Студенчка башта 16, б. и. бр. 158, Београд

Постављен је оглед са четири линије кукуруза различите дужине очувања клијавости семена током третмана убрзног старења. Испитиване су промене укупног, као и редукованог и оксидованог глутатиона (изражени као мономери) у семену и клијанцима пре и након убрзног старења. У истраживањима су први пут анализиране промене глутатиона у целим клијанцима, као и остатку семена. У семену линија кукуруза које имају способност дужег очувања клијавости био је мањи губитак укупног глутатиона, уз повећање удела оксидованог
облика. Кој њихових кlijаница дошло је до повећања садржaja укупног глутатиона у односу на контролне кlijанице. Семе кукуруза које брже губи кlijавост имало је већи губитак укупног глутатиона, уз већи садржај оксидованог облика код формираних кlijаница. Дужина очувања кlijавости, као и синтеза глутатиона код кlijаница је генотипска особина.

(Примијено 15. априла 2003)

REFERENCES

6. Ž. Čeković, XL Meeting of Serbian Chemical Society, Book of Abstracts, Serbian Chemical Society, Belgrade, 2001, p. 3 (in Serbian)
Transition metal complexes with thiosemicarbazide-based ligands. Part 46. Synthesis and physico-chemical characterization of mixed ligand cobalt(III)-complexes with salicylaldehyde semi-, thiosemi- and isothiosemicarbazone and pyridine

VUKADIN M. LEOVAC*, LJILJANA S. VOJINOVIĆ, KATALIN MÉSZÁROS SZÉCSÉNYI and VALERIJA I. CESLJEVIĆ#

Department of Chemistry, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia and Montenegro

(Received 25 June, revised 12 September 2003)

Abstract: Mixed ligand octahedral cobalt(III) complexes with the tridentate salicylaldehyde semi-, thiosemi- and isothiosemicarbazone and pyridine of general formula (CoIII[L1-3](py)3)X(H2O), F - 0.5 I2; H2L1 = salicylaldehyde semicarbazone, X = [CoIIICl3(py)]+, ClO4-. H2L2 = salicylaldehyde thiosemicarbazone, X = [CoIIICl3(py)]+, [CoIIIBr3(py)]-, ClO4-. H2L3 = salicylaldehyde S-methylisothiosemicarbazone, X = [CoIIIBr3(py)]-, ClO4-. H2O, BF4-) were synthesized. The tridentate coordination of all the three dianionic forms of the ligands involves the phenol oxygen, hydrazine nitrogen and the chalcogen (O or S) in case of salicylaldehyde semi-, thiosemicarbazone and the terminal nitrogen atom in the case of isothiosemicarbazone. For all the complexes, a meridional octahedral arrangement is proposed, which is a consequence of the planarity of the chelate ligand. The compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility, IR and electronic absorption spectra. The thermal decomposition of the complexes was investigated by thermogravimetry, coupled TG-MS measurements and DSC.

Keywords: mixed Co(III) complexes, salicylaldehyde semi-, thiosemi-, isothiosemicarbazone, pyridine.

INTRODUCTION

Due to their good complexing properties,1–4 biological activity5,6 and analytical application,7,8 semi-/thiosemi-/isothiosemicarbazides and their Schiff bases of different denticity, as well as their metal complexes, have been subject of many studies. Apparently, the most numerous among them are the complexes with tridentate salicylaldehyde semi-/thiosemi-/isothiosemicarbazones. In contrast to salicylaldehyde semi-/thiosemi-/isothiosemicarbazones, whose donor atoms are O, N, X (X=O

* Corresponding author.
Serbian Chemical Society active member
or S),1–3 the third donor atom with isothiosemicarbazone derivatives is the nitrogen of the isothioamide group.4,9

Cobalt(III) and various tridentate ligands form mainly mixed bis(ligand) complexes, whereas mixed complexes such as [Co(L)A]3, [Co(L)A2B]+,[Co(L)B]33+ (L=diethylenetriamine, cyclohexanitroamine, bis(2-aminoethyl)-sulphide, N-(3-amino-nopropyl)-1,3-propantriamine; A=NO2,N 3,C N ,C l ;B = N H3), are much rarer.10 In our previous work,11 the crystal structure of mixed Co(III) complexes of the formula [Co(L1)(py)3]ClO4.H2O. To a mixture of the ligands (H2L1–3) (0.5 mmol) and Co(ClO4)2 (1 mmol), EtOH (5.0 cm3) and pyridine (5 mmol) were added, and the mixture was heated for a few minutes. After 24 h, the green crystals were separated by filtration and washed with EtOH and Et2O. The yield was 0.27 g (63 %), 0.20 g (64 %), 0.19 g (65 %), respectively.

EXPERIMENTAL

Reagents

All chemicals used were commercially available products of analytical reagent grade, except for the ligands salicylaldehyde semicarbazone (H2L1), thiosemicarbazone (H2L2) and S-methylisothiosemicarbazone (H2L3), the preparation of which has been described earlier.12,13

Synthesis of the complexes

[Co(L1)(py)3][CoL1(py)]. EtOH (5.0 cm3) and pyridine (=5 mmol) were added to a mixture of CoCl2.6H2O (1.2 mmol) and salicylaldehyde semicarbazone, (H2L1) (0.6 mmol) in the presence of LiOAc (4 mmol). The reagents were dissolved by stirring and mild heating. After 4 days at room temperature, the green crystals were separated by filtration and washed with EtOH and Et2O. The yield was 0.27 g (61 %).

[CoL1(py)3][CoL1(py)] and [CoL2,3(py)3][CoBr3(py)]. EtOH (5.0 cm3) and pyridine (=5 mmol) were added to a mixture of CoX2.6H2O (X = Cl, Br) (2.5 mmol) and salicylaldehyde thiosemi-(H2L2)/S-methylisothiosemicarbazone (H2L3) (1.25 mmol). After 24 h, the green crystals were separated by filtration and washed with EtOH and Et2O. The yield was 0.10 g (11 %), 0.29 g (27 %), 0.48 g (52 %) respectively.

[Co(L1–3)(py)3]ClO4.H2O. To a mixture of the ligands (H2L1–3) (0.5 mmol) and Co(ClO4)2 (1 mmol), EtOH (5.0 cm3) and pyridine (=5 mmol) were added, and the mixture was heated for a few minutes. After 24 h, the green crystals were separated by filtration and washed with EtOH and Et2O. The yield was 0.27 g (63 %), 0.20 g (64 %), 0.19 g (65 %), respectively.

[CoL1(py)3][CoL1(py)] and [CoL2,3(py)3][CoBr3(py)]. To a warm solution of NaI (5 mmol) in EtOH (5.0 cm3), 2.5 mmol CoCl2.6H2O were added and the resulting solution was heated for a few minutes. After 15 min the precipitated NaCl was separated by filtration. To the Col solution was then added H2L1–H2L2 (1.2 mmol) and pyridine (=5 mmol), and the mixture was dissolved by heating. After 24 h, the obtained brown crystals were separated by filtration and washed with EtOH and Et2O. The yield was 0.30 g (34 %), 0.30 g (28 %), respectively.
[Co(L^3)(py)_3]BF_4. A mixture of CoCl_2·6H_2O (2 mmol) and NaBF_4 (4 mmol) in EtOH (6.0 cm^3) was heated for a few minutes. After 15 minutes, the precipitated NaCl was separated by filtration. To the Co(BF_4)_2 solution were then added H_2L_3 (2 mmol) and pyridine (5 mmol), and the mixture was dissolved by heating. After 2 days, the obtained green monocrytals of composition [Co(L^3)(py)_3][CoCl_3(py)]·EtOH were separated by filtration. After 24 h (r. t.), the brown crystals which formed in the filtrate were separated by filtration and washed with EtOH and Et_2O. The yield was: 0.33 g (28 %).

Analytical methods

Elemental analysis (C, H, N) was carried out by standard micromethods.

The content of the metal in the complexes was determined after previous sample decomposition by heating in a Kjeldahl flask in conc. H_2SO_4 and conc. HNO_3, followed by evaporation to dryness. The dry residue was dissolved in water and the metal content determined by complexometric titration (EDTA).

Magnetic susceptibility measurements were performed at room temperature using an MSB-MKI magnetic susceptibility balance (Sherwood Scientific Ltd., Cambridge, England). The data were corrected for diamagnetic susceptibilities.

Molar conductivities of freshly prepared 1×10^{-3} mol/dm^3 DMF solutions were measured using a Janway 4010 conductivity meter.

IR spectra (KBr disc) were recorded using a Perkin-Elmer 457 Infracord spectrophotometer.

Electronic absorption spectra were recorded using a Carl Zeiss spectrophotometer.

Thermal measurements were carried out in dynamic air and argon atmospheres at a heating rate of 10 K min^{-1}. The thermogravimetric curves were registered up to 1000 K by means of a DuPont 2000 TA system with a thermobalance DuPont 951 TGA using sample masses of about 5 mg in a platinum crucible. The DSC curves were recorded up to 600 K in an open aluminium pan as the sample holder with an empty aluminium pan as the reference. TG-MS measurements were performed on a TA Instruments SDT 2960 coupled with Balzers Thermostar GSD 300 T capillary MS in dynamic helium and air atmospheres.

RESULTS AND DISCUSSION

Mixed-ligand octahedral complex of cobalt(III) with salicylaldehyde semi- (H_2L^1), thiosemi- (H_2L^2) and S-methylisothiosemicarbazone (H_2L^3), of the type [Co^{III}(L)(py)_3]X \ (L = L^1, X = [Co^{II}Cl_3(py)]^-, ClO_4^-·H_2O, I^-·0.5I_2; L = L^2, X = [Co^{II}Cl_3(py)]^-, [Co^{II}Br_3(py)]^-, ClO_4^-·H_2O, I^3^-; L = L^3, X = [Co^{II}Br_3(py)]^-, ClO_4^-·H_2O, BF_4^-) were obtained by reacting warm ethanolic solutions of cobalt(II) salts and the mentioned ligands and pyridine in the ratio 2:1:5 (Table I). In the first stage of the preparation of the complex with BF_4^-, the complex [Co(L^3)(py)_3][CoCl_3(py)]·EtOH was formed, which means that the metathetical reaction between CoCl_2 and NaBF_4 yielded no complete precipitation of the chloride (NaCl). It should be mentioned that attempts to isolate complexes with the mixed anion [Co^{II}I_3(py)]^- were unsuccessful.

All the complexes are well soluble in DMF, less in MeOH, EtOH and Me_2CO, and insoluble in H_2O and Et_2O.

On the basis of the obtained results it can be concluded that the complexes [Co^{III}(L^{1-3})(py)_3]^+ are formed only in combination with large counterions, such as [Co^{II}X_3(py)]^- (X = Cl, Br) or ClO_4^-·. The formation of complexes with the smaller BF_4^- ion is hindered, which was observed in the synthesis of [Co(L^3)(py)_3]BF_4, as this complex could be obtained only after separation of the primarily formed [Co^{III}(L^{3})(py)_3][Co^{II}Cl_3(py)].
The necessity of the presence of a relatively large anion in combination with the large \([\text{Co}^{\text{III}}(\text{L}^{1-3})(\text{py})_3]^+\) cation has also been confirmed on the examples of the \([\text{Co}^{\text{III}}(\text{L}^2)(\text{py})_2]^3\) complex, similar to the previously synthesized isothiosemicarbazone complexes,\(^{11}\) such as \([\text{Co}^{\text{III}}(\text{L}^1)(\text{py})_3]^1\cdot0.5\text{I}_2\), in which a significant interaction exists between \(\text{I}_2\) and two \(\text{I}^-\) anions from the neighbouring molecules. A similar situation was also found in the crystal structure of the \([\text{Co}^{\text{III}}(\text{H}_2\text{L})]^2\cdot0.5\text{I}_2\) (\(\text{H}_2\text{L} = \text{bis(hydrazone 2,6 diacetylpyridine})\)) complex.\(^{14}\)

TABLE I. Some physico-chemical characteristics and analytical data of the complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>Colour</th>
<th>(\mu_{\text{eff}} \mu_\text{B})</th>
<th>(\lambda_\text{M} \text{Scm}^2/\text{mol})</th>
<th>Found (Calcd.) / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Co}(\text{L}^1)(\text{py})_3][\text{CoCl}_3(\text{py})])</td>
<td>green</td>
<td>4.39</td>
<td>43.6</td>
<td>47.34 (46.85) 13.95 (13.66) 15.94 (16.42)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^2)(\text{py})_3][\text{CoCl}_3(\text{py})])</td>
<td>green</td>
<td>4.45</td>
<td>44.7</td>
<td>46.14 (45.83) 13.10 (13.66) 16.27 (16.06)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^2)(\text{py})_3][\text{CoBr}_3(\text{py})])</td>
<td>green</td>
<td>4.25</td>
<td>101.7</td>
<td>38.08 (38.77) 11.14 (11.30) 13.27 (13.59)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^3)(\text{py})_3][\text{CoBr}_3(\text{py})])</td>
<td>green</td>
<td>4.98</td>
<td>158.0</td>
<td>38.89 (39.52) 11.04 (11.12) 13.03 (13.37)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^1)(\text{py})_3][\text{ClO}_4\text{H}_2\text{O}])</td>
<td>brown diam</td>
<td>61.0</td>
<td>43.6</td>
<td>47.22 (46.75) 14.05 (14.22) 9.42 (9.97)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^2)(\text{py})_3][\text{ClO}_4\text{H}_2\text{O}])</td>
<td>brown diam</td>
<td>67.8</td>
<td>44.6</td>
<td>46.06 (45.51) 13.35 (13.58) 9.41 (9.69)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^3)(\text{py})_3][\text{ClO}_4\text{H}_2\text{O}])</td>
<td>brown diam</td>
<td>83.0</td>
<td>44.5</td>
<td>44.50 (46.42) 13.54 (13.53) 9.15 (9.49)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^1)(\text{py})_3][\text{ClO}_4\text{H}_2\text{O}]\cdot0.5\text{I}_2)</td>
<td>brown diam</td>
<td>69.6</td>
<td>41.9</td>
<td>41.94 (37.99) 12.33 (11.55) 8.00 (8.10)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^2)(\text{py})_3][\text{I}_3])</td>
<td>brown diam</td>
<td>23.6</td>
<td>33.4</td>
<td>33.45 (31.75) 11.08 (9.66) 6.46 (6.67)</td>
</tr>
<tr>
<td>([\text{Co}(\text{L}^3)(\text{py})_3][\text{BF}_4])</td>
<td>brown diam</td>
<td>54.3</td>
<td>49.0</td>
<td>49.07 (48.83) 13.20 (14.24) 10.21 (9.98)</td>
</tr>
</tbody>
</table>

Finally, the obtained results indicate the differences in the possibility of the formation of tri-halogenopyridinecobaltate(II) ions which, to our knowledge,\(^{10}\) have only been found in combination with the complex cation \([\text{Co}^{\text{III}}(\text{L}^{1-3})(\text{py})_3]^+\).\(^{15}\) Namely, under identical experimental conditions, the \([\text{CoCl}_3(\text{py})]^+\) anion is very easily formed, \([\text{CoBr}_3(\text{py})]^-\) is much more difficult to prepare, whereas the analogous iodo-complex is not formed at all.

As can be seen from their coordination formulas (Table I), all the complexes contain the same complex cation \([\text{Co}^{\text{III}}(\text{L}^{1-3})(\text{py})_3]^+\) with dianionic form of the Schiff bases formed by deprotonation of the most acidic phenolic OH group and deprotonated enolised keto/thioketo group in the case of \(\text{H}_2\text{L}^{1-2}\), and the isothioamide group in the case of
H$_2$L$_3$. The formation of double-deprotonated form of these ligands is undoubtedly facilitated by the presence of excess pyridine. At the same time, the deprotonation of these groups is chemical proof of the participation of their donor atoms in their coordination. There is no doubt that in addition to the mentioned atoms, another participant in the coordination is the azomethine nitrogen. Thus, one six-membered (salicylidene) and one five-membered (semi-/thiosemi-/isothiosemicarbazide) metallocycles are formed, which has been confirmed by X-ray analysis of $[\text{Co}(\text{L}^3)(\text{py})_3]\text{X} (\text{X} = \text{CoCl}_3 (\text{py})^- \text{EtOH, I}_3^-)$. Therefore, in these complexes too, the mentioned ligands are coordinated in the usual tridentate mode with a meridional arrangement of the O, N, X (X = O, S, N) donor atoms$^{1-4}$ (Scheme 1).

Scheme 1. Structure of $[\text{Co}(\text{L})(\text{py})_3]^+$.

Fig. 2. Electronic spectra of the complexes:

(---) $[\text{Co}^{III}(\text{L}^2)(\text{py})_3][\text{CoCl}_3(\text{py})]$ in DMF;

(----) $[\text{Co}^{III}(\text{L}^2)(\text{py})_3][\text{CoCl}_3(\text{py})]$ in Me$_2$CO;

(--------) $[\text{Co}^{III}(\text{L}^2)(\text{py})_3]\text{ClO}_4\text{H}_2\text{O}$ in DMF.
In concordance with the mentioned coordination mode is also the absence of the characteristic v(OH) bands in the IR spectra of the complexes, which in the ligand spectra appear at ≈3470 cm⁻¹, as well as the shift to lower energies (ca. 60 cm⁻¹) of the bands v(C=O) and v(C=S), which in the spectra of H₂L¹ and H₂L² appear at 1690 and 1275 cm⁻¹, respectively. In the spectra of complexes with H₂L³, the bands v(NH) and δ(NH₂), observed in the ligand spectrum at 3330 and 1640 cm⁻¹, are also shifted to lower energies: 3200, 1605 cm⁻¹, respectively. In the spectra of the complexes containing ClO₄ and BF₄ there are characteristic very strong single bands at ≈1100 cm⁻¹, indicating the ionic character of the acid residues.

With the exception of the complexes that contain tetrahedral anions [CoH₂X₃(py)]⁻ (X = Cl, Br), all the others are diamagnetic. Magnetic moments of the paramagnetic complexes correspond to the usual values observed for tetrahedral Co(II) complexes (Table I).

The electronic spectra of the brown DMF and Me₂CO solutions of complexes are similar to each other and exhibit an absorption maximum at ≈400 nm corresponding to d-d transitions of Co(III). The green solutions of the complexes con-
taining the tetrahedral \([\text{CoX}_3(\text{py})]^-\) \((X = \text{Cl, Br})\) anion also exhibit a weak absorption in the range of 600–700 nm, belonging to d-d transitions of Co(II).

It should be mentioned that the DMF solutions of the complexes with a tetrahedral Co(II)-anion are evidently less stable than the Me₂CO solutions of the same compounds. Namely, in DMF solutions of these complexes, known complexes of a nonelectrolyte type \([\text{Co}^{\text{III}}(\text{HL})(\text{L})]\)^{19–21} are formed in the course of time, which is accompanied by a change in the colour of the solution from green to brown and by the disappearance of the absorption in the range of 600–700 nm (Fig. 2). Such instability is most pronounced with the \([\text{Co}^{\text{II}}\text{Br}_3(\text{py})]\)^{1} ion, which is also evident from its enhanced molar conductivity in comparison with 1:1 type electrolytes (Table I). On the other hand, the molar conductivities of the other complexes are in agreement with their coordination formulas.²²

The thermal decomposition of all the compounds is continuous. As examples, the TG and DTG curves of selected compounds are presented in Fig. 3. The decomposition pattern does not depend on the gas carrier up to 600 K. In argon, above this temperature the decomposition rate decreases, and the decomposition is not completed up to 1000 K. In air, the decomposition of some compounds is accompanied by burning of the sample. In all cases, the decomposition of the compounds begins with the departure of the pyridine ligand, followed by decomposition of the Schiff base and the end product is cobalt(III) oxide.

The thermal stability of the compounds is about the same and the decomposition begins around 420 K. The highest thermal stability is exhibited by the \([\text{Co}(\text{L}^1)(\text{py})]_3[\text{CoCl}_3(\text{py})]\) complex, which decomposes above 470 K.

In order to propose a decomposition mechanism, the decomposition of \([\text{Co}(\text{L})(\text{py})]_3\text{I}_0\text{.5I}_2\) was followed by coupled mass spectrometry up to 600 K. As the first departing group, pyridine and its decomposition products were identified. The decrease in mass supports this proposition not only in the case of the investigated compound but in the cases of other complexes too.

The DSC curves in an inert atmosphere (argon) refer to endothermic decomposition processes.

Acknowledgement: This work was supported by the Ministry of Science, Technology and Development of the Republic of Serbia (Grant No 1318).
IZVOD

KOMPLEKSNI PRELAZNIH METALA SA LIGANDIMA NA BAZI TIOSEMIKARBAZIDA. DEO 46. SINTEZE I FIZI^KO-HEMIJSKA KARAKTERIZACIJA KOBALTA(III) KOMPLEKS SA MIEOVITIM LIGANDIMA SEMI-, TIOSEMI- I IZOTIOSEMIKARBAZONOM SALICILALDEHIDA I PIRIDINOM

VUKADIN M. LEOVAČ, LJILJANA S. VOJINOVIĆ, KATALIN MESAROVIĆ I VALERIJA IJEVIĆ

Departman za hemiju, Prirodno-matematički fakultet, Univerzitet u Novom Sadu, Trg Dositeja Obradovića 3, 21000 Novi Sad

Reakcijom toplih etanolnih rastvora soli kobalta(II) i piridina sa semi-(H2L1), tiosemi-(H2L2) i S-metilizotiosemikarbazonom salicilaldehida (H2L3), u molskom odnosu 2:5:1, respektivno, dobijen i su oktaedarski kompleksi kobalta(III), sa me{i-vitim ligandima, op{te formule
\[\text{Co}^{III}(\text{L})(\text{py})_3 \text{X}(\text{L}=\text{L} 1, \text{X} = \text{ClO}_4^- . \text{H}_2\text{O}, \text{I}^- . 0.5 \text{I}_2), \text{L}=\text{L} 2, \text{X} = [\text{Co}^{III}\text{Cl}_3(\text{py})]^+, \text{ClO}_4^- . \text{H}_2\text{O}, \text{I}_3^-; \text{L}=\text{L} 3, \text{X} = [\text{Co}^{II}\text{Br}_3(\text{py})]^-, \text{ClO}_4^- . \text{H}_2\text{O}, \text{BF}_4^-) \]

Претпостављена је уобичајена тридентатна \((\text{O},\text{N},\text{X})(\text{X}=\text{O},\text{S},\text{N})) координација дийонске форме хелатних лиганда са меридијалним донорним атома. Комплекси су окаратерисани подацима елементалне анализе, моларне проводљивости, магнетним мережама, те IR и електронским апсорпцијоним спектрима.

Термичка разградња комплекса је испитана термогравиметријском и DSC методом, а код одабраног комплекса куполаном TG-MS мережем.

(Примљено 25. јуна, ревизирано 12. септембра 2003)

REFERENCES

4. V. M. Leovac, V. Ćešljević, Coordination Chemistry of Isothiosemicarbazides and their Derivates, University of Novi Sad, Faculty of Sciences, Novi Sad, 2002
Transition metal complexes with thiosemicarbazide-based ligands. Part 47. Synthesis, physicochemical and voltammetric characterization of iron(III) complexes with pyridoxal semi-, thiosemi- and S-methylisothiosemicarbazones

VIOLETA S. JEVTOTOVIĆ, LJILJANA S. JOVANOVIĆ#, VUKADIN M. LEOVAC*# and LUKA J. BJELICA#

Faculty of Science, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia and Montenegro

(Received 14 July 2003)

Abstract: The reaction of warm EtOH solutions of FeX₃.nH₂O (X = Cl, NO₃) with tridentate ONX (X = O, S, N) pyridoxal semi-, thiosemi- and S-methylisothiosemicabazones (H₂L₁, H₂L₂, H₂L₃, respectively) yielded high-spin octahedral mono- and bis(ligand) complexes of the formula [Fe(H₂L₁₋₃)Cl₂(H₂O)]Cl, [Fe(HL₁₋₂)₂ClₙH₂O] and [Fe(H₂L₃)(HL₃)](NO₃)₂H₂O. The compounds were characterized by elemental analysis, conductometric and magnetochemical measurements, IR and UV-Vis spectra. Besides, a detailed voltammetric study of the complexes was carried out in DMF solution in the presence of several supporting electrolytes, to characterize the nature of the electrode processes and solution equilibria.

Keywords: iron(III) complexes, pyridoxal semi-, thiosemi- and isothiosemicarbazones, physicochemical and voltammetric studies.

INTRODUCTION

Transition metal complexes with Schiff bases derivatives of pyridoxal, e.g. 3-hydroxymethyl-2-methylpyridine-4-carboxaldehyde (one of the forms of vitamin B₆), amines and amino acids, are the subject of strong interest for many researchers.¹⁻⁵ The reason for this lies in the fact that these compounds can serve as models for studying a wide range of biological reactions catalyzed by enzymes in which pyridoxal phosphate appears as an essential component.¹⁻³ It has been shown that, in the presence of metal ions, free pyridoxal can catalyze most of the known enzymatic reactions in which pyridoxal phosphate acts as a co-enzyme.¹,⁶

A special group of Schiff bases pyridoxal derivatives as ligands are the tridentate semi-, thiosemi- and isothiosemicarbazones (H₂L₁, H₂L₂ and H₂L₃, respec-

Serbian Chemical Society active member.
* Corresponding author.
tively) (Fig. 1). In contrast to the metal complexes with pyridoxal thiosemicarbazones, the study of which began in 1986, so that a substantial number of complexes not only with transition but also with non-transition metals have been synthesized,7–9 complexes with pyridoxal semi- and isothiosemicarbazones appeared much later. Namely, in our previous works,10–12 the syntheses and some physicochemical and structural characteristics of the complexes of Cu(II) and Pt(IV) with H$_2$L1, and Cu(II) complexes with H$_2$L3 were described.

In continuation of our studies on the complexing properties of these ligands, the syntheses and some physicochemical and voltammetric characteristics of their iron(III) complexes are described in this paper.

EXPERIMENTAL

Chemicals and methods

All chemicals used were commercially available products of analytical reagent grade. The exceptions were the ligands H$_2$L1.2H$_2$O, H$_2$L2.3H$_2$O, H$_2$L3.H$_2$O and complex [Fe(HL2)$_2$]Cl, which were synthesized following previously described procedures.7,10–13

Elemental (C, H, N) analysis of air-dried samples was carried out by standard micromethods in the Centre for Instrumental Analysis, Faculty of Chemistry, Belgrade.

Magnetic susceptibility measurements were made at room temperature using a magnetic susceptibility balance MSB-MKL (Sherwood Scientific Ltd., Cambridge, England). The data were corrected for diamagnetic susceptibilities.

Molar conductivities of freshly-prepared 1×10$^{-3}$ M solution were measured on a Jenway 4010 conductivity meter.

IR-spectra (KBr disc) were recorded using a Perkin-Elmer FTIR 31725X.

Electronic spectra were recorded in DMF solutions (Merck, spectroscopic grade) on the Secomam instrument (Anthelie 2, advanced).

Voltammetric experiments were performed in freshly distilled DMF solutions. The salts serving as supporting electrolytes (tetrabutylammonium perchlorate, TBAP, and lithium perchlorate and chloride) were used after recrystallization, usually at a concentration of 0.1 M. The ligands and complexes were dried at 120–140 ºC and 1 mM solutions were thoroughly purged with nitrogen. An AMEL three-electrode voltammetric set-up was used together with a Hewlett Packard X-Y recorder and a storage oscilloscope for recording the voltammograms. A glassy carbon (3 mm diammeter) disc (the working electrode) was coupled to a Pt wire (counter electrode) and an aqueous calomel electrode (SCE, reference electrode) connected to the working solution via a salt bridge. The potentials, referred to SCE, were frequently checked with ferrocene as an internal standard.

Since most of the complexes and ligands, and especially the products of electrochemical reactions exhibited strong adsorption, the GC electrode surface had to be frequently polished with a fine alumina suspension, in some cases before each scan. The experiments were performed in the range of scan rates from 10 mV s$^{-1}$ to 10 V s$^{-1}$.

Preparation of the protonated forms of the ligands and complexes

H$_2$L$^{1-3}$.HCl.H$_2$O. To a mixture of pyridoxal hydrochloride (10 mmol, Aldrich) and semicarbazide hydrochloride (10 mmol, Aldrich), i.e., thiosemicarbazide hydrochloride (10 mmol, Merck), water (10 cm3) was added and the mixture heated to complete dissolution of the reactants. After 10 h, the precipitated yellowish needle-like crystals were separated by filtration and washed with EtOH. Yield: 86 and 68 %, respectively.

[Fe(H$_2$L$^{1-3}$)$_2$(H$_2$O)]Cl. To a warm suspension of the neutral forms of the ligands (1 mmol) in EtOH (10 cm3), FeCl$_3$.6H$_2$O (1 mmol) was added and the mixture heated to complete dissolution of the ligand. The brown solution was left for 20 h at room temperature. The brown crystals which formed were filtered and washed with EtOH. Yield: 62, 87 and 69 %, respectively.
RESULTS AND DISCUSSION

Synthesis, general physicochemical characteristics and geometrical configuration of the complexes

Until now, the only known complexes of iron with the mentioned ligands were the complexes $[\text{Fe}(\text{HL}_2)^2\text{Cl}]n\text{H}_2\text{O}$ ($n = 0, 2$) and $[\text{Fe}(\text{HL}_2)^2\text{Cl}]$ 14. The data of elemental analysis and some physico-chemical characteristics of the newly-synthesized iron complexes with H_2L_1 and H_2L_3 in general, as well as of the novel mono(ligand) complex $\text{Fe}(\text{H}_2\text{L})\text{Cl}_3\cdot\text{H}_2\text{O}$, are given in Table I. Taking into account these results and those of the previously known complex $[\text{Fe}(\text{HL}_2)^2\text{Cl}]$, it can be concluded that all the three ligands form both mono- and bis(ligand) complexes with Fe(III). The mono(ligand) complexes considered in this work, whose composition can be described by the general formula $\text{Fe}(\text{H}_2\text{L})\text{Cl}_3\cdot\text{H}_2\text{O}$, were obtained in a good yield by the reaction of warm EtOH solutions of FeCl$_3$·6H$_2$O and the ligands in a mole ratio of 1:1. It should be pointed out that complexes of analogous composition were obtained with H_2L_1 and H_2L_3 in general, as well as of the novel mono(ligand) complex with Fe(III). The mono(ligand) complexes considered in this work, whose composition can be described by the general formula $\text{Fe}(\text{H}_2\text{L})\text{Cl}_3\cdot\text{H}_2\text{O}$, were obtained in a good yield by the reaction of warm EtOH solutions of FeCl$_3$·6H$_2$O and the ligands in a mole ratio of 1:1. It should be pointed out that complexes of analogous composition were obtained with H_2L_1 and H_2L_3, i.e., with the neutral forms of the ligands, and in the case of the reaction of FeCl$_3$·6H$_2$O with their protonated forms H_3L^+. Also, it is important to emphasize that the previously known $[\text{Fe}(\text{HL}_2)^2\text{Cl}]$ complex, involving the once-deprotonated form of the ligand, was synthesized starting from FeCl$_2$, and that, despite performing the reaction in a nitrogen atmosphere, the result was an iron(III) complex.

Bis(ligand) monocationic $[\text{Fe}(\text{HL}_1)^2\text{Cl}4\text{H}_2\text{O}$ and dicationic $[\text{Fe}(\text{H}_2\text{L}^3)(\text{HL}_3)^2\text{Cl}2\text{H}_2\text{O}$ complexes, were also obtained in the reaction of EtOH solutions of the ligands with the corresponding iron(III) salt in the respective mole ratios 2:1 and 1:1 after partial neutralization (LiOAc) of the reaction solution. To our knowledge, the obtained cationic complex with H_2L_3, containing both the neutral and once-deprotonated forms of the ligand, represents the first Fe(III) complex with this charge with a diprotic tridentate Schiff base. The previously known $[\text{Fe}(\text{HL}_2)^2\text{Cl}]$, whose voltammetric behaviour is also included here, was obtained by the reaction of anhydrous FeCl$_3$ and H_2L_2 in absolute EtOH.

On the basis of the conditions of synthesis of all three bis(ligand) complexes, it can be concluded that the deprotonation of H_2L_2 is the easiest and that of H_2L_3 the hardest. From the structures of these ligands (Fig. 1) it is evident that the phenolic...
hydroxyl and enol/thiol form of H_2L_1/H_2L_2, i.e., isothioamide group of H_2L_3, can be deprotonated.

The results of X-ray structural analysis of the complex with the once-deprotonated form of H_2L_2 show that this form of the ligand results from deprotonation of the thiol form of the thiosemicarbazide moiety, whereby the pyridoxal fragment is in the form of a zwitter ion, i.e., the pyridine nitrogen is protonated on account of the deprotonation of the phenolic hydroxyl. Further deprotonation (the pyridine nitrogen) yields the dianionic form of the ligand. There is no doubt that an analogous deprotonation sequence also holds for the other two ligands. Such a deprotonation sequence is the consequence of the strong basicity of the pyridine nitrogen, which explains the zwitter-ionic nature of not only the coordinated but also the uncoordinated H_2L_2 ligand.

The occurrence of one or more bands of different intensity at ca. 2800 cm$^{-1}$, belonging to the ν(NH$^+$) vibrations of the protonated pyridine nitrogen, in the IR spectra of both the coordinated and uncoordinated ligand in the complexes is proof of the zwitter-ionic form of both.

X-Ray structural analyses of a number of complexes of various metals with the H_2L_2 ligand, as well as of Cu(II) complexes with the other two ligands, showed that all three ligands are coordinated as a tridentate entity. Thus, two donor atoms are the same – the phenolic oxygen and the hydrazinic nitrogen N(1). The third donor atom in the case of H_2L_1 and H_2L_2 is the oxygen or sulphur of the amide or thioamide group, $-C(-NH_2) = X$ ($X = O$, S), respectively, whereas the third donor atom in the case of H_2L_3 is the nitrogen of the isothioamide group, $=C(-NH_2)-SCH_3$. In all cases, one six-membered (pyridoxal) and one five-membered (semi/thiosemi/isothiosemicarbazide) metallocycles are formed. Most probably, such a mode of coordination of these ligands is also realized in all the obtained complexes with iron(III), which has been confirmed by X-ray structural analysis in the case of the complexes with H_2L_1 and H_2L_2.

Simultaneously, these analyses showed that the mentioned two complexes have, apart from one molecule of the tridentate ONX ($X = O$, S) ligand, also an octahedral configuration formed by coordination of two chloride ions and one molecule of water. Probably, the Fe(H_2L_3)Cl$_2$H$_2$O complex also has such a structure, i.e., in addition to the organic ONN ligand there are two chloro- and one aqua-ligand. That one water
molecule is coordinated is also indicated by its relatively high temperature of evolution (≈150 ºC), at which temperature the other two complexes are also dehydrated. It should be noticed that the previously synthesized [Fe(HL2)Cl\textsubscript{2}] has a square-pyramidal structure.14

All three mono(ligand) complexes are well soluble in H\textsubscript{2}O and DMF and somewhat less soluble in MeOH and EtOH. Their stability in H\textsubscript{2}O and MeOH solutions are markedly different, which is also evident from the values of their molar conductivities λ_M (Table I). Namely, the λ_M values of their MeOH solutions are in the range of 124–150 S cm2 mol-1, \textit{i.e.}, between the λ_M values for 1:1 and 1:2 types of electrolytes,19 whereas the λ_M values of the aqueous solutions correspond to those of a 1:3 type of electrolytes (for the H\textsubscript{2}L1 and H\textsubscript{2}L3 complexes) or to a 1:5 type of electrolyte (H\textsubscript{2}L2 complex).20 This means that in methanolic solution, partial replacement of the coordinated chloride ions by solvent molecules occurs, the replacement in aqueous solution being complete. The extremely high value of λ_M of aqueous solutions of the H\textsubscript{2}L2 complex could also be explained by the formation of the very mobile H\textsubscript{3}O+ ion as a consequence of the deprotonation of the thiosemicarbazide fragment. In view of the fact that the λ_M value of the aqueous solutions of the other two complexes is at the upper limit of the λ_M range of values for a 1:3 type of electrolyte, it is possible that the same phenomenon is also involved, but at a lower concentration of H\textsubscript{3}O+ ion. All these observations are in agreement with the previous supposition that deprotonation of H\textsubscript{2}L2 is the easiest and that of H\textsubscript{2}L3 the hardest, which corresponds to the trend of decreasing λ_M values of the corresponding complexes.

Table I. Some physical characteristics and analytical data of the newly synthesized compounds

<table>
<thead>
<tr>
<th>Ligands/Complex</th>
<th>Found (Calcd)%</th>
<th>μ_{eff}/μ_B</th>
<th>λ_M/S cm2 mol-1 (solvent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H\textsubscript{2}L1.HCl.H\textsubscript{2}O</td>
<td>39.80 (39.48)</td>
<td>5.80 (5.43)</td>
<td>19.86 (20.11)</td>
</tr>
<tr>
<td>H\textsubscript{2}L2.HCl.H\textsubscript{2}O</td>
<td>37.28 (36.67)</td>
<td>5.27 (5.13)</td>
<td>19.19 (19.01)</td>
</tr>
<tr>
<td>[Fe(H\textsubscript{2}L1)Cl\textsubscript{2}(H\textsubscript{2}O)]Cl</td>
<td>26.66 (26.73)</td>
<td>3.59 (3.49)</td>
<td>13.76 (13.86)</td>
</tr>
<tr>
<td>[Fe(H\textsubscript{2}L2)Cl\textsubscript{2}(H\textsubscript{2}O)]Cl</td>
<td>25.32 (25.70)</td>
<td>3.41 (3.36)</td>
<td>13.52 (13.33)</td>
</tr>
<tr>
<td>[Fe(H\textsubscript{2}L3)Cl\textsubscript{2}(H\textsubscript{2}O)]Cl</td>
<td>27.74 (27.64)</td>
<td>3.81 (3.71)</td>
<td>12.62 (12.90)</td>
</tr>
<tr>
<td>[Fe(HL1)\textsubscript{2}Cl\textsubscript{4}H\textsubscript{2}O</td>
<td>35.46 (35.45)</td>
<td>4.81 (4.16)</td>
<td>18.25 (18.38)</td>
</tr>
<tr>
<td>[Fe(H\textsubscript{2}L3)(HL3)\textsubscript{2}Cl\textsubscript{2}H\textsubscript{2}O</td>
<td>34.42 (34.64)</td>
<td>4.42 (4.15)</td>
<td>19.82 (19.86)</td>
</tr>
</tbody>
</table>

* At 23 ºC; ** $c = 1$ mM
As far as the bis(ligand) complexes are concerned, there is no doubt that they have an octahedral configuration in which, because of its planarity, the ligands assume mer- positions. As with mono(ligand) complexes, they are also well soluble in H$_2$O and DMF (with exception of the H$_2$L2 complex) and less soluble in MeOH and EtOH. The molar conductivities of their MeOH solutions are in full agreement with the proposed coordination formulas.

With the exception of [Fe(H$_2$L3)Cl$_2$(H$_2$O)]Cl (Table I) and [Fe(HL2)$_2$]Cl$^\alpha$, which have μ_{eff} values characteristic of pure high-spin Fe(III) complexes, the other complexes have somewhat lower μ_{eff} values, which could be explained in terms of the “admixture” of low-spin complexes. In relation to this, it is important to mention that there are literature data21 about Fe(III) complexes, mainly with the tridentate thiosemicarbazones, the spin state of which depends even on the outer-sphere ion, as well as on the number of molecules of crystalline water. An example of this is just the [Fe(HL2)$_2$]Cl complex, which at room temperature is high-spin ($\mu_{\text{eff}} = 5.75 \mu_B$), while its dihydrate is low-spin ($\mu_{\text{eff}} = 2.05 \mu_B$)13.

Electronic spectra

The spectra of the neutral and protonated forms of the ligands were recorded over the available region in DMF, from 270 to 800 nm, as well in the presence of LiCl (serving as supporting electrolyte in the voltammetric measurements). The spectra of the complexes were also recorded under similar conditions, and the characteristic parameters are given in Table II.

Table II. Electronic spectral data for the ligands and complexes in DMF

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$L$_1$.2H$_2$O</td>
<td>290(1.79); 329(0.77 sh)</td>
</tr>
<tr>
<td>H$_2$L$_1$.HCl.H$_2$O</td>
<td>306(1.40 sh); 321(1.47); 339(1.45)</td>
</tr>
<tr>
<td>H$_2$L$_2$.3H$_2$O</td>
<td>284(1.04); 333(2.10)</td>
</tr>
<tr>
<td>H$_2$L$_2$.HCl.H$_2$O</td>
<td>321(1.38); 349(1.43); 361(1.39 sh)</td>
</tr>
<tr>
<td>H$_2$L$_3$.H$_2$O</td>
<td>325(2.81 bpd); 352(2.69); 365 (2.39 sh)</td>
</tr>
<tr>
<td>[Fe(H$_2$L1)Cl$_2$(H$_2$O)]Cl</td>
<td>291(1.92); 355(1.20)</td>
</tr>
<tr>
<td>[Fe(H$_2$L2)Cl$_2$(H$_2$O)]Cl</td>
<td>320(1.82); 356(1.97); 442(0.48 sh)</td>
</tr>
<tr>
<td>[Fe(H$_2$L3)Cl$_2$(H$_2$O)]Cl</td>
<td>323(1.72); 353(1.72); 367(1.73); 404(1.17 sh)</td>
</tr>
<tr>
<td>[Fe(HL1)$_2$]Cl4H$_2$O</td>
<td>282(2.71); 348(1.40)</td>
</tr>
<tr>
<td>[Fe(HL2)$_2$]Cl</td>
<td>326(3.53); 351(3.66); 438(0.73 sh)</td>
</tr>
<tr>
<td>[Fe(HL3)$(\text{NO}_3$)$_2$.H$_2$O</td>
<td>316(1.65 sh); 327(1.72); 351(1.72); 367(1.73)</td>
</tr>
</tbody>
</table>

aIn nm. bIn M$^{-1}$ cm$^{-1}$ $\times 10^{-4}$. cShoulder. dBroad peak.

The spectra of all three ligands are characterized by 2–3 bands in the range of 270–450 nm. The difference in the spectral patterns is due to the structural differ-
ences of the compounds. As could be expected, the addition of LiCl to the ligand solutions caused no significant changes in their spectra. Ligand protonation, however, resulted in a decrease of the absorption at $\lambda < 360$ nm, with the simultaneous appearance of new bands characteristic of the absorption of H_2L^+ and H_4L_{2+} species in the range of 315–400 nm.

The spectra of all the ligands of the type H_2L and $\text{H}_2\text{L} \cdot \text{HCl}$ protonated to the same extent by adding $\text{HClO}_4 (> 2\text{H}^+/\text{ligand})$ have similar characteristics. The protonated H_2L^2 and H_3L^3 exhibit similar absorption, while the spectrum of the semicarbazone derivative is different, suggesting a different nature of the chromophore.

The complexes absorb in the range of 270–600 nm, the appearance of a particular spectrum depending mainly on the coordinated ligand. A common characteristic of all these spectra is the absence of bands that could be ascribed to d–d transitions (Fig. 2). The band at $\lambda < 400$ nm corresponds to the absorption of the ligand part of the molecule ($\pi \rightarrow \pi^*$), which is evident from the absorption of the ligand itself, especially with the H_2L^1 complexes. This means that the bonds in the Fe(III) complex with this ligand are weakest, which was also confirmed by voltammetric experiments.

The addition of LiCl to a solution of a complex changes the appearance of the absorption curve, which becomes more similar to the spectrum of the ligand itself, suggesting a partial dissociation of the molecule (Fig. 2, curve 2). This was also confirmed by the disappearance of the charge-transfer bands ($\lambda > 400$ nm) in the spectra of all the complexes. On addition of HClO_4 to a mole ratio of $(2–3)$ H^+/Fe,

![Fig. 2. Electronic spectra of [Fe(H$_2$L$_2$)Cl$_3$(H$_2$O)]Cl in DMF: pure solvent (1) and after the addition of 0.1 M LiCl (2) and HClO$_4$ to the mole ratio 2 H$^+/\text{Fe}$ (3).](image-url)

The complexes absorb in the range of 270–600 nm, the appearance of a particular spectrum depending mainly on the coordinated ligand. A common characteristic of all these spectra is the absence of bands that could be ascribed to d–d transitions (Fig. 2). The band at $\lambda < 400$ nm corresponds to the absorption of the ligand part of the molecule ($\pi \rightarrow \pi^*$), which is evident from the absorption of the ligand itself, especially with the H_2L^1 complexes. This means that the bonds in the Fe(III) complex with this ligand are weakest, which was also confirmed by voltammetric experiments.

The addition of LiCl to a solution of a complex changes the appearance of the absorption curve, which becomes more similar to the spectrum of the ligand itself, suggesting a partial dissociation of the molecule (Fig. 2, curve 2). This was also confirmed by the disappearance of the charge-transfer bands ($\lambda > 400$ nm) in the spectra of all the complexes. On addition of HClO_4 to a mole ratio of $(2–3)$ H^+/Fe,
the resulting spectra have two characteristic bands at somewhat different wavelengths (in the region of 305–332 and 340–390 nm), depending on the nature of the complex. Moreover, the bands correspond to those obtained under the same conditions for a solution of the corresponding protonated ligand. Hence, the protonation product could be represented as H_4L^{2+}, whereby the protonation sites may be the phenolic oxygen and one of the nitrogen atoms of the hydrazine moiety.

Voltammetric studies

In view of the experience gained in studying Fe(III) complexes with similar ligands – salicylaldehyde semi-, thiosemi and S-methylisothiosemicarbazone in DMF,22–24 it was interesting to study the behaviour of the new complexes under the same conditions.

A marked characteristic of the newly synthesized mono(ligand) and bis(ligand) complexes of the cationic type is their pronounced dissociation in DMF, especially in the presence of chloride. In contrast to this, the previous series of complexes, being stable enough, was characterized by well-defined cyclic voltammograms. The reaction of the new complexes taking place in the presence of LiCl is accompanied by a visual change in their colour from brown to ruby-red and a spectrum characterizing the absorption of the displaced ligand.

For the sake of legibility the results will be presented according to the complex type with reference to specific features of a particular coordinated ligand.

Mono(ligand) complexes

The previously studied complexes of this type with salicylaldehyde derivatives as ligands behaved as coordination dimers [Fe(HL)$_2$][FeCl$_4$], dissociating in DMF into equimolar amounts of [Fe(HL)$_2$]$^{2+}$, [FeCl$_4$]$^{-}$ and (HL$^-$).22 In contrast to them, the new ligands, coordinated as neutral molecules, give unstable [Fe(H$_2$L)$_3$]$^{3+}$ complexes, dissociating almost completely to Fe(III) and H$_2$L.

The appearance of the cyclic voltammogram for [Fe(H$_2$L$_3$)Cl$_2$(H$_2$O)]Cl recorded in TBAP, as the least “aggressive” medium, is presented in Fig. 3. The reduction peaks, observed at three potential amplitudes (to −1.0 V), belong to one-electron processes, the first for FeCl$_4$$^{-}$, then that for Fe(HL)$_3$$^{2+}$ with perchlorate/chloride in the coordination sphere. The two most negative peaks represent the reduction of H$_2$L$_3$, occurring on the pyridoxal and hydrazine fragment, respectively. The reduced complexes also exhibit instability: [FeCl$_4$]$^{2-}$ dissociates rapidly to FeCl$_2$ and Fe(ClO$_4$)$_2$, which are oxidized in two close peaks at about 0.0 V.22

Oxidation of the complexes (in the amplitude range from +0.6 to +1.6 V) is represented by 2–3 multi-electron peaks involving processes on the ligand part, followed by decomposition of the molecule. The detailed electrochemistry of the ligand will be described in a subsequent paper.25

LiClO$_4$. The addition of LiClO$_4$ to the solution of these complexes results in changes of the voltammogram in the part corresponding to ligand reduction, the
cathodic peaks being shifted to more positive potentials, overlapping thus with the first peak. This effect is probably a consequence of ion-pairing of Li$^+$ and the product of the multielectron reduction of the ligand.22

\textit{LiCl}. The voltammogram of the mono(ligand) complex (Fig. 4) shows that excess of Cl$^-$ stabilizes the reaction of FeCl$_4$2-, yielding a pair of quasi-reversible peaks
at $E_p^c = -0.08$ V. The current corresponding to this peak is approximately equivalent to the total Fe(III) content, which is also evident from the voltammogram, in which the peak current for Fe(HL$_3$)$_2^{2+}$ ($E_p^c = -0.68$ V) does not exceed 10–20%. At potentials more negative than −1.5 V, partial overlap of several reduction processes at the ligand is observed. The electron transfer processes are followed by irreversible chemical reactions whereby the complex decomposes into several species with marked tendency of adsorption (e.g., the oxidative peak at −0.8 V).

Bis(ligand) complexes

Monocationic complexes. Complexes of this type, represented in the crystalline state by the formulas [Fe(HL$_1$)$_2$]Cl and [Fe(HL$_2$)$_2$]Cl, dissociate in DMF solution into several complex species. Another problem is the very poor solubility of the H$_2$L$_1$ complex – complete dissolution at a level of 1 mM required 3 h.

TBAP and LiClO$_4$. Both the investigated complexes in these two electrolytes (Fig. 5, curve 1) behave in basically the same way to a potential of −1.60 V: 2–3 reduction peaks with $E_p^c > -0.7$ V are characteristic of the different Fe(III)-containing species. The dominant peak at −0.05 V belongs to FeCl$_4^-$ and contains about 30% of the total iron(III) in the case of the H$_2$L$_1$ and about 50% in the case of the H$_2$L$_2$ complexes (determined after protonation, *vide infra*). In the potential region more negative than −1.4 V, the free ligand is reduced in an irreversible one-electron process. However, the peak is actually composed of two peaks of similar potentials ($\Delta E_p^c < 150$ mV), the more positive of which is supposed to belong to the residual
undissociated bis(ligand) complex and the more negative one represents the irreversible one-electron reduction of the free ligand.

In TBAP, a further ligand reduction is represented by two peaks at -1.9 and -2.2 V, corresponding to a process on the thiosemicarbazide moiety. However, the two processes merge in LiClO$_4$, as described for the mono(ligand) complexes. Ligand oxidation, up to $+1.5$ V, proceeds in three partially overlapped peaks, after which the complex decomposes into Fe(III) and the products of chemical reactions on the free ligand.

LiCl. The voltammetric behaviour of the complexes in this electrolyte is better defined (Fig. 5, curve 3). In addition to the dominant reduction peak of FeCl$_4^-$, containing about 70% of the total iron(III), there is a peak with $E_{pc} = -0.56$ V, corresponding to the reduction of [Fe(HL$_2$)$_2$]$_2^+$. The irreversible one-electron peak at -1.47 V represents the reduction of free ligand. Further reduction in this electrolyte occurs in one multielectron peak formed by the overlapping of the two previous peaks, the processes taking place on the thiosemicarbazide fragment. Besides, in the same potential range (<-2.0 V), Fe(II) is reduced to Fe(0).

A certain insight into the fine equilibria between the (HL$_2$)$^-$ and Cl$^-$ complexes of Fe(III) and Fe(II) can be gained by considering the voltammograms obtained after repetitive cycling in the working potential amplitude (Fig. 6). It is evident that a potential excursion to include the reduction of the ligand results in an increase of the oxidation peak for Fe(HL$_2$)$^+$ ($E_{pa} \approx -0.30$ V) on account of a decrease of the peak for FeCl$_2$ ($E_{pa} = +0.02$ V). This ratio of concentrations of the complex...
species, altered in comparison with the initial one, is evident from the second sweep (curve 3), amounting almost to 1:1 for the chloride and (HL2)– complexes. Such behaviour provokes the conclusion that in contrast to Fe(III), which exhibits high affinity toward Cl–, Fe(II) shows a greater stability in the Fe(HL2)+ complex.

Dicationic complex. The complex [Fe(H2L3)(HL3)](NO3)H2O, like the analogous semicarbazone compound, already dissociates to a large extent in the presence of an inert electrolyte, the dissociation into FeCl4– and H2L3 being practically complete in the presence of excess Cl–. The poorly defined peaks at potentials more negative than –1.35 V do not allow the establishment whether, in addition to H2L3, the (HL3)– species exists also. It can be supposed that the ligand can be protonated to H2L3 by a proton from the traces of water or acidic impurities, which is confirmed by the electronic spectrum which in the presence of LiCl looks more like that of the ligand itself.

Complexes in the presence of H+

The addition of H+ (aqueous solution of HClO4) served both to assess the stability of the complexes in acidic media and check the composition of particular species.27 Protonation was carried out discontinuously and cyclic voltammograms were recorded after each increment of acid addition.

The cyclic voltammograms for [Fe(H2L1)Cl2(H2O)]Cl complex recorded before and after the addition of 2 H+/complex molecule are shown in Fig. 7. The peak for FeCl4–, obtained as the final product of protonation of all complex species in
the presence of LiCl, does not change essentially with respect to the initial peak. A small increase in the peak current after the addition of H\(^+\) is a consequence of the somewhat enhanced reversibility of the process and a shift of the potential to more positive values has been observed in mixed DMF-water solutions.\(^{28}\)

The fact that there is no increase in the current of the FeCl\(_4^-\) peak which could be ascribed to ligand displacement, suggests that none of the ligand forms are bound into the complex. The height of the new peak, that for all three ligands appears at about –0.95 to –1.0 V, increases two fold for the mono(ligand) and four fold for the bis(ligand) complexes compared to that of FeCl\(_4^-\) and attains its maximum at \((2–3)\ H^+/Fe.\) The process has the characteristics of a successive transfer of two electrons, coupled most probably with protonation,\(^{29}\) which will be dealt with in more detail in another paper.\(^{25}\)

Of all the investigated iron complexes, protonation of HL\(^-\) to H\(_2\)L was possible only with [Fe(HL\(_1\)\(_2\))Cl and [Fe(HL\(_2\)\(_2\))Cl. However, in both cases the H\(^+\) consumption was significantly lower than the theoretical one, which may be a consequence of the partial extraction of protons from the medium itself.

Acknowledgement. This work was supported by the Ministry of Science, Technologies and Development of the Republic of Serbia (Grant No. 1318).

REFERENCES
8. J. S. Casas, E. Castellano, M. C. Rodriguez-Argüelles, A. Sanchez, J. Sordo, J. Zukerman-Schpector,
 (2003) 561
14. M. Belicchi Ferrari, G. Gasparri Fava, S. Pineli, C. Pelizzi, P. Tarasconi, 6th Yugoslav-Italian Crystallo-
 graphic conference, Pula, 1989, Abstracts p. 23
 227
 (1991) 1951
18. V. M. Leovac et al., unpublished results
21. V. A. Kogan, V. V. Zelentsov, G. M. Larin, V. V. Lukov, Kompleksy perekhodnykh metallov s gidro-
 zonymi, Nauka, Moskva, 1990
25. Lj. Jovanović et al., in preparation
26. Lj. S. Jovanović, Ph. D. Thesis, Faculty of Science, University of Novi Sad, Novi Sad, 1986
NOTE

Note on the Hyper-Wiener Index

IVAN GUTMAN, BORIS FURTULA and JASMINA BELIČ

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and Montenegro

(Received 7 July 2003)

Abstract: The hyper-Wiener index WW of a chemical tree T is defined as the sum of the products n_1n_2, over all pairs u, v of vertices of T, where n_1 and n_2 are the number of vertices of T, lying on the two sides of the path which connects u and v. We examine a slight modification WWW of the hyper-Wiener index, defined as the sum of the products $n_1n_2n_3$, over all pairs u, v of vertices of T, where n_3 is the number of vertices of T, lying between u and v. It is found that WWW correlates significantly better with various physico-chemical properties of alkanes than WW. Lower and upper bounds for WWW, and an approximate relation between WWW and WW are obtained.

Keywords: hyper-Wiener index, Wiener index, chemical trees, alkanes.

INTRODUCTION

The hyper-Wiener index is one of the recently introduced distance-based molecular structure–descriptors. It was put forward in 1993 and since then it has attracted much attention of theoretical chemists. In parallel with the symbol W for the Wiener index, the hyper-Wiener index is traditionally denoted by WW.

Let u and v be two vertices of a (chemical) tree T and let π_{uv} be the unique path connecting u and v. Let n_1 and n_2 be the counts of vertices lying on the two sides of π_{uv}. The vertices u and v are included in these counts, and therefore n_1 and n_2 are always greater than or equal to unity.

The hyper-Wiener index of a tree T is defined as

$$WW = \sum_{u,v} n_1n_2$$

with the summation going over all pairs of vertices of T.

By slightly changing the right-hand side of Eq. (1), one arrives at a modified version of the hyper-Wiener index, which is denoted by WWW:

$$WWW = \sum_{u,v} n_1n_2n_3.$$
Here n_3 is the number of vertices of T, lying between the endpoints of the path π_{uv}. Note that if the tree T has n vertices, then for all pairs of its vertices, $n_1 + n_2 + n_3 = n$. Further, if u and v are adjacent, then $n_3 = 0$. A mathematical reason for defining the hyper-Wiener index via Eq. (2) is outlined elsewhere.23

COMPARING THE PHYSICO-CHEMICAL APPLICABILITY OF THE OLD AND NEW HYPER-WIENER INDICES

The first question that should be asked when WW is modified into WWW is whether the new variant has a better correlating ability, as far as the physico-chemical properties of alkanes are concerned. In order to obtain comparative results on WW and WWW, the standard data base of Needham, Wei, and Seybold,24 in which experimental values for boiling point (BP), molar volume (MV), molar refraction (MR), heat of evaporation (HE), critical temperature (CT), critical pressure (CP), surface tension (ST) and melting point (MP) of alkanes with up to 10 carbon atoms have been collected, was employed.

For MR and MP no correlation between either WW or WWW could be established, and therefore these two physico-chemical properties have not been considered any further. The remaining six sets of experimental data were correlated with polynomials of various degrees of either WW or WWW. Eventually, the optimal value p for the degree of these polynomials was established. The correlation coefficients thus obtained are given in Table I.

TABLE I. Correlation coefficients, $R(WW)$ and $R(WWW)$, for the correlation between various physico-chemical properties of alkanes24 and a p-th degree polynomial in the parameters WW and WWW, respectively. The value of p was chosen so as to be optimal from the point of view of the F-test, at 95\% confidence level

<table>
<thead>
<tr>
<th>Property</th>
<th>p</th>
<th>$R(WW)$</th>
<th>$R(WWW)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>5</td>
<td>0.9809</td>
<td>0.9816</td>
</tr>
<tr>
<td>MV</td>
<td>2</td>
<td>0.9687</td>
<td>0.9862</td>
</tr>
<tr>
<td>HE</td>
<td>3</td>
<td>0.9722</td>
<td>0.9804</td>
</tr>
<tr>
<td>CT</td>
<td>3</td>
<td>0.9560</td>
<td>0.9444</td>
</tr>
<tr>
<td>CP</td>
<td>5</td>
<td>0.9657</td>
<td>0.9296</td>
</tr>
<tr>
<td>ST</td>
<td>2</td>
<td>0.8310</td>
<td>0.8762</td>
</tr>
</tbody>
</table>

As can be seen from Table I, the new hyper-Wiener index WWW is significantly better correlated with the boiling point, molar volume, heat of evaporation, and surface tension than the older version WW. The new hyper-Wiener index is found to be (slightly) inferior to WW only in the case of the critical temperature and critical pressure.

The polynomial approximation for the boiling point could be much improved by means of the expressions:

$$\ln BP \approx A_1 \ln WW + B_1$$

$$\ln BP \approx A_2 \ln WWW + B_2$$
resulting in $R = 0.9867$ (for WW) and $R = 0.9911$ (for WWW). In these formulas BP is expressed in Kelvin units; by least squares fitting one obtains $A_1 = 0.154 \pm 0.004$, $B_1 = 0.52 \pm 0.02$ and $A_2 = 0.103 \pm 0.002$, $B_1 = 5.41 \pm 0.01$.

In summary: The new hyper-Wiener index WWW, Eq. (2), outperforms the previous version WW, Eq. (1), in correlations with almost all physico-chemical properties of alkanes. Therefore, when applying the hyper-Wiener index in QSPR and QSAR studies, preference should be given to WWW.

ESTIMATING THE NEW HYPER-WIENER INDEX

It is first shown that the new hyper-Wiener index is bounded from both below and above by simple functions of the old hyper-Wiener index and the ordinary Wiener index:

$$WW - W \leq WWW \leq (n - 2)(WW - W).$$ \hspace{1cm} (3)

The summations in (1) and (2) go over all pairs of vertices. They can be divided into two parts as:

$$\sum_{u,v} = \sum_{adj} + \sum_{n,adj}$$

where \sum_{adj} and $\sum_{n,adj}$ indicate summation over adjacent and non-adjacent vertex pairs.

As $n_3 = 0$ whenever the vertices u and v are adjacent, formula (2) reduces to

$$WWW = \sum_{n,adj} n_1 n_2 n_3$$ \hspace{1cm} (4)

If u and v are not adjacent, then n_3 is at least 1 and at most $n - 2$. Replacing n_3 in (4) by its minimal possible value, one obtains a lower bound for WWW:

$$WWW \geq \sum_{n,adj} n_1 n_2 = \sum_{u,v} n_1 n_2 - \sum_{n,adj} n_1 n_2$$ \hspace{1cm} (5)

From Eq. (1), the first summation on the right-hand side of (5) is just WW. According to a well known result of Wiener, the second summation on the right-hand side of (5) is equal to the Wiener index W. Thus one arrives at the lower bound in (3).

Replacing n_3 in (4) by its maximal possible value ($= n - 2$), one obtains

$$WWW \leq (n - 2) \sum_{n,adj} n_1 n_2$$

which, using the same arguments as above, leads to the upper bound in (3).

By means of an analogous, yet somewhat more complicated, reasoning, one can also deduce the following estimates:

$$n(n - 1)/2 + (WW - W) \leq WWW \leq n(n - 1)/2 + (n - 3)(WW - W)$$
where \(v \) is the number of vertices of degree one in the chemical tree \(T \), i.e., the number of methyl groups in the underlying molecule.

APPROXIMATING THE NEW HYPER-WIENER INDEX

In order to deduce an approximate expression for the new hyper-Wiener index \(WWW \), Eq. (2) is rewritten as:

\[
WWW = \sum_{u,v} n_1 n_2 \langle n_3 \rangle
\]

where \(\langle n_3 \rangle \) is the arithmetic mean of \(n_3 \). Then,

\[
WWW \approx \langle n_3 \rangle \sum_{u,v} n_1 n_2 = \langle n_3 \rangle WW. \tag{6}
\]

In order to apply (6), the value of \(\langle n_3 \rangle \) must be known (at least approximately). In order to achieve this goal, one starts with:

\[
\langle n_3 \rangle = \langle n - n_1 - n_2 \rangle = n - \langle n_1 + n_2 \rangle \\
= n - 2 \langle n_1 + n_2 \rangle = n - 2 \langle n_1 n_2 \rangle^{1/2}
\]

where the arithmetic mean of \(n_1 \) and \(n_2 \) has been replaced by their geometric mean. Using another plausible approximation, one obtains:

\[
\langle n_3 \rangle \approx n - 2 \frac{\langle n_1 n_2 \rangle}{\langle n_1 \rangle} \tag{7}
\]

Fig. 1. The new hyper-Wiener index \(WWW \), Eq. (2)) vs. the right-hand side of Eq. (9), which is a function of the old hyper-Wiener index \(WW \), Eq. (1)). The data points pertain to isomeric decanes, \(C_{10}H_{22} \), i.e., \(n = 10 \). The correlation coefficient is 0.966.
In view of Eq. (1), the mean value of the product $n_1 n_2$ is directly related to the hyper-Wiener index WW:

$$WW = \frac{n(n-1)}{2} (n_1 n_2)$$ \hspace{1cm} (8)

where the fact that in an n-vertex graph there are $n(n-1)/2$ vertex pairs has been taken into account.

By combining the relations (6)–(8), one finally obtains the expression:

$$WWW \approx n WW - 2\sqrt{\frac{n}{3}} WW^{3/2}$$ \hspace{1cm} (9)

which relates the old and the new hyper-Wiener index.

The quality of the approximate formula (9) is seen from Fig. 1.

Acknowledgement: One author (I.G.) thanks the Alexander von Humboldt Foundation for financial support in 2003.

REFERENCES

25. J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSAR, Gordon & Breach, Amsterdam, 1999
Hyper-Wiener index and Laplacian spectrum

IVAN GUTMAN*

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and Montenegro

(Received 7 July 2003)

Abstract: The hyper-Wiener index WWW of a chemical tree T is defined as the sum of the product $n_1n_2n_3$, over all pairs u, v of vertices of T, where n_1 and n_2 are the number of vertices of T, lying on the two sides of the path which connects u and v, and n_3 is the number of vertices lying between u and v. An expression enabling the calculation of WWW from the Laplacian eigenvalues of T has been deduced.

Keywords: hyper-Wiener index, Wiener index, Laplacian spectrum, chemical trees, alkanes.

In the preceding paper1 a new modification of the hyper-Wiener index, denoted as WWW, was put forward. It was demonstrated1 that the WWW has certain advantages over the original hyper-Wiener index2 WW, and relations between WWW and WW were established. In this note it will be shown how the WWW can be computed from the Laplacian eigenvalues of the underlying molecular graph.

The Laplacian graph spectral theory has found recently many chemical applications, see, for instance, the papers$^3–11$ and the references quoted therein. Details of this theory can be found in several reviews.$^{12–15}$

The Laplacian matrix $L(G)$ of a graph G with n vertices, v_1, v_2, \ldots, v_n, is a square matrix of order n whose (i,j)-entry is defined as

$$L(G)_{ij} = \begin{cases}
\delta_i & \text{if } i = j \\
-1 & \text{if the vertices } v_i \text{ and } v_j \text{ are adjacent} \\
0 & \text{otherwise}
\end{cases}$$

where δ_i denotes the degree (= number of first neighbors) of the i-th vertex of G. The eigenvalues of the Laplacian matrix, denoted by $\mu_1, \mu_2, \ldots, \mu_n$, are said to be the Laplacian eigenvalues of the graph G and to form its Laplacian spectrum.

The Laplacian eigenvalues are labeled so that

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq \mu_n.$$

Then for all graphs, $\mu_n = 0$, and for connected graphs (among which are all molecular graphs), $\mu_{n-1} > 0$.

* Serbian Chemical Society active member.
The Laplacian characteristic polynomial is \(\psi(G, x) = \det(x I - L(G)) \). It can be written in the coefficient form as:

\[
\psi(G, x) = \sum_{k=0}^{n-1} (-1)^k c_k x^{n-k}
\]

According to the Kel’mans theorem, \(c_k = \sum_F \Gamma(F) \) where the summation goes over all spanning forests \(F \) of \(G \), possessing \(k \) disconnected components, and where \(\Gamma(F) \) is equal to the product of the number of vertices of the components of \(F \). In the case of a tree \(T \), the straightforward application of the Kel’mans theorem gives:

\[
c_n = 0
\]

\[
c_{n-1} = n
\]

\[
c_{n-2} = \sum_{a \in \text{adj}} n_1 n_2
\]

\[
c_{n-3} = \sum_{a, b} n_1 n_2 n_3
\]

(1)

where the notation is same as in the preceding paper.\(^1\) Thus, it can immediately be realized that:

\[
c_{n-2} = W(T)
\]

\[
c_{n-3} = \mathcal{W}_2(T).
\]

Using the Vieta identities and bearing in mind that \(\mu_n = 0 \), the coefficients \(c_{n-1}, c_{n-2}, \) and \(c_{n-3} \) are expressed in terms of Laplacian eigenvalues as:

\[
c_{n-1} = \mu_1 \times \mu_2 \times \ldots \times \mu_{n-1}
\]

\[
c_{n-2} = \sum_i \mu_1 \times \mu_2 \times \ldots \times \mu_{i-1} \times \mu_{i+1} \times \ldots \times \mu_{n-1}
\]

\[
c_{n-3} = \sum_{i < j} \mu_1 \times \mu_2 \times \ldots \times \mu_{i-1} \times \mu_{i+1} \times \ldots \times \mu_{j-1} \times \mu_{j+1} \times \ldots \times \mu_{n-1}
\]

\[i.e.,\]

\[
c_{n-1} = \prod_k \mu_k
\]

\[
c_{n-2} = \left(\prod_k \mu_k \right) \left(\sum_i \frac{1}{\mu_i} \right)
\]

\[
c_{n-3} = \left(\prod_k \mu_k \right) \left(\sum_{i < j} \frac{1}{\mu_i \mu_j} \right)
\]
Combining the latter identities with Eqs. (1)–(3), one obtains:

\[W(T) = n \sum_{i=1}^{n-1} \frac{1}{\mu_i} \]

(4)

\[WWW(T) = n \sum_{i,j} \frac{1}{\mu_i \mu_j} \]

(5)

Formula (4), which is an expression for the Wiener index in terms of Laplacian eigenvalues, is a previously known result.\(^3,4\) The analogous formula (5) is being reported here for the first time. It can be simplified as:

\[
WWW(T) = \frac{n}{2} \left[\sum_{i=1}^{n-1} \frac{1}{\mu_i} - \sum_{i=1}^{n-1} \frac{1}{(\mu_i)^2} \right]
\]

\[
= \frac{n}{2} \left[\left(\sum_{i=1}^{n-1} \frac{1}{\mu_i} \right)^2 - \sum_{i=1}^{n-1} \frac{1}{(\mu_i)^2} \right]
\]

which finally results in the identity:

\[WWW(T) = \frac{n}{2n} \left(\frac{W(T)}{n} \right)^2 - \frac{n}{2} \sum_{i=1}^{n-1} \frac{1}{(\mu_i)^2} \]

(6)

Formula (6), combined with (4), is particularly suitable for computer-aided numerical calculation of the hyper-Wiener index. All the results reported in the preceding work\(^1\) were obtained by means of this formula.

Acknowledgement: The author thanks the Alexander von Humboldt Foundation for financial support in 2003.
REFERENCES

Influence of the synthesis conditions on the photoluminescence of silica gels

IVANA HINIĆ, GORAN STANIŠIĆ and ZORAN POPOVIĆ

Institute of Physics, Pregrevica 118, 11000 Belgrade, Serbia and Montenegro

(Received 2 July 2003)

Abstract: The photoluminescence spectra of silica xerogel samples synthesized with ethanol as solvent and xerogel where the ethanol was exchanged by water before drying are reported. In addition, the photoluminescence spectrum of a silica cryogel synthesized with tert-butanol as solvent was investigated. The samples were modified by formamide. Bands at 2.00, 2.20, 2.32 and 2.46 eV were identified. In the photoluminescence spectra of all samples. The band at 2.00 eV is caused by the presence of silane, and the band at 2.20 eV is connected with the nonstoichiometric composition of silica. The photoluminescence band at 2.32 eV was found to originate from the organic groups of the solvent. The origin of this band are E’ defect centers, which is a prominent paramagnetic defect in conventional a–SiO₂.

Keywords: silica gel, luminescence, infrared spectroscopy.

INTRODUCTION

The sol-gel process is a simple chemical procedure for making many different materials, among them silica gels. Silica gels are prepared by a chemical reaction employing a metal alkoxide (for example tetraethyloorthosilicate (TEOS)) and water in an alcoholic solvent. The first reaction is hydrolysis which induces the substitution of OR groups linked to silicon by silanol Si–OH groups. These chemical species may react together to form Si−O−Si (siloxane) bonds which lead to silica network formation. This reaction of condensation establishes a 3D network which invades the whole volume of the container. The liquid used as solvent to perform the different chemical reactions remains within the pores of the solid network and has to be removed. Silica aerogel samples can be dried by simple evaporation at temperatures close to room temperature and atmospheric pressure, whereby so called xerogels (a word derived from the Greek word “xeros” which means dry) are obtained. By sublimation of frozen solvent cryogels are obtained. An aerogel results from a supercritical drying process. The drying step is performed inside an autoclave which allows the critical point \((p_C, T_C)\) of the solvent to be overpassed.
A major problem during drying is cracking of the samples. Zarzycki showed that drying stress is a function of pore size and rate of evaporation of the pore liquor, which depends on the liquor vapor pressure. Only by using supercritical extraction can large monoliths without cracks be obtained. However, because of the high costs and risk of this method, processes for preparing monolithic xerogels at ambient pressure have in recent years been developed. One of these methods involves the addition of a drying control chemical additive (DCCA) to the sol. The DCCA changes the structure of the gel during gelation in such a way as to equalize the pores dimension, so the difference in the surface tension of the pores is lower and the sample can be dried under normal conditions. The DCCA must also be removeable during densification before pore closure.

The structure of the sol–gel derived oxide networks and defects in the structure are strongly affected by the concentration of the interacting species, their ratios, the reaction medium solvent, the pH, the catalyst and the temperature during condensation. Silica gels have several microstructure defects which are responsible for the appearance of photoluminescence (PL). One such defect is a no-bridged oxygen hole center (NBOHC) described by the relation $\text{SiOH} = \text{SiO}^\cdot + \cdot\text{H}$ where the dots denote uncoupled electrons. In PL spectra of Si/O systems, this defect is connected with the bands at about 1.80 eV or 1.90 eV. The band which appears at 2.00 eV originates from the presence of silan (SiH and/or SiH$_2$). The band at 2.20 eV is caused by the non-stoichiometric structure SiO$_x$ where $1 < x < 2$. The origin of the PL of silica gels can be organic compounds which remain from the synthesis. Thermal treatment result in the formation and/or removal of various defect centers.

In this work the PL spectra of silica gels synthesized and dried by different methods were investigated. First sample was a xerogel synthesized with ethanol as the solvent and DCCA-formamide modified (XG sample). The second sample was obtained by the exchange of ethanol by water in the XG sample before drying (sample XGW). Both xerogels were dried by evaporation under ambient conditions. The examined cryogel sample (CG) was synthesized using tert-butanol as solvent and freeze-dried. The PL spectra were compared with the PL spectra of two silica aerogels synthesized without DCCA, in ethanol solvent and dried by supercritical extraction: the first was not sintered (AG sample), and the second was sintered for 15 h at 1000 ºC (AGS sample). These samples were described in a previous paper.

EXPERIMENTAL

The silica gel samples were made by the sol–gel process using tetraethylorthosilicate (TEOS), water, different solvents (ethanol and tert-butanol), acid catalyst HCl and DCCA-formamide. The amounts of the initial compounds are presented in for each sample (Table I).

The sample XGW was washed after gelation in water for 47 days. The parameters of gelation and drying are shown in Table II.
TABLE I.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TEOS/cm³</th>
<th>Solvent/cm³</th>
<th>H₂O/cm³</th>
<th>HCl/cm³</th>
<th>Formamide/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>Tert-butanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XG</td>
<td>7.5</td>
<td>6.0</td>
<td>–</td>
<td>4.2</td>
<td>0.7</td>
</tr>
<tr>
<td>CG</td>
<td>7.5</td>
<td>–</td>
<td>6.1</td>
<td>6.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

TABLE II.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gelation time/h</th>
<th>Gelation temperature/°C</th>
<th>Drying method</th>
<th>Drying time/days</th>
<th>Drying temperature/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGW</td>
<td>1</td>
<td>60</td>
<td>Evaporation</td>
<td>139</td>
<td>20</td>
</tr>
<tr>
<td>XG</td>
<td>1</td>
<td>60</td>
<td>Evaporation</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>CG</td>
<td>24</td>
<td>40</td>
<td>Sublimation</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

The PL spectra were recorded using a Jobin-Yvon U1000 monochromator and photomultiplier as detector. The samples were excited by the 4.88 nm line of an Ar ion laser. The measurements were performed at room temperature in air. The infrared (IR) reflection spectra of all samples were measured using BOMEM DA8 spectrometer at room temperature in the spectral range from 400 to 1500 cm⁻¹. For these measurements, the KBr pellet technique was used.

RESULTS AND DISCUSSION

The PL spectra of the samples XGW, XG and CG are presented in Fig. 1 while the PL spectra of the samples AG and AGS are shown in Fig. 2. The PL spectra were deconvoluted using a sum of 4 or 5 pseudovoit profiles, which are also shown in Figs. 1, and 2.

The IR spectra of the same samples are shown in Fig. 3. The IR spectra were fitted using a three-parameter model of the dielectric function:

\[\varepsilon(\omega) = \varepsilon_{\infty} + \frac{S_j}{\omega^2 - \omega_j^2 + i\gamma_j^2} \]

where \(S_j, \omega_j, \) and \(\gamma_j \) are respectively the oscillator strength, resonance frequency and damping parameters of \(j \)-th oscillator, and \(\varepsilon_{\infty} \) is the high frequency dielectric constant.

From the deconvolution procedure of PL spectra, the band positions, width and area below each band were obtained. The areas below the PL bands for each xerogel, cryogel and aerogel sample are shown in Fig. 4.

The PL spectra of xerogels exhibit four bands at about 2.00, 2.20, 2.32 and 2.46 eV. In the PL spectra of the aerogels an additional band at 1.80 eV appears. As was discussed in our previous work, the band at about 1.80 eV is connected with NBOHC centers at the surface of the gel. The band at 2.00 eV is assigned to the presence of silane, while the band at 2.20 originates from the non-stoichiometric composition of the gel structure. In the PL spectra of xerogels and cryogel, bands at 2.00 and 2.20 eV are also present. From the behavior of the band at 2.20 eV, in-
formation about the non-stoichiometric composition of the gel structure can be obtained. The exchange of the organic solvent by water allows the polymerization reaction to go more to completion so the composition of the sample washed in water is less non-stoichiometric. The process of sintering has the same effect so the area below the 2.20 eV band is low in the case of the sintered aerogel.

After drying by evaporation or sublimation, a certain amount of solvent remains in the closed pores of the sample. The presence of the organic solvent (ethanol or tert-butanol) is visible in the IR spectra. The mode connected with ethanol is at about 1050 cm$^{-1}$ while the mode of tert-butanol is at about 1150 cm$^{-1}$. From the filling procedure of the IR spectra, the oscillator strengths of these modes, which are proportional to the amount of vibrating molecules or residues can be obtained. As can be seen in Fig. 5a, the area below the PL band at 2.32 eV changes in a similar manner as the oscillator strength of the organic solvents in the silica gel samples.

For example, in the sample XGW, which had been washed in water, the amount of solvent is very low, as is the case of the sintered AGS sample where the organic material had been removed by sintering at high temperature. In the case of

Fig. 1. PL spectra of the xerogel made with ethanol (XG), xerogel washed in water (XGW) and the cryogel made with tert-butanol.

Fig. 2. PL spectra of the aerogels: non-sintered (AG) and sintered 15 h at 1000 ºC.
these two samples the area below the band at 2.32 eV is low. It can be concluded that this band originates from the organic compounds in silica gels structure. Note that washing in water removes all the formamide. This can be seen from Fig. 3, where in the spectrum of the XGW sample the mode at about 1400 cm$^{-1}$ connected with formamide is absent.

Fig. 3. IR Spectra of the xerogels, cryogel and aerogels. Experimental data are presented by circles, while the fit curve is the solid line.

Fig. 4. Areas below the PL bands in the spectra of all the samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>2.0</th>
<th>2.2</th>
<th>2.32</th>
<th>2.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGW</td>
<td>160</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>XG</td>
<td>140</td>
<td>80</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>CG</td>
<td>120</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>AG</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>AGS</td>
<td>180</td>
<td>90</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>
For each sample the spectral activity in spectral range where the antisymmetric modes connected with the Si–O–Si bonds are positioned were calculated. This spectral activity increases with increasing network connectivity.11

The area below the band at 2.46 eV and the measure of spectral activity of IR spectra in the region connected with the antisymmetric vibrations of Si–O–Si are shown. The presence of water during washing (in the case of the XGW sample) allows the condensation process to continue and so the number of Si–O–Si bond increases. The sintering process affects the structure of the silica aerogel in a similar way (AGS sample). The area below the band at 2.46 eV is higher in the PL spectra of the XGW and AGS samples. It can be concluded that increasing the network connectivity increases number of defects too. There are probably E’ centers which are prominent defects in conventional a–SiO2.

CONCLUSIONS

The method of synthesis, precursors and drying procedure affect the defects which can be formed in the structure of silica gel. The PL spectra of silica xerogels and cryogels consist of four bands at 2.00, 2.20, 2.32 and 2.46 eV. The band at 2.00 eV originates from the presence of silane at the surface of the sample. The non-stoichiometric composition of the structure of the gels produces a PL band at 2.20 eV.
The band at 2.32 eV is connected with the presence of organic residues which remain in the gel pores after drying. Increasing the network density allows the formation of \(E'\) paramagnetic defect centers which produce a PL band at 2.46 eV.

\[\text{Acknowledgement: This work was supported by the Ministry of Science, Technology and Development of the Republic of Serbia under the project No 1469.}\]

REFERENCES

Direct photolysis and photocatalytic degradation of 2-amino-5-chloropyridine

BILJANA F. ABRAMOVIĆ#, VESNA B. ANDERLUH#, ANDJELKA S. TOPALOV# and FERENC F. GAÁL#

Department of Chemistry, Faculty of Science, Trg D. Obradovića 3, 21000 Novi Sad, Serbia and Montenegro (e-mail: abramovic@ih.ns.ac.yu)

(Received 23 June 2003)

Abstract: The direct photolysis and photocatalytic degradation of a pyridine pesticide analogue, 2-amino-5-chloropyridine, were investigated employing different analytical techniques – potentiometry, for monitoring the pH and chloride generation, spectrophotometry, for studying the degradation of the pyridine moiety, ion chromatography, for monitoring nitrate formation, and total organic carbon analysis for investigating the efficiency of the process. The photocatalytic degradation was studied in aqueous suspensions of titanium dioxide under illumination by UV light. It was found that chloride evolution was a zero-order reaction which takes place by direct photolysis, in that way differing from the degradation of the pyridine moiety, which takes place in the presence of titanium dioxide. Changes in pH during degradation indicate the formation of acidic intermediates and nitrate in addition to chloride. The effect of the initial substrate concentration was also investigated by monitoring the reaction of chloride generation as well as the degradation reaction of the pyridine moiety. It was found that degradation of the parent compound (2.5 mmol/dm³) by direct photolysis is completed in about 20 minutes, and of the pyridine moiety by photocatalytic degradation in about nine hours. Based on the obtained data a possible reaction mechanism is proposed.

Keywords: direct photolysis, photocatalytic degradation, titanium dioxide, 2-amino-5-chloropyridine, water treatment.

INTRODUCTION

Pollution of waterstreams by different organic pollutants, among which pesticides are very common, represents a serious environmental problem. Several conventional methods of water treatment exist, and as such have found certain practical applications. They are, however, either slow or non-destructive for some more persistent organic pollutants. On the contrary, heterogeneous photocatalysis with titanium dioxide as catalyst under UV irradiation was proven to be an efficient method to completely mineralise organic compounds.¹–¹² Namely, during this
process, organic carbon and hydrogen are transformed to carbon dioxide and wa-
ter, while covalently bound halogen, nitrogen, sulphur and phosphorus are trans-
fomed to halide, ammonium/nitrite/nitrate, sulphate and phosphate, respectively.
It is also important to point out that the inertness, low toxicity and low cost of tita-
nium dioxide make it a good choice of semi conductor for heterogeneous photo-
catalysis.

When TiO₂ is illuminated with UV radiation, electron-hole pairs are formed. The thus generated holes are strong oxidizing agents ($E = +2.8 \text{ V}$). In the reaction between the photogenerated holes and the water molecules and hydroxyl ions adsorbed on the TiO₂ surface, hydroxyl radicals capable of the mineralization of organic compounds are formed:

\[
\text{TiO}_2 \xrightarrow{hv} \text{TiO}_2 (e^- + h^+) \\
h^+ + \text{H}_2\text{O} (\text{ads.}) \rightarrow \text{OH}^*(\text{ads.}) + \text{H}^+ \\
h^+ + \text{OH}^-(\text{ads.}) \rightarrow \text{OH}^*(\text{ads.})
\]

To prevent electron-hole recombination, it is necessary for the illumination to take place in the presence of an electron acceptor. For this purpose, illumination is most often carried out in an oxygen stream:

\[
e^- + \text{O}_2 (\text{ads.}) \rightarrow \text{O}_2^- (\text{ads.})
\]

In this work, the photocatalytic degradation of an analogue of pyridine pesticides, 2-amino-5-chloropyridine, was studied by potentiometry, spectrophotometry, ion chromatography and by monitoring the change in the content of total organic carbon (TOC) in order to gain insight into the reaction kinetics and the nature of the intermediates involved and, consequently, to propose the probable mechanism of 2-amino-5-chloropyridine photodegradation. The effect of the initial concentration was also investigated.

EXPERIMENTAL

Chemicals and solutions

All chemicals used in the investigation were reagent grade and were used without further puri-
fication. 2-Amino-5-chloropyridine was purchased from Merck. The titanium dioxide used as photocatalyst was Degussa P25 (predominantly anatase, 50 m²/g, nonporous). The solutions were prepared with doubly distilled water. Milli-Q water was used as a component of the mobile phase in the ion chromatography.

For the investigation of the effect of the initial concentration of 2-amino-5-chloropyridine, stock solutions (2.5 and 2.9 mmol/dm³) were prepared. These solutions were diluted to prepare solutions of lower concentrations for investigation.

Standard chloride solutions for calibration were prepared by dilution of stock sodium chloride solution (100 mmol/dm³) to obtain solutions in the concentration range 0.01 – 3 mmol/dm³.

Photodegradation procedure

For the irradiation experiments, 20.0 cm³ of the to be investigated compound solution were measured into a double-walled photochemical cell made of Pyrex glass, equipped with a magnetic stirring bar. Then 40 mg of titanium dioxide were added, the solution was sonicated to make the par-
particles uniform and then thermostated at 40 ± 0.5 °C in a stream of oxygen. A 125 W Philips HPL-N mercury lamp with the highest emitted intensity in the UV region at 366 nm, was used as the irradiation source.

Analytical procedure

The changes in the concentration of chloride generated during the degradation were monitored using a chloride ion selective electrode (Mettler Toledo Me-51340400) coupled to a saturated calomel electrode (Iskra K401) via a potassium nitrate electrolytic bridge and connected to a pH-meter (Radiometer PHM62). KNO₃ (100 mmol/dm³) was added to maintain the ionic strength during irradiation constant.

Changes in the pH during the degradation were monitored by continuous potentiometry using a combined glass electrode (Iskra) connected to a recorder (Goerz Electro, type Servogor SbRE 647.9) via a pH-meter (Iskra MA 5706).

For spectrophotometric determinations during the degradation of the substrate in the presence of TiO₂, as well as for direct photolysis experiments, aliquots of 0.2 cm³ of the reaction mixture were taken at regular time intervals and diluted to 10.00 cm³. The solutions containing TiO₂ were filtered through membrane filters (Millex-GV, 0.22 μm) to separate the TiO₂ particles before their spectra were recorded in the wavelength range from 200 to 400 nm using a Secomam Anhelic Advanced 2 spectrophotometer. The kinetics of the degradation were monitored at 239 nm.

For ion chromatographic determinations, aliquots of 0.25 cm³ of the reaction mixture were taken at regular time intervals and diluted to 10.00 cm³. After dilution, these solutions were filtered in the same manner as for the spectrophotometric measurements, and analysed on an ion chromatograph Dionex DX-120 equipped with a Dionex AS14 column and a conductometric detector. The eluent was a mixture of Na₂CO₃ (3.5 mmol/dm³) and NaHCO₃ (1 mmol/dm³), flow rate 1.23 cm³/min. For TOC analysis, samples were irradiated for different time intervals and analysed using a Euroglass TOC 1200 analyzer.

RESULTS AND DISCUSSION

The rate of 2-amino-5-chloropyridine degradation was monitored by measuring the rate of chloride formation because these two processes take place simultaneously. Since our results and the declaration of the manufacturer indicated the presence of chloride in the catalyst, for the calibration of the chloride electrode, titanium dioxide was added to the standard chloride solutions in the same amount as employed for the irradiation experiments.

The effect of the initial concentration of the substrate on the rate of chloride generation, as well as on the rate of substrate disappearance in the presence of titanium dioxide is presented in Fig. 1A. On the basis of these kinetic curves, a linear dependence of ln \(\frac{c}{c_0} \) on illumination time was obtained for heterogeneous photocatalysis for all the investigated initial concentrations (insert in Fig. 1A). This suggests that over the entire investigated concentration range, the degradation reaction of the substrate is first-order. The calculated values for the rate constant (k) are presented in Table I, together with the correlation coefficients for each of the fitted lines, and the corresponding half-life values. As can be seen, the values obtained for the rate constant are significantly higher than those found in literature, which they should be according to a mechanism involving hydroxyl radicals in the presence of titanium dioxide, independent of the type of the compound. This would suggest that the reaction of chloride generation, i.e., degradation of the initial compound, is not
governed by hydroxyl radical formation on titanium dioxide, but that it takes place by another mechanism. For this reason the effect of the initial substrate concentration on the kinetics of chloride generation by direct photolysis was also investigated (Fig. 1B). It was found that the reaction of chlorine elimination not only occurs in the absence of titanium dioxide, but that it is faster and of zero-order (Table II), further supporting the assumption that the reaction takes place via a different mechanism. In this case, the opacity and light scattering by the titanium dioxide slurry diminishes the intensity of UV light, which explains the lower values for the rate of chloride generation in the presence of titanium dioxide. This effect becomes more evident with increasing initial substrate concentration and can be explained by the fact that there are more substrate molecules at higher concentrations resulting in a lower photon efficiency.

The results represented in Table I also show that the degradation rate in the presence of titanium dioxide depends on the initial 2-amino-5-chloropyridine concentration in a
way that the rate constant k decreases with increasing initial concentration. This finding indicates that the degradation kinetics of 2-amino-5-chloropyridine are not of simple first-order but pseudo-first-order. Furthermore, the slopes of the lines and the k values presented in Table I show that the reaction rate constant decreases rapidly at lower initial substrate concentrations, while at higher initial concentrations, it decreases more slowly.

A high rate of the degradation of the initial compound does not necessarily indicate its complete mineralization. Namely, the formation of much more stable, and what is worse probably more toxic intermediates, is very common. For this reason a spectrophotometric method was used for monitoring the rate of the degradation of the pyridine moiety. It was
found that the UV spectrum of the investigated compound has two distinct absorption maxima in the range from 200 to 340 nm (Fig. 2). During illumination, Fig. 2, both the absorption maxima decrease which indicates the destruction of the pyridine moiety. The change in the concentration of the pyridine moieties during illumination are presented in Fig. 3, curves 2–6. From the obtained kinetic curves, it can be concluded that the time necessary for the elimination of chlorine (direct photolysis) is significantly lower (about 25 times) than the time necessary for the complete destruction of the pyridine moieties. This indicates that the chlorine elimination reaction dominates in the first part of the process, after which the reaction of the destruction of the pyridine moieties takes place i.e., the degradation of all the pyridine intermediates.

TABLE I. Effect of the initial concentration \(c_0\) of 2-amino-5-chloropyridine on the photodegradation rate

<table>
<thead>
<tr>
<th>(c_0) (mmol/dm(^3))</th>
<th>(10^2 k/\text{min}^{-1})</th>
<th>(r^\dagger)</th>
<th>(t_{1/2})/min(^\ddagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>15</td>
<td>0.999</td>
<td>3.76</td>
</tr>
<tr>
<td>2.0</td>
<td>7.1</td>
<td>0.999</td>
<td>9.33</td>
</tr>
<tr>
<td>2.5</td>
<td>6.3</td>
<td>0.999</td>
<td>10.72</td>
</tr>
<tr>
<td>2.9</td>
<td>5.5</td>
<td>0.999</td>
<td>12.56</td>
</tr>
</tbody>
</table>

\(^\dagger\)First-order rate constant; \(^\ddagger\)linear regression coefficient; \(^\ddagger\)half-life

The degradation of the pyridine moieties was also investigated by direct photolysis (Fig. 3, curve 1). As can be seen, complete degradation of the pyridine moieties does not occur, indicating the advantage of the application of heterogeneous photocatalysis.

TABLE II. Effect of the initial concentration \(c_0\) of 2-amino-5-chloropyridine on the direct photolysis rate

<table>
<thead>
<tr>
<th>(c_0) (mmol/dm(^3))</th>
<th>(10^4 k/(\text{mol dm}^{-3} \text{ min}^{-1}))</th>
<th>(r^\dagger)</th>
<th>(t_{1/2})/min(^\ddagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.33</td>
<td>0.998</td>
<td>3.41</td>
</tr>
<tr>
<td>1.5</td>
<td>1.32</td>
<td>0.999</td>
<td>5.39</td>
</tr>
<tr>
<td>2.0</td>
<td>1.28</td>
<td>0.999</td>
<td>7.39</td>
</tr>
<tr>
<td>2.5</td>
<td>1.11</td>
<td>0.999</td>
<td>10.96</td>
</tr>
</tbody>
</table>

\(^\dagger\)Zero-order rate constant; \(^\ddagger\)linear regression coefficient; \(^\ddagger\)half-life

Monitoring the kinetics of photocatalytic degradation by means of the change in the pH has mainly been employed for the investigation of simple molecules, such as chloroform, tetrachloromethane or dichloromethane, where practically no intermediates are formed, and therefore the formation of hydronium ions directly corresponds to the kinetics of the degradation of the initial compound.\(^3\) This is not usually the case with more complex molecules where the change in the pH cannot be used for kinetic analysis, but, nevertheless, its monitoring during a photocatalytic process gives valuable insight into the net changes in the investigated system. Thus, the change in the pH monitored during the irradiation of a \(\approx 2.5\) mmol/dm\(^3\) 2-amino-5-chloropyridine solution (Fig. 4, curve 3) confirms that the process of chloride generation dominates since a sudden drop of pH occurs, although its value is higher than it should be if only hydrochloric acid were formed, indicat-
Fig. 4. Typical diagram of the degradation of 2-amino-5-chloropyridine in the presence of TiO₂ (2 mg/cm³): (1) TOC; (2) normalized concentration of the pyridine moiety; (3) pH; (4) normalized nitrate concentration.

Fig. 5. Possible mechanism for the photocatalytic degradation of 2-amino-5-chloropyridine.
ing protonation of the pyridine nitrogen, as well as the formation of ammonium ions. The further decrease of pH is most likely due to the formation of formic, acetic and nitric acids. The evolution of nitrate was confirmed by ion chromatography (Fig. 4, curve 4), but only after three hours of illumination and in relatively low concentrations. The continuous decrease of pH value even after the complete degradation of the compound (20 h) indicates the gradual transformation of ammonium ions to nitrate.2

As it can be seen from the results of the TOC measurements (Fig. 4, curve 1), during the first part of the process, the change in TOC is small. The subsequent steady decrease of the TOC with time confirms the complete mineralization of the initial compound, as well as the intermediates formed during the process. After 9 h of irradiation (when all the pyridine moieties had been degraded, Fig. 4, curve 2), the initial TOC had been reduced by about 80 %, indicating possible presence of formic and acetic acids.

Taking into account the nature of some of the observed species and the rate of their disappearance, as well as literature data,2,3,12,15–17 the probable mechanism of the photocatalytic degradation of 2-amino-5-chloropyridine is shown in Fig. 5. As can be seen, in the first stage substitution of the Cl atom by an OH group takes place.3,12,16 After that the NH2 group and one of the ring H atoms are substituted by OH radicals.17 The substituted amino group is further transformed to nitrogen containing inorganic ions (predominantly in the form of NH4+).17 The parent compound, after transformation into a polyhydroxylic pyridine readily undergoes ring opening and further degradation to acetic and formic acid, carbon dioxide and nitrogen containing inorganic ions (predominantly in the form of NH4+).2,15 By a further action of OH radicals, the acetic and formic acid are decomposed into CO2 and H2O.

In order to confirm the efficiency of the photocatalytic degradation, the degradation kinetics were monitored in the absence of TiO2 in both the presence and absence of sunlight. It was found that the substrate decomposes spontaneously under sunlight but at a lower rate (Fig. 6, curve 2). After 115 days of exposition of substrate solutions to daily sunlight about 40 % of the

Fig. 6. Kinetics of the degradation of 2-amino-5-chloropyridine (2.5 mmol/dm³) in the absence of TiO2 monitored by spectrophotometry: (1) in the dark; (2) in sunlight.
substrate had been degraded. The solutions protected from sunlight showed no change even after 80 days (Fig. 6, curve 1). These results indicate that, as was expected, the most efficient method for the destruction of the substrate is irradiation in the presence of TiO$_2$.

Acknowledgement. The work is financed by the Ministry of Science, Technology and Development of the Republic of Serbia (Project: “Development of New and Improvement of the Existing Analytical Methods and Techniques for Monitoring the Quality of the Environment”, No 1622). The authors are grateful to the Department of Inorganic and Analytical Chemistry of the Faculty of Sciences, University of Szeged, for making the TOC measurements possible.

REFERENCES
Normal-phase high performance liquid chromatography of estradiol derivatives on amino- and diol- columns

MARIJANA M. AČANSKI

Department of General and Inorganic Chemistry, Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia and Montenegro (e-mail: marijana@tehnol.ns.ac.yu)

(Received 7 April, revised 13 August 2003)

Abstract: The retention behaviour of estradiol derivatives was studied by HPLC on chemically bonded polar stationary phases: commercially available amino- and diol- columns, as a function of the heptane-propan-1-ol as the mobile phase, when the volume fraction of propan-1-ol in the binary mobile phase was low, even less than 5 %. The relationship between the logarithm of the retention constant (log \(k \)) and the logarithm of the volume fraction of propan-1-ol (–log \(\phi \)) in the eluent was linear for all solutes studied. The results are discussed in terms of the solute and stationary phase properties and compared with the results of the same derivatives obtained in earlier investigations.

Keywords: HPLC, amino- and diol- columns, non-aqueous eluent, estradiol derivatives, retention behaviour.

INTRODUCTION

Estrogens\(^1\) are important physiologically active substances produced by the ovaries. Among the most important estrogens is estradiol. Some simple chemical modification of the basic structure of the steroid can have a direct effect on the activity, in particular on the binding activity, of estradiol.

In our previous papers\(^2\)–\(^6\) the retention behaviour and retention mechanism of some estradiol and estrone derivatives chromatographed on silica gel, alumina, chemically bonded polar phases and C-18 bonded silica gel in normal and reversed phase, using several non-aqueous and aqueous eluents, was described. The type of the stationary and mobile phases, as well as the nature, number, and position of substituents in the molecule of the steroids were observed to have significant and distinct effects on the retention.

Non-aqueous mobile phases are more often used with chemically bonded polar stationary phases\(^7\)–\(^10\) than are aqueous mobile phases. Amino- and diol- stationary phases bonded on a silica gel support, comprising three carbon atoms (aminopropyl and 1,2-dihydroxypropylether), are less polar than non-modified silica gel or alumina adsorbents. The bonded chains are not long enough to provide efficient shielding of the residual silanol
groups, which could not be modified in the silanization procedure because of steric reasons. As a result of this, chemically bonded polar stationary phases provide for more specific interaction at the surface and have operating advantages over traditional silica gel columns.

Several studies have reported that the competitive model of adsorption can be used to describe retention on chemically bonded polar phases in normal-phase chromatography. This model yields, with some simplification, Eq. (1) describing the dependence of the retention (capacity factor, \(k \)) on the mole fraction of the polar solvent, \(N_b \), in a binary mobile phase comprised of a polar solvent and a none-polar one:

\[
\log k = \log k_0 - n \log N_b
\]

In this exponential equation, \(n \) is a constant giving the ratio of the molecular area on the adsorbent surface occupied by one molecule of the sample solute to that occupied by one molecule of the polar solvent. The concentration can often be expressed as the volume fraction, \(\varphi \), instead of the mole fraction:

\[
\log k = \log k_0 - n \log \varphi
\]

In addition, the competitive model does not take into account so-called secondary solvent effects. These effects, resulting from solute–solvent interactions in both the mobile and adsorbed phases, give rise to some of the most useful changes in retention and are often the source of chromatographic selectivity.

Although Eq. (2) is widely known in the chromatographic literature, Jandera and Churaček have shown that for normal phase liquid–liquid chromatography the relationship between logarithm retention constant \(\log k \) and volume fraction of the more polar component, \(\varphi \), in a binary eluent is better represented by the quadratic expression:

\[
\log k = a\varphi^2 + b\varphi + c
\]

Assuming that the quadratic term can be ignored, to a first approximation, they obtained Eq. (4):

\[
\log k = \log k_0 - m\varphi
\]

This model interprets that the retention and retention mechanism are governed by a partitioning process.

This paper investigates the retention behaviour and retention mechanism of estradiol derivatives on amino- (aminopropyl) and diol- (1,2-dihydroxypropylether) columns using heptane-propan-1-ol eluents. The volume fraction of propan-1-ol in the binary mobile phases was low, even less than 5%.

The compounds and their molecular structures are listed in Table I.

EXPERIMENTAL

The separations were performed with a Milton Roy (Riviera Beach, FL, USA) Consta Metric 3000 pump and a Milton Roy Spectro Monitor 3160 variablewavelength UV-vis detector set at 254 nm. The samples were injected using a Rheodyne 7125 valve (Cotati, CA, USA) fitted with a 20 \(\mu \)L loop. The columns
used were commercially available 5 μm LiChrosorb NH₂ and LiChrosorb DIOL, 250×4 mm i.d. (E. Merck, Darmstadt, Germany).

TABLE I. IUPAC names and chemical structures of the studied compounds

<table>
<thead>
<tr>
<th>No.</th>
<th>IUPAC Name</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,17β-Dihydroxyestra-1,3,5(10)-triene (estradiol)</td>
<td>OH</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3-Methoxy-17β-hydroxyestra-1,3,5(10)-triene</td>
<td>a)OMe</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3-Acetoxy-17β-hydroxyestra-1,3,5(10)-triene</td>
<td>b)OAc</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3,17β-Diacetoxyestra-1,3,5(10)-triene</td>
<td>OAc</td>
<td>OAc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3-Propionoxy-17β-hydroxyestra-1,3,5(10)-triene</td>
<td>c)OPr</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>3-Hydroxy-17β-propionoxy estra-1,3,5(10)-triene</td>
<td>OH</td>
<td>OPr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3,17β-Dipropionoxyestra-1,3,5(10)-triene</td>
<td>OPr</td>
<td>OPr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3-Benzoyloxy-17β-propionoxy estra-1,3,5(10)-triene</td>
<td>d)OBz</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3,17β-Dibenzyloxyestra-1,3,5(10)-triene</td>
<td>OBz</td>
<td>OBz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3-Acetoxy-17β-benzzyloxyestra-1,3,5(10)-triene</td>
<td>OAc</td>
<td>OBz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3,17β-Dihydroxyestra-1,3,5(10)-triene-6-one</td>
<td>OH</td>
<td>=O</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3-Methoxy-17β-hydroxyestra-1,3,5(10)-triene-6-one</td>
<td>OMe</td>
<td>=O</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3-Hydroxy-17β-propionoxy estra-1,3,5(10)-triene-6-one</td>
<td>OH</td>
<td>=O</td>
<td>OPr</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3,17β-Dipropionoxy-1,3,5(10)-triene-6-one</td>
<td>OPo</td>
<td>=O</td>
<td>OPr</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3,9a-Dihydroxy-17β-propionoxyestra-1,3,5(10)-triene-6-one</td>
<td>OH</td>
<td>=O</td>
<td>α-OH</td>
<td>OPr</td>
</tr>
<tr>
<td>15</td>
<td>3,17β-Dipropionoxy-9a-hydroxyestra-1,3,5(10)-triene-6-one</td>
<td>OPo</td>
<td>=O</td>
<td>α-OH</td>
<td>OPr</td>
</tr>
</tbody>
</table>

a)OMe–OCH₃, b)OAc–OCOCH₃, c)OPr–OCOCH₂CH₃, d)OBz–OCOC₆H₅

The estradiol derivatives (Table I), synthesized by original reactions or according to literature methods, were dissolved (0.005 mg mL⁻¹) in methanol and the solutions prefiltered through a 0.2 μm Chromafil filter (Macherey-Nagel, Düren, Germany).

One binary solvent system, heptane−propan-1-ol was used as the mobile phase with varying contents of the more polar component; propan-1-ol 1−20 %; increments 2 and 5 %. The solvents used to prepare the mobile phases were of analytical grade and were filtered through a 0.45 μm filter and degassed before use. The flow rate was 1 mL min⁻¹ at room temperature.

The retention factor, k, was calculated from $k = (t_r - t_0) / t_0$, where t_0 is the retention time of the solute and t_0 the column void time measured using the solvent disturbance peak obtained when trace amounts of methanol were injected into the column. Each t_r value was measured in triplicate and averaged.

RESULTS AND DISCUSSION

The logarithmic relationship between the retention factor, k, of the investigated compounds and the volume fraction, φ, of the propan-1-ol as the stronger solvent in the binary
eluent, for both columns was linear. This behaviour suggests that the model based on Eq. (2) is suitable to describe the experimental behaviour of estrodiol derivatives on both columns. The numerical data for \log k and the constants \(n\) and \(\log k_0\) for each studied compound for the amino- and diol- column with heptane–propan-1-ol as the eluent are presented in Tables II and III, respectively. The correlation coefficients from linear regression analysis of the experimental \log k values varied from 0.9959 to 1. The linear relationship between the logarithm of the retention constant and the logarithm of the volume fraction of

Fig. 1. Correlation lines of Eq. (2) for the amino column and eluent heptane–propan-1-ol; compound designation as in Table I.

Fig. 2. Correlation lines of Eq. (2) for the diol column and eluent heptane–propan-1-ol; compound designation as in Table I.
propan-1-ol in the eluent for compounds 1, 2, 3, 4, 6, 9 and 10 on the amino- and diol- columns are presented in Figs. 1 and 2, respectively.

TABLE II. Retention data and constants n and log k_0 of Eq. (2) of the estradiol derivatives for the amino column; r-correlation coefficient; φ is the concentration of propan-1-ol % (v/v) in the binary mobile phase heptane–propan-1-ol.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>log k_0</th>
<th>n</th>
<th>log k_0</th>
<th>0.2</th>
<th>0.15</th>
<th>0.1</th>
<th>0.05</th>
<th>0.03</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–0.25</td>
<td>–0.134</td>
<td>0.065</td>
<td>0.383</td>
<td>–</td>
<td>–</td>
<td>1.06</td>
<td>–0.998</td>
<td>0.9999</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–0.291</td>
<td>–0.004</td>
<td>0.191</td>
<td>0.643</td>
<td>0.93</td>
<td>–1.221</td>
<td>0.9999</td>
</tr>
<tr>
<td>3</td>
<td>–0.386</td>
<td>–0.271</td>
<td>–0.06</td>
<td>0.265</td>
<td>0.506</td>
<td>–</td>
<td>1.1</td>
<td>–1.159</td>
<td>0.9999</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–0.586</td>
<td>–0.412</td>
<td>–0.28</td>
<td>0.002</td>
<td>0.59</td>
<td>–1.176</td>
<td>0.9999</td>
</tr>
<tr>
<td>5</td>
<td>–0.526</td>
<td>–0.381</td>
<td>–0.18</td>
<td>0.158</td>
<td>0.41</td>
<td>–</td>
<td>1.14</td>
<td>–1.317</td>
<td>0.9999</td>
</tr>
<tr>
<td>5a</td>
<td>–0.468</td>
<td>–0.313</td>
<td>–0.098</td>
<td>0.313</td>
<td>0.529</td>
<td>–</td>
<td>1.24</td>
<td>–1.328</td>
<td>0.9988</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–0.966</td>
<td>–0.78</td>
<td>–0.63</td>
<td>–0.34</td>
<td>0.63</td>
<td>–0.1599</td>
<td>0.9944</td>
</tr>
<tr>
<td>7</td>
<td>–0.468</td>
<td>–0.318</td>
<td>–0.131</td>
<td>0.2</td>
<td>0.44</td>
<td>–</td>
<td>1.1</td>
<td>–1.229</td>
<td>0.9998</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>–</td>
<td>–0.852</td>
<td>–0.676</td>
<td>–0.53</td>
<td>–0.24</td>
<td>0.61</td>
<td>–1.469</td>
<td>0.9998</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–0.762</td>
<td>–0.58</td>
<td>–0.44</td>
<td>–0.17</td>
<td>0.59</td>
<td>–1.35</td>
<td>0.9996</td>
</tr>
<tr>
<td>10</td>
<td>0.153</td>
<td>0.35</td>
<td>0.698</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.83</td>
<td>–1.133</td>
<td>0.9991</td>
</tr>
<tr>
<td>11</td>
<td>–0.177</td>
<td>–0.029</td>
<td>0.257</td>
<td>0.63</td>
<td>–</td>
<td>–</td>
<td>1.36</td>
<td>–1.129</td>
<td>0.9991</td>
</tr>
<tr>
<td>12</td>
<td>–0.294</td>
<td>–0.163</td>
<td>0.1</td>
<td>0.454</td>
<td>–</td>
<td>–</td>
<td>1.26</td>
<td>–1.182</td>
<td>0.9999</td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–0.278</td>
<td>–0.043</td>
<td>0.131</td>
<td>0.504</td>
<td>0.78</td>
<td>–1.06</td>
<td>0.9999</td>
</tr>
<tr>
<td>14</td>
<td>0.112</td>
<td>0.301</td>
<td>0.646</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.79</td>
<td>–1.151</td>
<td>0.9986</td>
</tr>
<tr>
<td>15</td>
<td>–0.267</td>
<td>–0.082</td>
<td>0.217</td>
<td>0.62</td>
<td>–</td>
<td>–</td>
<td>1.48</td>
<td>–1.294</td>
<td>0.9988</td>
</tr>
</tbody>
</table>

The retention behaviour of the estradiol derivatives on both columns were very similar and in accordance with the general retention behaviour in normal phase liquid chromatography. The retention sequence obtained with the eluent heptane–propan-1-ol is that predicted on the basis of the polarity of the compounds; the more polar solutes, compounds 1, 10 and 14 were more strongly retained and vice versa.

All the studied estradiol derivatives are more strongly retained on the amino column than on the diol column. Namely, both functions can form hydrogen bonds using both their own hydrogen atoms and hydrogen originating from the solute or solvent molecules, but only the amino function can be protonated.

The adsorption characteristics of the stationary phase of both columns are the consequence of proton acceptor-donor behaviour.

The slopes for the same compounds on the different columns (Tables II and III) were very similar. Because of this it was possible to average the values. Slope n in Eq. (2) is the change of the retention constant log k with the change of the volume fraction, φ, in the eluent and can be expressed as:
TABLE III. Retention data and constants \(n \) and \(\log k_0 \) of Eq. (2) of the estradiol derivatives for the diol column; \(r \)-correlation coefficient; \(\varphi \) is the concentration of propan-1-ol \((v/v)\) in the binary mobile phase heptane–propan-1-ol.

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>0.2</th>
<th>0.15</th>
<th>0.1</th>
<th>0.05</th>
<th>0.03</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\log \varphi)</td>
<td>0.7</td>
<td>0.82</td>
<td>1</td>
<td>1.3</td>
<td>1.52</td>
<td>2</td>
</tr>
<tr>
<td>Comp.</td>
<td>(n)</td>
<td>(\log k_0)</td>
<td>(r)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>–0.199</td>
<td>–0.069</td>
<td>0.13</td>
<td>0.44</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–0.289</td>
<td>0.018</td>
<td>0.185</td>
<td>0.676</td>
</tr>
<tr>
<td>3</td>
<td>–0.474</td>
<td>–0.313</td>
<td>–0.058</td>
<td>0.272</td>
<td>0.458</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–0.769</td>
<td>–0.568</td>
<td>–0.42</td>
<td>0.088</td>
</tr>
<tr>
<td>5</td>
<td>–0.535</td>
<td>–0.435</td>
<td>–0.169</td>
<td>0.156</td>
<td>0.354</td>
<td>–</td>
</tr>
<tr>
<td>5a</td>
<td>–0.568</td>
<td>–0.364</td>
<td>–0.082</td>
<td>0.277</td>
<td>0.51</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–1.165</td>
<td>–0.966</td>
<td>–0.805</td>
<td>–0.468</td>
</tr>
<tr>
<td>7</td>
<td>–0.56</td>
<td>–0.41</td>
<td>–0.145</td>
<td>0.176</td>
<td>0.383</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>–</td>
<td>–1.12</td>
<td>–0.896</td>
<td>–0.736</td>
<td>–0.388</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–1.018</td>
<td>–0.805</td>
<td>–0.639</td>
<td>–0.276</td>
</tr>
<tr>
<td>10</td>
<td>0.123</td>
<td>0.343</td>
<td>0.67</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>–0.201</td>
<td>–0.051</td>
<td>0.17</td>
<td>0.535</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>–0.363</td>
<td>–0.195</td>
<td>0.063</td>
<td>0.411</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–0.482</td>
<td>–0.24</td>
<td>0.078</td>
<td>0.274</td>
</tr>
<tr>
<td>14</td>
<td>0.081</td>
<td>0.296</td>
<td>0.641</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>–0.375</td>
<td>–0.195</td>
<td>0.091</td>
<td>0.479</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

From Eq. (5) it is clear that the retention of a compound which has a slope decreases faster with increasing \(\varphi \) in comparison with a compound which has a lower values of the constant \(n \). With increasing \(\varphi \), the interactions solute-stationary phase are reduced but the interactions solute–mobile phase are increased. On silica gel\(^2,17\text{–}19\) the retention and slope are strictly a function of the polarity of compound. More polar compounds have longer retentions and a bigger slope. However, in this and in earlier investigations\(^4\) on chemically bonded phases, this rule was not confirmed. The retention order of the estradiol derivatives on both columns for \(\varphi = 0.1 \) and order of the average values of constant \(n \) are as follows:

Amino

\[10 > 14 > 11 > 15 > 12 > 1 > 3 > 5a > 7 > 5 > 13 > 2 > 4 > 9 > 8 > 6 \]

Diol

\[10 > 14 > 11 > 15 > 12 > 3 > 5a > 7 > 5 > 2 > 13 > 4 > 9 > 8 > 6 \]

\(n = 14 > 15 > 7 > 3 > 11 > 12 > 5a > 5 > 1 > 2 > 13 > 9 > 9 > 6 > 4 \)

As the slopes of the solutes were not in accordance with their retention values there was no correlation between \(n \) and \(\log k_0 \) of the compounds.
IZVOD

VISOKO PRITISNA TECNA HRAMOTOGRAFIJA DERIVATA ESTRADIOLA NA AMINO- I DIOL-KOLONI SA NEVODENOM POKRETNOM FAZOM

MARIJANA M. AČANSKI
Odežewe za opću i neorgansku hemiju, Tehnološki fakultet, Univerzitet u Novom Sadu, Bulevar cara Lazara 1, 21000 Nova Sad

(Priměno 7. aprila, revidirano 13. avgusta 2003)

REFERENCES
The role of titanium oxide concentration profile of titanium oxide of RuO$_2$-TiO$_2$ coatings obtained by the sol-gel procedure on its electrochemical behavior

VLADIMIR V. PANIĆ1,*, ALEKSANDAR B. DEKANSKI1, VESNA B. MIŠKOVIC-STANKOVIĆ2, SLOBODAN K. MILONJIĆ3 and BRANISLAV Č. NIKO LJIC2

1ICTM–Center of Electrochemistry, University of Belgrade, Njegoševa 12, P.O. Box 473, 11001 Belgrade, Serbia, and 2Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11120 Belgrade and 3Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia and Montenegro

(Received 1 August 2003)

Abstract: In order to understand the role of TiO$_2$ in the deactivation mechanism of an active RuO$_2$–TiO$_2$ coating, an additional TiO$_2$ layer was introduced in the support/coating interphase of regular Ti/[RuO$_2$–TiO$_2$] anode in one case and on the surface of the coating in the other. The electrochemical behavior of these, with TiO$_2$ enriched, anodes was compared with the behavior of anodes with regular RuO$_2$–TiO$_2$ coatings, which were subjected to an accelerated stability test. A high-frequency semicircle in the complex plane plot, obtained by electrochemical impedance spectroscopy, for a regular RuO$_2$–TiO$_2$ coating corresponds to TiO$_2$ enrichment in the coating as a consequence of anode corrosion. In the case of the coatings with additional TiO$_2$ layers, a high-frequency semicircle was not observed. The additional TiO$_2$ layers increase the coating overall resistance and influence the coating impedance behavior at low frequencies. Similar equivalent electrical circuits were used to analyze the impedance behavior of coatings having an additional TiO$_2$ layer at different position within RuO$_2$–TiO$_2$ coating.

Keywords: RuO$_2$–TiO$_2$ coating, corrosion stability, oxide sols, sol-gel procedure, electrochemical impedance spectroscopy.

INTRODUCTION

Dimensionally stable anodes lose their electrocatalytic activity during long-term electrolysis, which leads to the end of their service life of an anode. Corrosion stability, i.e., anode service life, can be monitored by an accelerated stability test (AST)$^{1–4}$ which is based on the galvanostatic electrolysis of a dilute chloride solution at relatively high current density. In the AST, the end of the service life of an anode is seen as a sudden increase of the potential at constant current, which is caused by an increase in the coating resistance. The increase in resistance could be a consequence of the growth of an insulating TiO$_2$ layer in...
the substrate/coating interphase, caused by the oxidation of the Ti substrate, and/or by the anodic dissolution of catalytically active Ru species, which enriches the coating surface with insulating TiO$_2$. An erosion of the coating can also be involved in this deactivation pathway. The anode deactivation mechanism depends on the coating morphology. In earlier works, Ti/[RuO$_2$–TiO$_2$] anodes with considerably different service life were obtained by changing the conditions in the sol-gel procedure for the coating preparation, which resulted in oxide particles of different size and, consequently, differences in the coating morphology. Also, sol-gel prepared anodes have considerably longer service life than corresponding anodes prepared by the thermal decomposition of ruthenium and titanium chloride.

Electrochemical impedance spectroscopy (EIS) can provide useful information on the deactivation mechanism of oxide coatings. The appearance of a semicircle in the high frequency domain of a complex plane plot indicates the loss of the electrocatalytic activity of the RuO$_2$–TiO$_2$ coating. The resistance related to this semicircle does not depend on the electrode potential at which the EIS data were collected, but does depend on the employed electrolyte and its conductivity. Boots and co-workers registered similar impedance behavior for corroded RuO$_2$–IrO$_2$ and RuO$_2$–Co$_3$O$_4$ coatings.

From our earlier results and literature data, it is not clear whether the insulating TiO$_2$ layer, which causes the appearance of a semicircle, grows in the Ti substrate/coating interphase and/or on the surface of the corroded coating. The aim of this work was to investigate the influence of the concentration profile of titanium oxide in the RuO$_2$–TiO$_2$ coating on the electrochemical behavior of the anode, which should provide useful information about the anode deactivation mechanism.

EXPERIMENTAL

Preparation of anodes

The forced hydrolysis of chloride salts in extremely acid aqueous solutions at boiling temperature was used to prepare RuO$_2$ and TiO$_2$ sols. The solutions were aged for 46 h (RuO$_2$ sol preparation) and 30 h (TiO$_2$ sol preparation), in order to obtain the coating with the best characteristics. The oxide sols were mixed in amounts to produce a coating composition of 40% at. Ru–60% at. Ti. To prepare the regular RuO$_2$–TiO$_2$ coating, an appropriate amount of the mixture of sols, which would produced an amount of coating of 0.5 mg cm$^{-2}$ counted to the binary oxide, was applied onto titanium plates (2 cm \times 2 cm \times 1 mm). After drying at 70 °C in air, whereby a gel phase is formed on the surface, the sample was calcined at 450 °C in air. The additional TiO$_2$ layer in the substrate/coating interphase of a regular Ti/[RuO$_2$–TiO$_2$] anode was obtained by application of the appropriate amount of TiO$_2$ sol (to produce an amount of 0.3 mg cm$^{-2}$ of TiO$_2$) and thermal treatment under the same temperature regime. A TiO$_2$ layer on the coating surface was obtained in the same manner. Consequently, the notations of the investigated anodes are: Ti/[RuO$_2$–TiO$_2$], Ti/[TiO$_2$/RuO$_2$–TiO$_2$] and Ti/[RuO$_2$–TiO$_2$]/TiO$_2$. In some experiments, two TiO$_2$ layers were formed on the active RuO$_2$–TiO$_2$ coating surface.

Accelerated stability test of Ti/[RuO$_2$–TiO$_2$] anode

The AST of the Ti/[RuO$_2$–TiO$_2$] anode was performed by electrolysis of 0.5 mol dm$^{-3}$ NaCl, pH 2, at a constant current density of 400 mA cm$^{-2}$ and a temperature of 25 °C, in a cell with a Pt plate counter electrode. The changes in the anode potential were recorded during the AST. A sudden increase of the potential implies that the anode can no longer be used in practice (the end of service life). Illustration of an AST is given in Fig. 1.
Investigation of anode properties

The electrochemical properties of Ti//TiO$_2$/RuO$_2$ – TiO$_2$ and Ti//RuO$_2$ – TiO$_2$/TiO$_2$ anode as well as the properties of Ti//RuO$_2$ – TiO$_2$ anode before and after AST were investigated by cyclic voltammetry (CV) and EIS in 1 mol dm$^{-3}$ HClO$_4$ and by polarization measurements in 0.5 mol dm$^{-3}$ NaCl, pH 2. The cell was equipped with a magnetic stirrer, a Pt plate as counter electrode and a saturated calomel electrode (SCE) as the reference electrode. All potentials are expressed on the SCE scale. The impedance data were recorded using a 5 mV amplitude of sinusoidal voltage around the potential of 1.25 V over a frequency range of 100 kHz to 50 mHz and analyzed using a suitable fitting procedure. The experiments were performed at room temperature.

RESULTS AND DISCUSSION

Cyclic voltammetry

The cyclic voltammograms of a fresh (before AST) Ti//[RuO$_2$ – TiO$_2$] anode, a corroded (after AST) Ti//[RuO$_2$ – TiO$_2$] anode, a Ti//TiO$_2$/RuO$_2$ – TiO$_2$ and a Ti//[RuO$_2$ – TiO$_2$] anode are shown in Fig. 2. Within the potential window of electrolyte stability, the voltammograms are of similar shape, which is characteristic for the pseudocapacitive behavior of this type of electrode material. The anodes with an additional TiO$_2$ layer seem to be more active for hydrogen evolution than the regular Ti//[RuO$_2$ – TiO$_2$] anode. The voltammogram of the corroded anode and of the anodes containing an additional TiO$_2$ layer are tilted due to the considerable resistance of the coating, indicating the greater resistance of the Ti//TiO$_2$/RuO$_2$ – TiO$_2$ compared to the Ti//[RuO$_2$ – TiO$_2$] anode. This means that a more compact TiO$_2$ layer is formed in the interphase than on the coating surface. The insulating TiO$_2$ layer on the coating surface covers the active sites on the surface, but the inner active sites (in pores and cracks) are still active. The capacitive behavior is related to the inner active sites.
with capacitance and pore resistance in series. The number of active sites accessible to the electrolyte, i.e., the electrochemically active surface area, corresponds to the surface area under the anodic part of the voltammetric curves. The apparent anodic charge densities, in mC cm\(^{-2}\), obtained from the voltammograms for fresh Ti/[RuO\(_2\)-TiO\(_2\)], corroded Ti/[RuO\(_2\)-TiO\(_2\)], Ti/[TiO\(_2\)][RuO\(_2\)-TiO\(_2\)] and Ti/[RuO\(_2\)-TiO\(_2\)]/TiO\(_2\) anode are 12.25, 3.05, 13.10 and 8.72, respectively. A considerably smaller anodic charge is registered for the corroded Ti/[RuO\(_2\)-TiO\(_2\)] anode when compared to the others. This indicates a decrease in the number of active sites due to the continuous dissolution of Ru species during the AST. The additional TiO\(_2\) layer in the substrate/coating interphase does not significantly affect the anodic charge, but a lower value is registered for the anode with the TiO\(_2\) layer on the coating surface. These effects are expected, since insulating TiO\(_2\) on the surface covers the active RuO\(_2\) species but does not affect those species if it is placed in the interphase.

Polarization measurements

\(E\)-\(\log j\) plots of the investigated anodes are shown in Fig. 3. The plots have been corrected for the pseudo-ohmic voltage drop by the IR compensation procedure given for the PAR 273A potentiostat, used for the CV and polarization measurements. It should be mentioned that the resistance values required for the IR compensation followed the order:
Ti/RuO$_2$–TiO$_2$ coatings, indicating the increased value of the coating resistance after the AST and by addition of the TiO$_2$ layers, particularly by the layer in the substrate/coating interphase.

Regardless the kinetics and mechanism of the processes occurring on the anode, it is obvious that the Ti/RuO$_2$–TiO$_2$ anode shows the worst polarization characteristics, while the Ti/TiO$_2$/RuO$_2$–TiO$_2$ and Ti/TiO$_2$/RuO$_2$–TiO$_2$/TiO$_2$ anode behave similarly. It seems strange that the corroded Ti/RuO$_2$–TiO$_2$ anode shows good polarization characteristics, even better than the others in the region of higher current density. Although most of the electrocatalytically active RuO$_2$ species were dissolved during the AST, there are still enough active sites for a current (considerably smaller than the current used in the AST) to pass. The coating is more porous after the AST, the surface area is large and this effect overcomes the effect of RuO$_2$ dissolution. This statement can be supported by the fact that the overpotential decreases exponentially with the thickness of the porous layer, which is a feature known from the theory of porous electrodes. Since the dissolution of Ru species during the AST produces a coating with a more porous structure, the active sites of the corroded Ti/RuO$_2$–TiO$_2$ anode situated deeper in the bulk of the coating became involved in the reaction. On the contrary, the polarization data of the Ti/RuO$_2$–TiO$_2$ anode before the AST should relate to the active sites situated closer to the surface of the coating. It was found earlier that the number of active sites in the bulk of the coating is greater than on the coating surface due to surface enrichment in TiO$_2$ during the thermal formation of the coating.
Electrochemical impedance spectroscopy

The complex plane plots shown in Fig. 4 illustrate the impedance behavior of the prepared anodes in the oxygen evolution reaction. Figure 4a shows the EIS data collected over the whole frequency range (100 kHz–50 mHz), while Fig. 4b shows the high-frequency part of the plots from Fig. 4a. The lines in Fig. 4 give the results of the fitting procedure.

The anode deactivation by the AST is manifested by the appearance of high-frequency semicircle in the EIS plot for the corroded Ti\%/RuO$_2$–TiO$_2$ anode (Fig. 4b). Similar behavior was observed in an earlier work, and also by other authors. It was shown that the coating pore resistance, related to the high-frequency semicircle, depends on the electrolyte conductivity but not on the electrode potential. Figure 4a also shows that anode corrosion results in no significant changes in the characteristics of the semicircle related to charge transfer across the solution/coating interphase at lower frequencies.

Differences in the EIS behavior of the Ti\%/RuO$_2$–TiO$_2$ and Ti\%/RuO$_2$–TiO$_2$/TiO$_2$ anode are seen at high and low frequencies. Since the somewhat higher value of the electrolyte resistance of Ti\%/RuO$_2$–TiO$_2$ anode should rather be ascribed to experimental error, the main difference in their EIS behavior is registered at low frequencies. A considerably greater charge transfer semicircle is obtained for the Ti\%/RuO$_2$–TiO$_2$/TiO$_2$ anode, which again confirms the considerably smaller number of active sites that exchange charge with the electrolyte.
As can be seen in Fig. 4b, there is no evidence of a well-pronounced high-frequency semicircle in the plots of the EIS data for the anodes with an additional TiO\textsubscript{2} layer. This indicates that the morphology of the additional layer is different to that formed during anode deactivation. Also, the morphology of the additional TiO\textsubscript{2} layer depends on the position of the layer with respect to the RuO\textsubscript{2}–TiO\textsubscript{2} coating, which causes a difference in the anode impedance behavior. Concerning the anode with the TiO\textsubscript{2} layer on the coating surface, there is no significant difference in impedance behavior at high frequencies if the amount of TiO\textsubscript{2} on the coating surface is doubled (two additional layers: Ti//RuO\textsubscript{2}–TiO\textsubscript{2}/TiO\textsubscript{2}/TiO\textsubscript{2}), as illustrated by the Bode phase angle plots in Fig. 5. On the contrary, the differences in the low-frequency domain became more pronounced with increased amount of TiO\textsubscript{2} at the coating surface.

Equivalent electrical circuits

The simple equivalent electrical circuit (EEC) with the inscription $R_{\Omega}(R_{ct}Q)$10, where R_{Ω} is the solution resistance, R_{ct} is the charge transfer resistance across the active site/solution interphase, and Q is a constant phase element related to the coating capacitance, was sufficient to describe the impedance behavior of a freshly prepared Ti/[RuO\textsubscript{2}–TiO\textsubscript{2}] anode. In order to describe the anode impedance behavior after AST, additional elements, which represent the pore resistance, R_{p}, of TiO\textsubscript{2} layer formed during anode deactivation and Q_L, related to the TiO\textsubscript{2} layer capacitance, were included in the EEC: $R_{\Omega}(R_{p}Q_L)(R_{ct}Q)$.

The values of the parameters of the EEC elements are given in Table I. There are no considerable changes in the R_{ct} values, nor in the values of the parameters Y_0 and n for Q, which is consistent with the results and conclusions from polarization...
measurements. The charge transfer resistance is lower for the corroded anode, while the capacitance is higher. This is opposite to the CV results, which indicates that EIS “can see” deeper into the coating bulk than CV at the applied sweep rate. The unique feature caused by anode deactivation is the appearance of the R_pQ_L combination.

The EECs which describe the impedance behavior of the anodes with an additional TiO$_2$ layer in the substrate/coating interphase and two TiO$_2$ layers on the coating surface are similar to the EEC of the corroded Ti//RuO$_2$-TiO$_2$ anode. The same elements as in the case of the corroded anode constitute the EEC for Ti//RuO$_2$-TiO$_2$/TiO$_2$/TiO$_2$, where R_p is the pore resistance of the additional TiO$_2$ layers. The circuit inscription for Ti//TiO$_2$/RuO$_2$-TiO$_2$ anode is $R_Q(R_{cl}(R_{pL}))$, where R_{cl} is the resistance of the TiO$_2$ layer instead of R_p. Contrary to the corroded anode, the semicircles related to the additional TiO$_2$ layers and that related to charge transfer are highly overlapped and cannot be separately seen in the plots in Fig. 4. In the case of the Ti//RuO$_2$-TiO$_2$/TiO$_2$ anode, there is no evidence of the formation of a separate TiO$_2$ layer, and EEC is $R_{QD}(Q_{dl}(R_{cl}(Q_p)))$, where Q_{p} is a constant phase element related to the pseudocapacitance of RuO$_2$. This EEC indicates that the addition of TiO$_2$ on the coating surface enables the pseudocapacitance to be distinguished from the double layer capacitance, which is a known impedance feature of RuO$_2$-TiO$_2$ coatings with low RuO$_2$ content. The obtained Y_0 value of Q_p (Table I) is of the same order of magnitude as the capacitance that can be calculated from the voltammogram shown in Fig. 2 (10$^{-2}$ F cm$^{-2}$). This consideration indicates that the TiO$_2$ on the coating surface is highly doped with RuO$_2$ migrating from the neighboring RuO$_2$–TiO$_2$ layer during thermal treatments.

The values of the EEC parameters for the anodes with additional TiO$_2$ can be seen in Table I. The R_{cl} value obtained for Ti//RuO$_2$-TiO$_2$ is considerably lower than the R_p value obtained for the corroded Ti//RuO$_2$-TiO$_2$ anode, while the Y_0 value of Q_L for the latter is considerably lower. Even so, the Y_0 value of Q_L for Ti//RuO$_2$-TiO$_2$ is quite similar to the Y_0 value of Q obtained for fresh and corroded Ti//RuO$_2$-TiO$_2$ anodes, which indicates the doping effect from the neighboring RuO$_2$–TiO$_2$ layer, like in the case of the Ti//RuO$_2$-TiO$_2$/TiO$_2$ anode. This consideration leads to the conclusion that the R_{cl} value should not be considerably higher than the value of R_p for the corroded anode, which suggests the formation of TiO$_2$ in the substrate/coating interphase as the cause for deactivation of sol-gel prepared anodes is less probable. On the other hand, the Y_0 value of Q_L obtained for the Ti//RuO$_2$-TiO$_2$/TiO$_2$/TiO$_2$ anode is closer to the value obtained for the corroded anode than to the value for Ti//RuO$_2$-TiO$_2$ anode, while the R_p value is three orders of magnitude higher than for the corroded anode. This is due to the considerably greater compactness of the additional TiO$_2$ layers in the Ti//RuO$_2$-TiO$_2$ anode. The high compactness of the TiO$_2$ layer is also seen through the R_{cl} value registered for the Ti//RuO$_2$-TiO$_2$/TiO$_2$/TiO$_2$ anode being the highest, since the active sites are hardly accessible for the species involved in the charge transfer process.
TABLE I. The values of the equivalent electrical circuit parameters for the investigated anodes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anode</th>
<th>Before AST</th>
<th>After AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{\text{EEC}} \Omega</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>R_y \Omega</td>
<td>–</td>
<td>3.9</td>
<td>–</td>
</tr>
<tr>
<td>R_L \Omega</td>
<td>–</td>
<td>–</td>
<td>168</td>
</tr>
<tr>
<td>Q_L \Omega</td>
<td>103</td>
<td>96</td>
<td>150</td>
</tr>
<tr>
<td>\bar{n} \Omega</td>
<td>0.77</td>
<td>0.82</td>
<td>–</td>
</tr>
<tr>
<td>Q_{\text{dl}} \Omega</td>
<td>3.5 \times 10^{-3}</td>
<td>4.7 \times 10^{-3}</td>
<td>4.8 \times 10^{-3}</td>
</tr>
<tr>
<td>\bar{n} \Omega</td>
<td>0.91</td>
<td>0.87</td>
<td>0.96</td>
</tr>
<tr>
<td>Q_{\text{p}} \Omega</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>\bar{n} \Omega</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Q_{\text{p}} \Omega</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>\bar{n} \Omega</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The impedance behavior of the investigated anodes indicates that the loss of electrocatalytic activity of sol-gel prepared anodes is due to the formation of a TiO₂ layer on the coating surface rather than to the growth of a TiO₂ layer at the substrate-coating interphase.

CONCLUSION

Regular Ti/[RuO₂–TiO₂] anodes and anodes with additional TiO₂ layers in the substrate-coating interphase and on the coating surface were investigated by cyclic voltammetry, polarization measurements and electrochemical impedance spectroscopy. Cyclic voltammetry experiments showed a decrease in the electrochemically active surface area during corrosion of the RuO₂–TiO₂ coating and an increase in the coating resistance. The coating resistance is also increased by additional TiO₂ layers, particularly by a layer in the substrate-coating interphase. Similar conclusions about the coating resistance resulted from polarization measurements, but they indicated an increase in the porosity of the coating during anode corrosion. The mechanism of the deactivation of the Ti/[RuO₂–TiO₂] anode during long-term electrolysis is seen in its impedance behavior as the appearance of a high-frequency semicircle, as the consequence of TiO₂ enrichment in the coating. The data obtained by EIS measurements for the anode with two additional TiO₂ layers on the coating surface show similarity to the EIS data of the corroded Ti/[RuO₂–TiO₂] anode. The conclusion appears to be that the loss of anode activity of sol-gel prepared Ti/[RuO₂–TiO₂] anode is dominantly due to an enrichment of the coating surface with TiO₂ which remains after RuO₂ dissolution.
Acknowledgements: This research is financially supported by the Ministry of Science, Technology and Development, Republic of Serbia, Project No. 1230.

ИЗВОД

УЛОГА КОНЦЕНТРАЦИОНОНГ ПРОФИЛА ТИТАН-ОКСИДА У ЕЛЕКТРОХЕМИЈСКОМ ПОНАШАЊУ RuO₂–TiO₂ ПРЕВЛАКА ДОБИЈЕНИХ СОЛ-ГЕЛ ПОСТУПКОМ

ВЛАДИМИР В. ПАНИЋ1, АЛЕКСАНДРА Р. ДЕКАНСКИ1, ВЕСНА Б. МИШКОВИЋ-СТАНКОВИЋ2, СЛОБОДАН К. МИЛОВИЋ3 и БРАНИСЛАВ Ж. НИКОЛИЋ4

1ИХТМ - Центар за електрохемију, Њевошићева 12, Ј. ир. 815, 11000 Београд,
2Технолошко-машинњарски факултет, Карнеђијева 4, Ј. ир. 3503, 1120 Београд
и
3Институт за нукларне науке «Винча», Ј. ир. 522, 11001 Београд

У циљу испитивања улоге титан-оксида у деактивацији RuO₂–TiO₂ превлаке на титанској подлози, испитиване су особине анода са додатним слојем TiO₂ у међуфази подлога-превлака, односно на површини превлаке. Електрохемијско понашање ових упоређено је са понашањем анода са уобичајеном RuO₂–TiO₂ превлаком, као и са онима које су биле подвргнуте убрзаном тести стабилности. Појава полукружка у високо-фрејквентној области у дијаграмама у комплексној равни, која је регистрована спектроскопијом електрохемијске импеданције за уобичајене RuO₂–TiO₂ превлаке, а која је последица обогаћивања превлаке са TiO₂ током њене деактивације, није уочена код анода са додатним TiO₂ слојем. Додати TiO₂ слојеви повећавају омску опорност превлаке и утичу на импеданцијско понашање при ниским фрејквеницијама. За анализу импеданијског понашања превлака са додатим TiO₂ слојевима као и уобичајених RuO₂–TiO₂ превлака које су деактивиране коришћена су слична еквивалентна електрична кола.

(Примљено 1. августа 2003)

REFERENCES

Comparative electrochemical study of some cobalt(III) and cobalt(II) complexes with azamacrocycles and \(\beta\)-diketonato ligands

K. BABIĆ-SAMARDŽIJA\(^1\), S. P. SOVILJ\(^1\) and V. M. JOVANOVIĆ\(^2\)\(^*\) #

\(^1\)Faculty of Chemistry, University of Belgrade, P. O. Box 158, 11001 Belgrade, (e-mail: ssovilj@chem.bg.ac.yu) and \(^2\)ICTM, Department of Electrochemistry, Njegoševa 12, P. O. Box 815, 11000 Belgrade, Serbia and Montenegro (e-mail: vlad@elab.tmf.bg.ac.yu)

(Received 16 May, revised 21 August 2003)

Abstract: The electrochemical properties of eight mixed-ligand cobalt(III) and cobalt(II) complexes of the general formulas \([\text{Co}^{\text{III}}\text{(Rac)cyclam}]\text{(ClO}_4\text{)}_2\) (1)-(4) and \([\text{Co}^{\text{II}}\text{(Rac)tpmc}]\text{(ClO}_4\text{)}_3\) (5)-(8) were studied. The substances were investigated in aqueous NaClO\(_4\) solution and non-aqueous LiClO\(_4\)/CH\(_3\)CN solution by cyclic voltammetry at a glassy carbon electrode. In aqueous solution, cyclam and Rac ligands being soluble in water undergo anodic oxidation. Coordination to Co(III) in complexes 1-4, stabilizes these ligands but reversible peaks in cathodic region indicate the redox reaction Co\(^{\text{III}})/\text{Co}^{\text{II}}\) ion. In the case of the binuclear Co(II) complexes 5-8, peaks recorded on the CVs represent oxidation of the bridged Rac ligand. The complexes examined influence the cathodic reaction of hydrogen evolution in aqueous solutions by shifting its potential to more negative values and its current is increased. In non-aqueous solution the CVs of the ligands show irreversible anodic peaks for cyclam, tpmc and for the Rac ligands soluble in acetonitrile. The absence of any peaks in the case of the investigated complexes 1-4 indicates that coordination to Co(III) stabilizes both the cyclam and Rac ligands. Cyclic voltammograms of the complexes 5-8 show oxidation processes of the Rac ligand and Co(II) ions but the absence of a highly anodic peak of the coordinated macrocycle tpmc shows its stabilization. Contrary to in aqueous solution, the redox reaction Co(III)/Co(II) does not occur in acetonitrile indicating a higher stability of the complexes 1-4 in this media in comparison with the binuclear cobalt(II)-tpmc complexes 5-8.

Keywords: cobalt(III) and cobalt(II) complexes, azamacrocycles and \(\beta\)-diketonato ligands, cyclic voltammetry, glassy carbon.

INTRODUCTION

Complexes with macrocyclic polyanimes might serve as convenient building blocks for the construction of mixed-ligand mono- and polynuclear complexes.\(^1\) Tetraamine [14]and-N\(_4\) cyclam (1,4,8,11-tetraazacyclotetradecane) as a macro-
cyclic flexible ring can exist in the cis and trans configurations but only cis complexes have been observed in the presence of additional bidentate co-ligands. The \(N_2 \)-2-pyridylmethyl-substituted octaamine ligand \(tpmc \) (\(N,N',N'',N''' \)-tetakis(2-pyridyl methyl)-1,4,8,11-tetraazacyclotetradecane) through coordination provides interesting structural and chemical properties, i.e., invariable formation of binuclear molecules with strong affinity towards various anions to form bridged complexes and unusual stabilization of the divalent state of cobalt ion against oxidation to the trivalent state. Macro cyclic ligands such as \(cyclam \) and \(tpmc \) are very useful to form and stabilize mixed-ligand complexes with additional exocyclic ligand(s).

In this context, \(\beta \)-diketones are suitable to combine with other ligands of comparable ligating ability, especially because of their ability to form keto-enolate structures and a few different coordination modes. The chelating “pseudoaromatic” ring of \(\beta \)-diketones have found extensive application in the study of the formation of various types of metal complexes, as well as giving the opportunity to investigate them in terms of different \(\beta \)-diketones R-groups.

Therefore, these types of complexes could be interesting not only from aspects of molecular structures but from the electrochemical point of view as well, because structural and electronic factors may simultaneously affect the multi-redox peak potentials and catalytic features of the complexes. For example, cyclic voltammetric data for the cobalt(III)-\(cyclam \) oxalato complex suggest large electrochemical stability, as well as its possible catalytic effect on the electrochemical reduction of \(CO_2 \). In the case of the binuclear cobalt(II)-\(tpmc \) oxalato complex\(^8 \) multi-redox reactions of the metal centers and high electrochemical stability up to the potential of cobalt reduction were observed. The fact that the potential of hydrogen evolution is shifted to the anodic side in the presence of the complex indicates possible catalytic properties as well.\(^8 \) Electrochemical examination of mixed-ligand cobalt(III)-\(cyclam \) complexes with heterocyclic dithiocarbamates (\(Rdtc \))\(^12 \) show redox reactions of the Co(III) ion at potentials the position of which are influenced by the presence of different heterocyclic rings in the \(Rdtc \) ligand, while the preliminary results in acidic media show their inhibition of iron corrosion and influence on hydrogen evolution in acidic media.

For the above-mentioned reasons, eight new mixed-ligand cobalt complexes were synthesized and characterized elsewhere, i.e., cobalt(III) complexes with macrocyclic ligand \(cyclam \) or \(tpmc \) in binuclear cobalt(II) complexes with \(\beta \)-symmetric bidentate \(\beta \)-diketones (\(Rac \)), i.e., \(acac \) (2,4-pentanedionato), \(dibzac \) (1,3-diphenyl-1,3-propanedionato), \(hfac \) (1,1,1,5,5,5-dexafluoro-2,4-pentanedionato) or \(tmhd \) (2,2,6,6-tetramethyl-3,5-heptanedionato) ions, of the general formulas \([Co^{III}(Rac)\textit{cyclam}][\text{ClO}_4]_2 \) (1)–(4) and \([Co^{II}_2(Rac)\textit{tpmc}][\text{ClO}_4]_3 \) (5)–(8), respectively. The aim of this work was a comparative study of the electrochemical behavior of these compounds and corresponding ligands in aqueous and non-aqueous solutions by
cyclic voltammetry (CV) and their possible influence on hydrogen evolution and oxygen reduction.

EXPERIMENTAL

A glassy carbon (GC) disc electrode (Sigardur-Sigris Electrographite, GmbH, Germany) was used as the working electrode. The electrode was mechanically refreshed with emery paper of decreasing grain size, polished with alumina (0.5 μ particle size) and cleaned in 18 MΩ water in an ultrasonic bath. For each experiment, the prepared electrode was first examined in the basic electrolyte by CV before the substance was added to the solution. The counter electrode was a platinum wire. A saturated calomel electrode (SCE) was used as the reference in aqueous solution and a bridged SCE in CH₃CN.

All the complexes 1–8, macrocyclic cyclam and tpmc as well as the corresponding Rac ligands were examined in the concentration range of 10⁻⁶ to 10⁻⁴ M, in 0.1 M NaClO₄ aqueous solution and in 0.1 M LiClO₄ in CH₃CN. The solutions were prepared from analytical grade reagents and were maintained oxygen-free by purging with nitrogen.

<table>
<thead>
<tr>
<th>Structure of Rac ion</th>
<th>Abbreviations and name of Rac</th>
<th>Coordinate of Rac in complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acac</td>
<td>2,4-Pentanedionato ion</td>
<td>(1)</td>
</tr>
<tr>
<td>dibzac</td>
<td>1,3-Diphenyl-1,3-propanedionato ion</td>
<td>(2)</td>
</tr>
<tr>
<td>hfac</td>
<td>1,1,1,5,5,5-Hexafluoro-2,4-pentanedionato ion</td>
<td>(3)</td>
</tr>
<tr>
<td>tmhd</td>
<td>2,2,6,6-Tetramethyl-3,5-heptanedionato ion</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Cyclic voltammetry was performed at sweep rates of 25, 50 and 100 mV/s. The potential range examined was between −0.5 V to 2.0 V in aqueous and −1.5 V to 1.5 V in non-aqueous solution. All the potentials are given versus the SCE electrode.

The [Co(hfac)cyclam](ClO₄)₂ complex (at a concentration of 10⁻⁴ M) was examined in 0.1 M HClO₄ solution by cyclic voltammetry (potential range from −1.2 V to 1.2 V vs. SCE, sweep rate 25, 50, 100 mV/s) as well. Also, the possible influence of this complex on the reduction of oxygen was tested in 0.1 M HClO₄ solution saturated with O₂ at a rotating GC electrode at a sweep rate of 5 mV/s in the potential range 0.2 V to −1.1 V vs. SCE.

All of the experiments were performed at room temperature in a three electrodes – three-compartment electrochemical cell. The electronic equipment in all of the experiments consisted of a Pine Instrument, Model RDE4 Potentiostat and a Philips Model 8033 X-Y recorder.
RESULTS AND DISCUSSION

The series of eight complexes, with general formulas [Co^{III}(Rac)cyclam](ClO_4)_2 (1)–(4) (Fig. 1A) and [Co^{II}(Rac)tmpc](ClO_4)_3 (5)–(8) (Fig. 1B) and the corresponding macrocyclic cyclam and tmpc as well as Rac ligands were electrochemically characterized both in aqueous and non-aqueous solutions. The peak potentials for all of the ligands examined and for the complexes 1–8 are listed in Table II and the selected cyclic voltammograms are presented in Figs. 2–4.

Aqueous solution

The cyclic voltammogram of the GC electrode in aqueous (NaClO_4) solution in the absence of any compound shows no electron exchange occurred. With the addition of the macrocyclic ligands cyclam and tmpc one irreversible anodic peak appears at 0.95 V vs. SCE for the tetraaza amine only (Table II).^{13,8} The CVs for the Rac ligands soluble in water (H_{acac} and H_{hfac}) indicate the existence of an irreversible anodic peak at 1.05 V and 1.40 V vs. SCE, respectively, which should correspond to oxidation processes of the organic species.

Two anodic peaks in the 0.65–0.90 V and 1.50–1.60 V vs. SCE regions for the cobalt(III)-cyclam complexes 1–3 can be identified only at the beginning of the cyclization (Fig. 2A – insert). During continued scanning, these anodic peaks are no longer observed, which might point to the low stability of the complex species. The number of cycles before the stabilization depends on the Rac ligand in the order of hfac > acac > dibzac in the complexes 1–3. In the case of complex 4 with a coordinated tmhd ligand (Fig. 2B), the steady state was established already at the first cycle, which can contribute to the higher stabilization of this complex ion. However, the steady-state CVs of the complexes 1–4 exhibit a reverse peak in the
cathodic region (Table II and Fig. 2) in the region –0.25 V to –0.4 V depending on the Rac ligand. This pair of peaks probably indicates the redox reaction CoIII/CoII from the complexes 1–4 as other previously characterized Co(III)-cyclam complexes (with dithiocarbamato and oxalatoligands) also display a similar redox pair at potentials influenced by the additional ligand.\(^3\)\(^,\)\(^1\)\(^3\) In relation with these peaks, the highly cathodic peak at –1.15 V probably represent reduction to metal cobalt.

Peaks recorded on the CVs of the cobalt(II)-tpmc complex 5–8 between about 0.90 V to 1.40 V vs. SCE correspond to oxidation processes of the electroactive Rac ligands, exhibiting almost the same potential values for the free and coordinated β-diketonato ligands (Fig. 2A). The absence of any peak for the complex 6 with a coordinated dibzac ligand indicates its higher stability in aqueous media under the given electrochemical conditions. Only in the case of the complexes 5 and 8, with coordinated acac and tmhd ligand, respectively, a poorly defined cathodic peak at –1.15 V vs. SCE points to the reduction process to metal cobalt (Table II
and Fig. 2B).8 The dependence of the peak current on the sweep rate indicates that all of the reactions are surface localized and not diffusion controlled, which should mean that the complexes are adsorbed on the electrode surface.

TABLE II. The peak potentials of the ligands and the corresponding complexes in aqueous (NaClO\textsubscript{4}) and non-aqueous (LiClO\textsubscript{4}/CH\textsubscript{3}CN) solutions vs SCE

<table>
<thead>
<tr>
<th>Compound</th>
<th>Aqueous solution</th>
<th>Non-aqueous solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{pa})</td>
<td>(E_{pc})</td>
</tr>
<tr>
<td>tpme</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>cyclam</td>
<td>0.95</td>
<td>–</td>
</tr>
<tr>
<td>acac</td>
<td>1.05</td>
<td>–</td>
</tr>
<tr>
<td>dibzac</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>hfac</td>
<td>1.40</td>
<td>–</td>
</tr>
<tr>
<td>tmhd</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>[Co(acac)(\text{cyclam})]2+ (1)</td>
<td>0.70*</td>
<td>1.50*</td>
</tr>
<tr>
<td></td>
<td>–0.30</td>
<td>–0.40</td>
</tr>
<tr>
<td>[Co(dibzac)(\text{cyclam})]2+ (2)</td>
<td>0.65*</td>
<td>1.53*</td>
</tr>
<tr>
<td></td>
<td>–0.25</td>
<td>–0.30</td>
</tr>
<tr>
<td>[Co(hfac)(\text{cyclam})]2+ (3)</td>
<td>0.90*</td>
<td>1.60*</td>
</tr>
<tr>
<td></td>
<td>–0.25</td>
<td>–0.30</td>
</tr>
<tr>
<td>[Co(tmhd)(\text{cyclam})]2+ (4)</td>
<td>–0.25</td>
<td>–0.30</td>
</tr>
<tr>
<td>[Co(_2)(acac)(\text{tpmc})]3+ (5)</td>
<td>0.95</td>
<td>–1.15</td>
</tr>
<tr>
<td>[Co(_2)(dibzac)(\text{tpmc})]3+ (6)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>[Co(_2)(hfac)(\text{tpmc})]3+ (7)</td>
<td>1.40</td>
<td>1.30</td>
</tr>
<tr>
<td>[Co(_2)(tmhd)(\text{tpmc})]3+ (8)</td>
<td>0.90</td>
<td>–1.15</td>
</tr>
</tbody>
</table>

* Peaks recorded at the beginning of cyclization; \(E_{pa}\) = anodic peak; \(E_{pc}\) = cathodic peak

In aqueous NaClO\textsubscript{4} solutions, the CVs demonstrate that the presence of any of the Co(III)-\(\text{cyclam}\) and Co(II)-\(\text{tpmc}\) complexes 1–8 examined influence the cathodic reaction of hydrogen evolution by slightly shifting the potential to more negative values in the order coordinated \(\text{tmhd}\) > \(\text{acac}\) > \(\text{dibzac}\) > \(\text{hfac}\) ligands, increasing its current in the opposite order (Fig. 3a). The effect of the Co(III)-\(\text{cyclam}\) complexes 1–4, regarding this reaction, is more pronounced, especially in the increase of the current, compared with the Co(II)-\(\text{tpmc}\) compounds 5–8. Furthermore, the cathodic shift of potential occurred only in the presence of the complexes 6 and 8 characterized with cathodic peak at –1.15 V (possible reduction to Co), in which the current of the H\textsubscript{2} reduction slightly decreased. The other two Co(II)-\(\text{tpmc}\) complexes 5 and 7 negligibly affect the current of H\textsubscript{2} evolution and have practically no influence on the potential. Regarding the cathodic shift of hydrogen evolution, the Co(III)-\(\text{cyclam}\) complexes 1–4 are similar to Co(III)-\(\text{cyclam}\) oxalate complex3 which, however, has
the opposite effect on the reaction current, namely increasing it. This difference could be ascribed to the structural factor of the enlarged chelate rings of the O,O'-diketone ligand in comparison with the oxalato one. On the other hand, the binuclear Co(II)-tpmc oxalato complex\(^8\) when present in the solution leads to an anodic shift of hydrogen evolution and a remarkable increase of the reaction current, which is completely contrary to the Co(II)-tpmc/diketone complexes\(^5\)–\(^8\).

Complexes of transition metals (like Co or Fe) of the MN\(_4\) chromophore appear to be a promising class of materials for the reduction of oxygen\(^{14,15}\). According to Chang et al.\(^{16}\), cis and trans configuration of the complex favor different paths of oxygen reduction. Complexes with cyclam, as a macrocycle that can exist in both of these configurations, can be interesting from this point of view. Therefore, we were interested to test the influence of the [Co\(^{II}\)(hfac)cyclam](ClO\(_4\))\(_2\) complex on oxygen reduction in acidic solution. The complex was first examined in 0.1 M HClO\(_4\) by cyclic voltammetry and the recorded CV displayed only the Co(III)/Co(II) redox peaks at the same potentials as in 0.1 M NaClO\(_4\). The reduction of oxygen was examined at a GC rotating electrode in O\(_2\) saturated 0.1 M HClO\(_4\) in the potential range from 0.2 V to –1.1 V at a sweep rate of 5 mV/s and at 4 different rotation rates. As shown in Fig. 3B the pres-
ence of the \([\text{Co}^{III} (hfac)\text{cyclam}] (\text{ClO}_4)_2\) complex caused a shift in of the potential of this reaction in the anodic direction and an increase of its current to some extent. Also, it can be seen that both curves for \(O_2\) reduction are without a limiting current density plateau. Furthermore, the curve recorded for the GC electrode is similar to the one presented by Sundberg et al.\(^{17}\) for the same material (GC Sigmadur) in 0.1 M HCl and according to the authors shows the reduction of \(O_2\) to \(H_2O_2\) as the major final product. The rather small difference in the current of this reaction in the presence of the complex probably means that the same mechanism is operative as on a pure GC electrode. As this complex is in the \textit{cis} conformation these results are contrary to the conclusion Chang \textit{et al.}\(^{16}\) that the \textit{cis} conformation rather than the \textit{trans} one favors the 4-electron path in the reduction of oxygen. However, more about the exact influence of the \([\text{Co}^{III} (Rac)\text{cyclam}] (\text{ClO}_4)_2\) complex on the reduction of \(O_2\) can be said after completion of the detailed examinations that are in progress.

Non-aqueous solution

Electrochemical characterization of the macrocyclic ligands \textit{cyclam} and \textit{tmpc}, \(\beta\)-diketonato ligands and all of the complexes \textbf{1–8} was also performed in non-aqu-
EOUS (LiClO₄ in CH₃CN) solution. Selected cyclic voltammograms are presented in Fig. 4 and the peak potentials are listed in Table II. CVs of macrocyclic ligands⁸,¹³ show their irreversibly oxidation at potentials of 1.75 V for cyclam and 1.82 V for tmpc vs. SCE. One irreversible anodic peak at 1.30 V and 1.40 V vs. SCE (Table II and Fig. 4) were recorded on each CVs of β-diketonato ligands soluble in acetonitrile (Hdibzac and Hf hac).

The absence of any peaks of the investigated Co(III)-cyclam 1-4 complexes ruled out the redox reactions, indicating the stabilization both of cyclam and Rac ligands through the coordination to cobalt(III) (Fig. 4). Electrochemical inactivity of acetylacetonate ligand being in coordination sphere of Co(III) was found in other non-aqueous solutions too.¹⁸ The solvent polarities might have a strong influence on forming intermolecular hydrogen bonds, due to electronic properties of both ligands, thus producing the corresponding difference in the bond stability between cobalt ion and nitrogen/oxygen atoms of the respective ligands.¹⁹

The absence of highly anodic peak of coordinated macrocycle tmpc in the Co(II)-tmpc 5-8 complexes means stabilization of this ligand in non-aqueous solution. It is probably due to the fact that the tmpc is very flexible ligand, adapting itself to both cobalt(II) ions with the bridging ligand. Anodic peaks at high positive potentials recorded on CVs of the binuclear 5-8 complexes (Table II and Fig. 4) correspond to oxidation processes of bidentate Rac ligand as well as metal ions. Actually, if the β-diketonato ligand is electrochemically non-active (as Hacac and Htmhd) the anodic peak in 1.25-1.48 V region origins only from Co(II) ions oxidation (Fig. 4A), contrary to electroactive Rac ligands (as Hdibzac and Hf hac) where in the same range the process of oxidation both for the metal and Rac ligand probably proceeds simultaneously (Fig. 4B). Therefore, potential values are in correlation with combined electronic and steric effects of coordinated β-diketones and they are characteristic for the binuclear penta-coordinated cobalt(II) complexes.²⁰

Correlation with IR and NMR/EPR data

All of the ligands as well as their 1-8 complexes were also examined by spectroscopy methods. According to the earlier results⁶,⁷ R-groups on the β-diketone largely influence the frequencies shifting ν(C=C) and ν(C=O) bands in IR spectra of the all complexes, as a consequence of different resonance and inductive effects along conjugated double bonds through the Rac anion. Influence of R-groups exhibits movement of important bands in ¹³C-NMR spectra of the 1-4 complexes as well as g factor values in EPR spectra of the 5-8 complexes, following from much positive to high negative inductive effect, in order of complexes with coordinated tmhd > acac > dibzac > hac ligands.

The powerful efficacy of six fluorine atoms, of the hac ligand in the 3 and 7 complexes, is especially expressed in all spectral characteristics through movement to higher wave numbers of important IR bands. In NMR⁷ and EPR spectra (at
temperatures of 4 K and 11 K) the effect is quite opposite. In both series of complexes, electrochemical examinations in aqueous and non-aqueous solutions, display the anodic peaks at higher potential values for the corresponding 3 and 7 complexes with coordinated hfac ligand. On the other side, opposite electronic effect of –C(CH₃)₃ groups of tmhd ligand in 4 and 8 complexes gave anodic peaks at lowest potential values.

From available results for the 1–8 complexes, it is evident that the same effects *i.e.*, structural and electronic, affect on spectral and electrochemical behavior, which were transmitted due to delocalised bands of coordinated Rac as a bidentate ligand in the Co(III)-cyclam 1–4 (Fig. 1A) or bridged bidentate ligand in the Co(II)-tpmc 5–8 complexes (Fig. 1B).

CONCLUSION

Based on the data obtained, some conclusions and comparison can be made about the influence of the structure of the 1–8 complexes and their electrochemical characteristics. Furthermore, the ability to influence these behavior seems to be related closely to the electronic properties of the Rac ligand as a whole, not just the oxygen atoms bonded to cobalt ions.

Consequently, Co(III) ions from the 1–4 and Co(II) ions from the 5–8 complexes undergo redox reactions in aqueous solution at the potentials, which are affected by the presence of different Rac ligands. The peak potentials of the mononuclear complexes 1–4 demonstrate reactions, which continuously proceed from Co^{III}/Co^{II} to Co^{0} reduction while in the binuclear 5–8 complex species in aqueous solution only reduction to metal Co occurs. Those behaviors could indicate different influence of coordinated Rac ligand besides folded tetraamine (cyclam) than in the presence of macrocyclic octamaine (tpmc) in boat conformation. On the other side, in correlation to the former binuclear Co(II)-tpmc oxalato complex where electronic exchange – antiferromagnetic coupling between the two metal ions is presented, in the case of the complexes 5–8 particularly pronounced electronic effect of the Rac bridging unit subsists to produce additional stabilization.

Preliminary examinations of oxygen reduction in the presence of [Co^{III}(hfac) cyclam](ClO₄)₂ complex shows possible catalytic effect on the reaction in acidic media. Contrary to the aqueous solution, in acetonitrile, Co(III) redox reaction does not occur, indicating a higher stability of the complexes 1–4 in this media as well as their greater electrochemical stability in comparison with the binuclear cobalt(II)-tpmc complexes 5–8. The influence of solvent polarities might be of importance on different redox behavior of the complexes in aqueous and non-aqueous solutions.

Acknowledgements: The financial support was provided by the Ministry of Science, Technology and Development of the Republic Serbia, Grant Nos. 1796 and 1318.
IZVOD

KOMPARATIVNO ELEKTROHEMIJSKO ISPITIVANJE NEKIH KOBALT(III) I KOBALT(II) KOMPLEKSA SA AZAMAKROCIKLIČNIM I β-DIKETONATOM LIGANDIMA

K. BABIĆ-SAMARIĆ1, S. P. SOVIĆ1 i V. M. JOVANOVIĆ2

1Hemijski fakultet, Univerzitet u Beogradu, p. pr. 158, 11001 Beograd i 2IHIM Institut za elektrohemiju, Univerzitet u Beogradu, p. pr. 473, 11001 Beograd

Цикличном вольтамперометријом испитано је осам комплекса кобалта(III) и кобалта(II) са макролигандима, опште формуле [Co(III)(Rac)cyclam](ClO₄)₂ (1)–(4) и [Co(III)(Rac)tptc](ClO₄)₂ (5)–(8), у воденој (NaClO₄) и неводеној (LiClO₄/CH₃CN) средини. У воденој средини cyclam и Rac лиганди подложе анондно оксидацији. Координација са Co(III) у комплексима (1)–(4) стабилизује ове лиганде али долази до редокс реакције Co(III)/Co(II). У случају бинукеларних Co(II) комплекса (5)–(8) долази до реакције Rac лиганада. Испитиван комплекси у воденом раствору утичу на реакцију издијања водоника катодно и померају генералну потенцијал и повећавају струју. У неводеним растворима анондно се оксидују оба макролиганда (cyclam и tptc) и Rac лиганди растворени у ацетонитрилу. Међутим, у овим растворима Co(III) комплексы не долазе до електрохемијских реакција што значи да и овде координација са кобалтом стабилизује лиганде већ нема ни редокс реакције за кобалт. Са друге стране, у Co(II) комплексима стабилизован је tptc али се оксидују Rac лиганди и Co(II) па су тако у неводеним растворима комплекси Co(III) стабилизацији од бинукеларних Co(II)-tptc комплекса.

References

The growth of Nd:CaWO4 single crystals
ALEKSANDAR GOLUBOVIĆ1*, SLOBODANKA NIKOLIĆ1, RADOŠ GAJIĆ1,
STEVAN DURIĆ2 and ANDREJA VALČIĆ3
1Institute of Physics, Pregrevica 118, P. O. Box 57, 11001 Belgrade, 2Faculty of Mining and Geology,
Dušana 7, P. O. Box 162, 11000 Belgrade and 3Faculty of Technology and Metallurgy, Karsnegjjeva 4,
11000 Belgrade, Serbia and Montenegro (galek@Eunet.yu)
(Received 25 March 2003)
Abstract: CaWO4 doped with 0.8 % at. Nd (Nd:CaWO4) single crystals were grown from
the melt in air by the Czochralski technique. The critical diameter \(d_c = 1.0\) cm and the critical
rate of rotation \(\omega_c = 30\) rpm were calculated from hydrodynamic equations for buoy-
ancy-driven and forced convection. The rate of crystal growth was experimentally obtained
to be 6.7 mm/h. For chemical polishing, a solution of 1 part saturated chromic acid (CrO3 in
water) and 3 parts conc. H3PO4 (85 %) at 433 K with an exposure time of 2 h was found to
be adequate. A mixture of 1 part concentrated HF and 2 parts chromic acid at room tempera-
ture after exposure for 30 min was found to be a suitable etching solution. The lattice param-
eters \(a = 0.52404 (6)\) nm, \(c = 1.1362 (6)\) nm and \(V_0 = 0.312 (2)\) nm3 were determined by
X-ray powder diffraction. The obtained results are discussed and compared with published
data.
Keywords: Czochralski technique, single crystal, Nd:CaWO4, growth, etching.

INTRODUCTION
Calcium tungstate (CaWO4) belongs to the group of AWO4 compounds, where A
is a second group metal. AWO4 compounds are important materials due to their use as
scintillate detectors, photoanodes, solid-state laser hosts and in optical fibre applica-
tions.1–6 Calcium tungstate has been proved to be an efficient laser host material with a
number of lanthanide ions.7 It is a unaxial crystal with a tetragonal scheelite structure
and the space group \(C_{4h}\). The trivalent lanthanide ions are known to occupy divalent
calcium ion sites, the point symmetry of which is \(S_4\), making the host lattice an inter-
esting system to study. The scheelite structure8 may be regarded as a cubic close-
packed array of Ca\(^{2+}\) and \([WO_4]^{2-}\) units with the coordination numbers of 8 and 4
oxygen atoms for the Ca and W cations, respectively.

* Corresponding author.
Serbian Chemical Society active member.
Various techniques, such as the Czochralski technique,9,10 the flux method,11,12 and solid-state reactions13 have been used to synthesize single crystals, whiskers and powder of CaWO\textsubscript{4}. Some attempts were made to prepare single crystal films,14–16 but these experiments had limited success because of the high vaporization pressure of WO\textsubscript{3} and obtained films were not of uniform structure. In our previous work,10 we obtained CaWO\textsubscript{4} single crystals taking some hydrodynamic equations into account, but the crystals were of nonuniform quality. Applying both theoretical and experimental investigations, we successfully obtained many oxide single crystals (Bi\textsubscript{12}SiO\textsubscript{20},17 Bi\textsubscript{12}GeO\textsubscript{20},18 sapphire,19 Nd:YAG,20 etc.). The aim of this work was to produce and characterize Nd:CaWO\textsubscript{4} single crystals by applying both theoretical and experimental treatment. The Nd atomic percentage was 0.8, as is usually the case for laser materials.

EXPERIMENTAL

Calcium tungstate doped neodymium single crystals (Nd:CaWO\textsubscript{4}) were grown by the Czochralski technique using a MSR 2 crystal puller, as described previously.21 The atmosphere used was air. The starting materials were powdered CaWO\textsubscript{4} (Koch&Light, Colnbrook, Buckinghamshire, England), and Nd\textsubscript{2}O\textsubscript{3} (Koch&Light, Colnbrook, Buckinghamshire, England) both of 4N purity. Powdered ZrO\textsubscript{2} (Koch&Light, Colnbrook, Buckinghamshire, England) of 4N purity was used for isolation. The rhodium crucible (4.12 cm diameter, 3.6 cm high and 0.2 cm thickness) was placed into an alumina vessel surrounded by ZrO\textsubscript{2} wool isolation. Double walls were used to protect the high radiation. To decrease the radial temperature gradient in the melt, alumina was mounted all around the system. The pull rates were generally in the range 0.54–12 mm/h, and the best results were obtained with a pull rate of 6.7 mm/h. The crystal rotation rates were between 22 and 40 rpm. The best results were obtained with a crystal rotation of 30 rpm. The diameters of the crystals were between 3 and 20 mm. The crucible was not rotated during the growth. After the growth run, the crystal boule was cooled at a rate of about 50 K/h down to room temperature.

Various solutions of H\textsubscript{3}PO\textsubscript{4} at different temperatures and for various exposure times were tried for chemical polishing. A solution of 1 part saturated chromic acid (CrO\textsubscript{3} in water) and 3 parts conc. H\textsubscript{3}PO\textsubscript{4} (85 \%) (Merck, Darmstadt, Germany) at 433 K after exposure for 2 h was found to be suitable for chemical polishing. Various water solutions of HCl (Merck, Darmstadt, Germany) at different temperatures, and various solutions of concentrated HF (Merck, Darmstadt, Germany) and chromic acid, and for various exposure times were tried for etching. A mixture of 1 part concentrated HF and 2 parts chromic acid at room temperature after exposure for 30 minutes was found to be a suitable etching solution.

All the obtained crystal plates were observed in polarised light to reveal striations.

The chemical compositions of the products were determined by the XRD powder technique. All the samples were examined under the same conditions, using a Philips PW 1729 X-ray generator, a Philips 1710 diffractometer and the original APD software. The radiation source was an X-ray LLF tube with copper radiation and a graphite monochromator. The radiations were $\lambda_{CuK\alpha_1} = 0.154060$ nm and $\lambda_{CuK\alpha_2} = 0.154438$ nm. The anode tube load was 40 kV and 30 mA. Slits of 1.0 and 0.1 mm were fixed. Samples were pressed into standard aluminium frames and measured in the 20 ranges from 10$^{\circ}$ to 80$^{\circ}$. Each 1/50$^{\circ}$ (0.02$^{\circ}$) was measured for 0.5 s. For product identification, the MPDS program and JCPDS (ASTM) card files were used.

RESULTS AND DISCUSSION

The pulling of a crystal from a melt by the Czochralski method is a process essentially governed by the shape of the melt meniscus near the solid-liquid-vapour
junction and the thermal gradients on both sides of the growth interface. It is a well-known practical fact that in order to produce a crystal in the shape of a right cylinder some kind of regulation of the external conditions, like the supplied heating power or the pulling speed, has to be applied. In principle, this requirement can be due to the process being inherently unstable, or simply that the heat transfer conditions are changing as the crystal is grown longer, i.e., batch-induced variations. Surek first addressed the fundamental question of inherent stability in an analysis where only the capillary effect was taken into account. That classical argument showed that a purely surface-tension-controlled process is unstable. Subsequently, some authors investigated the dynamics of the crystal radius in response to variations in the temperature at the base of the meniscus, and they concluded that the pulling process (Ge was, in this case, the example) is linearly stable during Czochralski growth of crystals except in the case of very small diameters. Others analytically or experimentally investigated the coupling to the thermal conditions, but the conclusions were conflicting. In our case we predicted that the growing crystal process was linearly stable for single crystals grown to about 1 cm in diameter.

The hydrodynamics of a melt are governed by buoyancy-driven convection of free convection, by forced convection due to crystal rotation and by thermo-capillary surface convection. Three dimensionless numbers can describe all these flows: the Grashof (Gr), Reynolds (Re) and Marangoni (Ma) numbers. It can be said that the depth of the melt influences the Grashof number, the rotation rate of the crystal modifies the Reynolds number, and the temperature gradients over the surface of the melt acts on the Marangoni number. The Ma number will not change significantly if a small temperature gradient exists over the surface of the melt, and so the hydrodynamics will be governed mainly by the Re and Gr numbers.

$$Re = \frac{\omega \rho r^2 v^{-1}}{\nu},$$

$$Gr = \frac{g \beta \Delta T R^3 v^{-2}}{\nu^2},$$

where ω – rotation rate; r – crystal radius; v – kinematic viscosity; g – acceleration due to gravity; β – volumetric expansion coefficient of the melt; ΔT – temperature difference ($T_{\text{crucible}} - T_{\text{mp}}$), and R – radius of the crucible. It was presumed, as did Carruthers, that there was no change in the kinematic viscosity at the interface melt/crystal during the process of growth and that there was equilibrium $Gr = Re^2$. There is during this time, a flat melt/crystal interface at a critical rotation rate ω_c and a critical diameter d_c. It was decided to use the relations derived by Carruthers in the calculations for our experimental system. These relations are in a good agreement with the experimental data of many authors and it was assumed that they could also be useful in our case. In this way, by applying the hydrodynamic forms, the values of the critical rate of rotation $\omega_c = 30$ rpm, and the critical diameter $d_c = 10$ mm were obtained. The rate of crystal growth was experimentally obtained to be 6.7 mm/h. A picture of an obtained Nd:CaWO$_4$ single crystal plate is shown in Fig. 1.
The widely known etch pit technique is very suitable for the study of crystalline solids. For such studies, cleavage planes are often preferred to the mature surface, because the former are free from the usual growth features and the characteristic surface marking which affect each pattern produced. Natural scheelite (CaWO₄) is known to have (101), (112) and (001) cleavages. On the other hand, synthetic CaWO₄ crystals, both pure and doped, grown by the Czochralski technique from the melt have been reported to exhibit (001) cleavages. CaWO₄ is not a very hard material, with a hardness of 5 degrees on the Mohs scale. It was found that a suitable solution for chemical polishing a mixture of 1 part saturated chromic acid (CrO₃ in water) and 3 parts conc. H₃PO₄ (85 %) at 433–473 K was a suitable solution for chemical polishing after exposure times between 1.5 and 2 h. The best results were obtained at 433 K and an exposure time of 2 h. An etching solutions is usually reported for the (001) cleavage plane. It was found that a mixture of 1 part concentrated HF and 2 parts saturated chromic acid (CrO₃ in water) is a suitable etching solution (etchant), which produces sizable pits (about 6 μm) in about

![Fig. 1. A view of a chemically polished (001) cleavage plane of a Nd:CaWO₄ single crystal plate.](image1)

![Fig. 2. A view of an etched (001) cleavage plane of a Nd:CaWO₄ single crystal plate after an etching exposure time of 30 min. Dislocation density 638 cm⁻². Magnification 270x.](image2)

![Fig. 3. A view of an etched (001) cleavage plane of a Nd:CaWO₄ single crystal plate after an etching exposure time of 15 min. Dislocation density 3200 cm⁻². Magnification 270x.](image3)
20 min at room temperature. Many experiments were performed with various exposure times, and the best results were obtained with an exposure time of 30 minutes. Pictures of etch-pit specimens are presented in Figs. 2 and 3.

Figure 2 presents the sample after an exposure time of 30 min with a dislocation density of 638 cm$^{-2}$ (pulling speed was 6.7 mm/h, $\omega_c = 30$ rpm, $d_c = 10$ mm), and Fig. 3 presents the sample after an exposure time of 15 min with a dislocation density of 3200 cm$^{-2}$ (the pulling speed was 6.7 mm/h, $\omega_c = 30$ rpm, $d_c = 10$ mm). It should be noted that the obtained single crystal had a much smaller dislocation density (5×10^2–2×10^3 cm$^{-2}$) than those reported in literature9,10 where values of about 10^5 cm$^{-2}$ were cited. Figure 4 shows what could occur with an inappropriate pulling speed (11.4 mm/h) although the critical diameter $d_c = 1.0$ cm and the critical rate of rotation $\omega_c = 30$ rpm were applied. The low angle boundary is clearly seen.

A solution of conc. H$_3$PO$_4$ at 593–603 K and exposure times between 1.5 and 2 h was also tested as a solution for chemical polishing, but better results were obtained with the above mentioned one. An aqueous solution of HCl at various temperatures was tested as an etchant, but better results were obtained with the men-
tioned mixture of HF and saturated chromic acid. When examined under polarised light, the polished crystal plates showed the absence of bubbles, entrapments, non-homogeneous impurity concentrations and striations.

TABLE I. Table of spacing (d), intensities (I) and indices (hkl) of an Nd:CaWO$_4$ single crystal in comparison to literature data.\cite{164}

<table>
<thead>
<tr>
<th>d_{lit}/nm</th>
<th>$d_{\text{cal.}}$/nm</th>
<th>$I_{\text{lit.}}$/%</th>
<th>$I_{\text{cal.}}$/%</th>
<th>(hkl)</th>
<th>d_{lit}/nm</th>
<th>$d_{\text{cal.}}$/nm</th>
<th>$I_{\text{lit.}}$/%</th>
<th>$I_{\text{cal.}}$/%</th>
</tr>
</thead>
</table>
| 0.47645 | 0.47437 | 84 | 60.90 | 101 | 0.15528 | 0.15518 | 13 | 18.89 | 224
| 0.31049 | 0.31024 | 100 | 100 | 112 | 0.15474 | 9.80 | | |
| 0.30714 | 0.30660 | 30 | 50.45 | 103 | 0.14426 | 0.14419 | 5 | 6.13 | 321
| 0.28425 | 0.28404 | 39 | 35.78 | 004 | 0.14218 | 0.14210 | 4 | 7.09 | 008
| 0.26213 | 0.26187 | 19 | 16.91 | 200 | 0.14179 | 4.04 | | |
| 0.23803 | 0.24041 | 1 | 2.24 | 202 | 0.13860 | 0.13857 | 3 | 4.04 | 305
| 0.22962 | 0.22958 | 18 | 50.45 | 211 | 0.13818 | 2.67 | | |
| 0.22562 | 0.22539 | 3 | 2.24 | 114 | 0.13577 | 0.13576 | 4 | 6.61 | 323
| 0.20865 | 0.20858 | 6 | 4.04 | 105 | 0.13537 | 3.85 | | |
| 0.19945 | 0.19945 | 10 | 15.41 | 213 | 0.13356 | 0.13353 | 4 | 3.85 | 217
| 0.19276 | 0.19256 | 36 | 76.36 | 204 | 0.13109 | 0.13092 | 2 | 2.24 | 400
| 0.18536 | 0.18533 | 15 | 13.96 | 220 | 0.12637 | 0.12636 | 2 | 3.85 | 411
| 0.18536 | 0.18541 | 15 | 7.79 | 301 | 0.12497 | 0.12478 | 7 | 78.83 | 208
| 0.16877 | 0.16869 | 17 | 34.67 | 116 | 0.12446 | 32.50 | | |
| 0.16823 | 0.16823 | 16.15 | 0.12285 | 0.12271 | 2 | 2.24 | 109
| 0.16326 | 0.16317 | 8 | 40.39 | 215 | 0.12076 | 0.12074 | 4 | 6.37 | 332
| 0.16274 | 0.16274 | 16.91 | 0.12055 | 0.12050 | 2 | 16.91 | 413
| 0.15921 | 0.15914 | 23 | 40.98 | 312 | 0.12019 | 5.90 | | |
| 0.15873 | 0.15572 | 4 | 24.53 | 303 | | | | |

Fig. 6. X-Ray pattern of a powdered CaWO$_4$ single crystal.
The structural properties of the obtained crystals were obtained using X-ray analysis of powdered samples. A Philips PW 1710 diffractometer was used in the 2θ ranges from 10º to 80º. The unit cell of calcium tungstate was calculated by the least square method using 29 reflections, including more Kα2 for 8 reflections. All the reflections correspond to CaWO₄ crystals with the parameters of the tetragonal unit cell \(a = 0.524294 \text{ (6) nm}, c = 1.1373 \text{ (7) nm} \) and \(V_0 = 0.31263 \text{ nm}^3\). Some divergence of the compared results can be explained by the fact that X-ray powder diffraction analysis gives a statistical result. The calculated results for the lattice parameters are \(a = 0.52404 \text{ (6) nm}, c = 1.1362 \text{ (6) nm}, \) and \(V_0 = 0.312 \text{ (2) nm}^3\), which are in good agreement with the published data. The X-ray diffractogram for powdered Nd:CaWO₄ is given in Fig. 5, in which the weak reflections are not marked with Mueller indices. The X-ray diffractogram of a powdered CaWO₄ single crystal, which can be used to show that the small amount of dopant has no influence on the diffractogram, is presented in Fig. 6. The Nd concentration is 0.8 atomic percentages and this amount did not change the unit cell. It can be seen from Figs. 5 and 6 that the positions of the peaks are at the same place. The intensities are changed as could be expected because they show statistical values.

TABLE II. Table of angles (θ), intensities (I) and indices (hkl) of a Nd:CaWO₄ single crystal in comparison to literature data

<table>
<thead>
<tr>
<th>(\theta_{\text{lit.}}^\circ)</th>
<th>(\theta_{\text{cal.}}^\circ)</th>
<th>(I_{\text{lit.}}^\circ)%</th>
<th>(I_{\text{cal.}}^\circ)%</th>
<th>(hkl)</th>
<th>(\theta_{\text{lit.}}^\circ)</th>
<th>(\theta_{\text{cal.}}^\circ)</th>
<th>(I_{\text{lit.}}^\circ)%</th>
<th>(I_{\text{cal.}}^\circ)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.608</td>
<td>18.685</td>
<td>84</td>
<td>60.90</td>
<td>101</td>
<td>59.477</td>
<td>59.525</td>
<td>13</td>
<td>18.89</td>
</tr>
<tr>
<td>28.729</td>
<td>28.770</td>
<td>100</td>
<td>100</td>
<td>112</td>
<td>59.710</td>
<td>9.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.049</td>
<td>29.065</td>
<td>30</td>
<td>50.45</td>
<td>103</td>
<td>64.544</td>
<td>64.585</td>
<td>5</td>
<td>6.13</td>
</tr>
<tr>
<td>31.445</td>
<td>31.480</td>
<td>39</td>
<td>35.78</td>
<td>004</td>
<td>65.605</td>
<td>65.650</td>
<td>4</td>
<td>7.09</td>
</tr>
<tr>
<td>34.178</td>
<td>34.195</td>
<td>19</td>
<td>16.91</td>
<td>200</td>
<td>65.815</td>
<td>4.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.763</td>
<td>37.795</td>
<td>1</td>
<td>2.24</td>
<td>202</td>
<td>67.516</td>
<td>67.545</td>
<td>3</td>
<td>4.04</td>
</tr>
<tr>
<td>39.201</td>
<td>39.230</td>
<td>18</td>
<td>50.45</td>
<td>211</td>
<td>67.760</td>
<td>2.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.925</td>
<td>39.995</td>
<td>3</td>
<td>2.24</td>
<td>114</td>
<td>69.132</td>
<td>69.140</td>
<td>4</td>
<td>6.61</td>
</tr>
<tr>
<td>43.329</td>
<td>43.375</td>
<td>6</td>
<td>4.04</td>
<td>105</td>
<td>69.365</td>
<td>3.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.442</td>
<td>45.480</td>
<td>10</td>
<td>15.41</td>
<td>213</td>
<td>70.422</td>
<td>70.465</td>
<td>4</td>
<td>3.85</td>
</tr>
<tr>
<td>47.106</td>
<td>47.160</td>
<td>36</td>
<td>76.36</td>
<td>204</td>
<td>71.970</td>
<td>72.085</td>
<td>2</td>
<td>2.24</td>
</tr>
<tr>
<td>49.110</td>
<td>49.120</td>
<td>15</td>
<td>13.96</td>
<td>220</td>
<td>75.111</td>
<td>75.120</td>
<td>2</td>
<td>3.85</td>
</tr>
<tr>
<td>52.973</td>
<td>53.045</td>
<td>15</td>
<td>7.79</td>
<td>301</td>
<td>76.104</td>
<td>76.240</td>
<td>7</td>
<td>78.83</td>
</tr>
<tr>
<td>54.311</td>
<td>54.340</td>
<td>17</td>
<td>34.67</td>
<td>116</td>
<td>76.475</td>
<td>32.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.15</td>
<td>77.658</td>
<td>77.765</td>
</tr>
<tr>
<td>56.302</td>
<td>56.340</td>
<td>8</td>
<td>40.39</td>
<td>215</td>
<td>79.266</td>
<td>79.285</td>
<td>4</td>
<td>6.37</td>
</tr>
<tr>
<td>56.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.91</td>
<td>79.431</td>
<td>79.470</td>
</tr>
<tr>
<td>57.869</td>
<td>57.900</td>
<td>23</td>
<td>40.98</td>
<td>312</td>
<td>79.715</td>
<td>5.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.061</td>
<td>58.065</td>
<td>4</td>
<td>24.53</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
has been reported39 that only almost perfect single crystals can split X-ray reflections into $K\alpha_1$ and $K\alpha_2$ and the presence of doublets is one more confirmation of the quality of the produced crystals.

The intensities of the reflections for some crystal planes, together with their Mueller indices and distances between the planes of the reflections are given in Table I. The intensities of the reflections from Fig. 5 are given together with published intensities for the same planes in JCPDS (“Joint Committee on Powder Diffraction Standards”). Table II represents the intensities of the reflections for some crystal planes, together with their Mueller indices and the angles of the reflections. Some divergences between the experimentally obtained 2θ values and these in the literature could be explained as being the consequence of the employed wavelength Cu$K\alpha_1$ (0.154178 nm) and Cu$K\alpha_1$ cited in the literature37 (0.1540598 nm).

CONCLUSIONS

The conditions for growing Nd:CaWO\textsubscript{4} single crystals were calculated using a combination of Reynolds and Grashof numbers. From the hydrodynamics of the melt the critical crystal diameter $d_c = 1.0$ cm and the critical rate of rotation $\omega_c = 30 $ rpm were calculated. The value of the rate of crystal growth was experimentally found to be 6.7 mm/h.

A mixture of 1 part saturated chromic acid (CrO\textsubscript{3} in water) and 3 parts conc. H\textsubscript{3}PO\textsubscript{4} (85 %) at 433 K after exposure for 2 h was shown to be suitable for chemical polishing. A mixture of 1 part concentrated HF and 2 parts chromic acid at room temperature after exposure for 30 min was shown to be a suitable etching solution.

ИЗВОД

РАСТ МОНОКРИСТАЛА Nd:CaWO\textsubscript{4}

ALEKSAĐAR GOLUBOVIĆ1, SLOBODANKA NIKOLIĆ1, RADOŠ GAJNIĆ1, STEVAN URIĆ2 i ANDREJA VALIČ3

1Институт за физику, Прегревица 118, 11001 Београд, 2Рударско-геолошкни факултети, Тушничка 7, 11000 Београд и 3Технологско-металургски факултети, Кречевица 4, 11000 Београд

Монокристили CaWO\textsubscript{4} допирани са 0.8 атомских % Nd (Nd:CaWO\textsubscript{4}) расли су у ваздуху теником раста кристила по Чокрском. Вредности критичног пречника $d_c = 1.0$ cm и критичне брзине ротације $\omega_c = 30$ o/min су одређене помоћу једначина динамике флудца. Брзина излоћења кристала од 6.7 mm/h је одређена експериментално. Као средство за хемијско полирање је одређена смеса 1 дела сећене хромне киселине (водени раствор CrO\textsubscript{3}) и 3 делов сопс. H\textsubscript{3}PO\textsubscript{4} (85 %) на 433 K при излагању од 2 сата. Смеса 1 дела концентроване HF и 2 дела хромне киселине на собној температури при излагању од 30 минута се показала као погодно средство за нагрижање. Одређени су параметри решетке $a=0.52404\ (6)$ nm, $c=1.1362\ (6)$ nm и $V_0=0.312\ (2)$ nm3 помоћу рентгенске дифракционе анализе праха. Добијени резултати су дискуторани и упоређени са литературним подацима.

(Примењено 25. марта 2003)
REFERENCES

27. J. R. Curnhthers, J. Crystal Growth 36 (1976) 212
35. JCPDS 41–1431
BOOK REVIEW

COMPREHENSIVE ENZYME KINETICS
by Vladimir Leskovac

Published by Kluwer Academic/Plenum Publisher New York, March 2003-11-17

Pages: ii + 438, 125 Figures, 50 Tables, 900 Equations, EURO 118.00/USD 125.00/GBP 77.50,
ISBN: 0-306-46712-7 Hardbound

Today, in the post-genomic era, no fundamental or applied work can be thought about in biochemistry and its related molecular biology, and in life sciences in general without considering enzymes. Above all, enzymes are becoming powerful reagents and tool in all other fields of chemistry too, but also an integral part of everyday life. Biotechnology, as one of the branches of science, and its applications, which shall determine the trends in civilization in the forthcoming century, are inconceivable without enzymes and their activity. These are only some of the reasons why the book “Comprehensive Enzyme Kinetics” by Professor Vladimir Leskovac from the Faculty of Technology, University of Novi Sad (Serbia & Montenegro) is welcome.

Through 18 chapters, the author takes the user of the Book systematically, simply and clearly, in a modern and an expert way into the complex kinetic relations of the interactions of enzymes and substrates, starting from the introduction which relates to the structure of enzymes and their active sites, through the bases of chemical kinetics, indispensable for an understanding of enzyme kinetics, in order to reach the basic topic. The next 11 chapters are dedicated to a gradual survey of monosubstrate, bisubstrate and trisubstrate reactions, including nonhyperbolic rate equations and allosteric and cooperative effects. Simple but also complex kinetic models are explained in this Book. Sections 14 and 15 are dedicated to the effect of pH and temperature on enzyme catalysis.

The Author emphasizes the importance of the graphic presentation of kinetic models owing to which the Book abounds in graphs – such a way of presenting results. Mathematical models are often in the form of double-reciprocal plots.

In the last 3 chapters, special attention is paid to isotope exchange, kinetic isotope effects and statistical analysis of the initial rate and binding data, which relate to enzyme reactions. The Book also contains a Subject Index.

The Book is of special value due to the numerous examples which illustratively support a simpler understanding of the reported contents.
Pertaining references (almost 600 in total) are cited after each chapter and with the exception of 3 places (chapters 1, 7 and 11) are systematized as books, review articles and specific references which facilitate their utilization. A certain number of examples are from the Author’s and associates’ references.

The Book is a modern textbook but also a contemporary handbook intended for students of Biochemistry first and foremost, but also for all those who meet enzymes in their research work. “Comprehensive Enzyme Kinetics” by Professor Leskovac is a novelty written in a “scholarly fashion”, as stated in the Preface by the Author himself, which exceeds the limits of textbook literature and makes up the shortage among a large number of books dedicated to this topic since it presents understandably and concisely, free from unneeded details and excessive explanations, on a relatively small number of pages, all that is necessary for the comprehension and application of kinetic enzymes. It is quite certain that such a book can only be written by a successful scientist and a pedagogue with great experience.

Students, professors, and researchers would greatly benefit if this excellent book “Comprehensive Enzyme Kinetics” by Professor Leskovac could be found in the libraries of their faculties, institutes and industry, as well as in the laboratories – in all places where enzymes are taught and dealt with.

Miroslav M. Vrvić, D. Sc. Chem.
Professor of Biotechnology
Faculty of Chemistry,
University of Belgrade, P. O. Box 158,
11001 Belgrade, Studentski trg 16, Serbia and Montenegro,
E-mail: mrvchem@derink.net
CONTENTS OF VOLUME 68

NUMBER 1

Organic Chemistry and Biochemistry

R. Marković, A. Shirazi, Z. Džambaski, M. Baranac and D. Minić: Hydrogen bonding in push-pull 5-substituted-2-alkylidene-4-oxothiazolidines: 1H-NMR spectroscopic study 1

N. C. Nikolić and M. Z. Stanković: Kinetics of solanidine hydrolytic extraction from potato (Solanum tuberosum L) haulm solid-liquid systems ... 9

D. T. Veličković, N. V. Randjelović, M. S. Ristić, A. S. Veličković and A. Šmelcerović: Chemical constituents and antimicrobial activity of the ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L ... 17

N. Tomašević, M. Nikolić, K. Klappe, D. Hoekstra and V. Niketić: Insulin-induced lipid binding to hemoglobin .. 25

Physical Chemistry

M. Lj. Kijevecanin, A. B. Djordjević, I. R. Grgurić, B. D. Djordjević and S. P. Šerbanović: Simultaneous correlation of the excess enthalpy and W-shaped excess heat capacity of 1,4-dioxane-n-alkane systems by PRSV-HVOS CEOS .. 35

M. M. Aćanski, S. Jovanović-Santa and L. R. Jevrić: Normal and reversed phase thin-layer chromatography of new 16,17-secoestrone derivatives ... 57

Analytical Chemistry

NUMBER 2

Organic Chemistry

V. Leskovac, S. Trivić and D. Perićić: Isomerization of an enzyme-coenzyme complex in yeast alcohol dehydrogenase-catalysed reactions .. 77

Inorganic Chemistry

L. Larabi, Y. Harek, A Reguig and M. M. Mostafà: Synthesis, structural study and electrochemical properties of copper(II) complexes derived from benzene- and p-toluenesulphonylhydrazones. ... 85
Physical Chemistry
P. I. Premović: Thermochemical equilibrium calculations of high-temperature O₂ generation on the early Earth: Giant asteroid impact on land ...
M. Rašković, I. Holclajtner-Antunović, M. Tripković and D. Marković: Excitation and analytical characteristics of an ethanol loaded U-shaped arc ...

Electrochemistry
B. Blizanac, S. Mentus, N. Cvjetićanin and N. Pavlović: Temperature effect on graphite KS44 lithiation in ethylene carbonate + propylene carbonate solution: galvanostatic and impedance study ..

Analytical Chemistry
A. I. Igoč, R. M. Simonović and R. P. Igoč: Kinetic determination of ultramicro amounts of As(III) in solution ...

Chemical Engineering

Macromolecules
B. Dunjajić, J. Djonlagić, S. Vukašinović, M. Sepulchre, M. O. Sepulchre and N. Spassky: Rheokinetic study of crosslinking of α,ω-di(OH) oligo(alkylene maleate)s with a tris(isocyanate)
Organic Chemistry

N. Djapić, Z. Djarmati, S. Filip and R. M. Jankov: A stilbene from the heartwood of *Maclura pomifera* (Note) .. 235

D. Vitorović: Professor Miroslav J. Gašić: On the occasion of his 70th birthday.............................. 239

Organic Chemistry

I. Novaković, Z. Vujičić, T. Božić, N. Božić, N. Milosavlić and D. Sladić: Chemical modification of β-lactoglobulin by quinones ... 243

S. De Rosa, C. Iodice, J. Nechev, K. Stefanov and S. Popov: Composition of the lipophilic extract from the sponge *Suberites domuncula* .. 249

W. E. G. Müller and I. M. Müller: The hypothetical ancestral animal. The Urmetazoa: telomerase activity in sponges (Porifera) .. 257

S. Trifunović, V. Vajs, V. Tešević, D. Djoković and S. Milosavljević: Lignans from the plant species *Achillea lingulata* .. 277

S. Milosavljević, I. Juranić, I. Aljančić, V. Vajs and N. Todorović: Conformational analysis of three germacraneolides by the PM3 semi-empirical method ... 281

M. S. Bjelaković, V. D. Pavlović, M. M. Đabović and Lj. B. Lorenco: Acid-catalyzed and photolytic reactivity of some unsaturated B-nor-5,10-seco-steroidal ketones ... 303

G. Petrović and Ž. Ćeković: Synthesis of tetrahydrokhusitone. Annulation of the cyclohexane ring by free radical and carbanionic sequence of reactions ... 313

M. N. Stojanović, D. B. Nikolić and D. Stefanović: Implicit-OR tiling of deoxyribozymes: Construction of molecular scale OR, NAND, and four-input logic gates .. 321

M. M. Crnogorac and N. M. Kostić: Effects of pH on kinetics of the structural rearrangement that gates the electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of protonation states in a diprotein complex .. 327

A. Papakyriakou, I. Bratsos and N. Katzaros: Structural studies on metallolbleomycins: The interaction of P(II) and Pd(II) with bleomycin... 339

I. Tabaković and S. Riemen: Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives ... 349

S. Jeremić and M. Pernić: Use of the group theory for classification of electronic states of acetylene. 363

R. Marković, Z. Đembaški, M. Stojanović, P. Steel and M. Baranač: Regiospecificity in the heterocyclization of β-oxoanitrides to 5-substituted-4-oxothiazolidine derivatives ... 383

I. Gutman: Algebraic structure count of linear phenylenes and their congeners .. 391

I. Gutman, D. Vidović, B. Furtula and I. G. Ženkevich: Wiener-type indices and internal molecular energy .. 401

V. Rušić, V. Đondučar and R. Hergonjać: FTIR study of carbon monoxide adsorption on ion-exchanged X, Y and mordenite type zeolites ... 409

M. M. Vrvušić, V. Dragutinović, V. Matić, S. Spasić, O. Cveticović and D. Vitorović: A kinetic study of the depyritization of oil shale HCl-kerogen concentrate by *Thiobacillus ferrooxidans* at different temperatures ... 417

Organic Chemistry

A. S. Veličković, M. S. Ristić, D. T. Veličković, S. N. Ilić and N. D. Mitić: The possibilities of the application of some species of sage (Salvia L) as auxiliaries in the treatment of some diseases...... 435
M. Carposu, L. Odochian, St. Dima, M. Dumitrus and M. Petrovanu: Thermokinetic study of the inactivation reaction of 1-methylphthalazinium ylids.. 447

Inorganic Chemistry

R. N. Prasad and N. Gupta: Template synthesis of Mn(II) complexes of tetraazamacrocycles derived from diaminoalkanes and 3,4-hexanedione or benzil ... 455
M. G. Abd El Wahed: Thermodynamic and structural studies of complexes of manganese(II), cobalt(II), nickel(II) and copper(II) with aminotripyridine carboxamide (Note)...................... 463
D. Vičinić, I. Miljanović, A. Rosić and P. Lazić: Effect of Na2O/SiO2 mole ratio on the crystal type of zeolite synthesized from coal fly ash .. 471

Physical Chemistry

J. D. Jovanović and D. K. Grozdanić: Saturated-liquid heat capacity: new polynomial models and review of the literature experimental data (Note).. 479

Electrochemistry

V. Vojinović, S. Mentus and V. Komnenić: Thermodynamic and kinetic behavior of hydrogen electrode in a solution of 0.5 M KClO4 in dimethyl sulphoxide ... 497

Materials

B. Matović, S. Bošković and M. Logar: Preparation of basalt-based glass ceramics 505
K. I. Popov, S. B. Krstić and M. G. Pavlović: The critical apparent density for the free flow of copper powder (Preliminary communication).. 511

Physical Chemistry

S. Ž. Drmanić, B. Ž. Jovanović, A. D. Marinković and M. Mišić-Vuković: The kinetics of the reactions of 2-substituted nicotinic acids with diazodiphenylmethane in various alcohols......... 515
N. V. Valentić and G. S. Ušćumić: Effects of substituents on the 1H-NMR chemical shifts of 3-methylene-2-substituted-1,4-pentadienes .. 525
V. W. Bhugwat, J. Tiwari, A. Choube and B. Pare: Kinetics and mechanism of cetyltrimethylammonium bromide catalyzed oxidation of diethylene glycol by chloramine-T in acidic medium... 535
B. Todorović-Marković, Z. Marković, N. Marinković and T. Nenadović: Experimental study of physical parameters significant in fullerene synthesis (Short communication).......................... 543

Organic Chemistry

J. Gutman, B. Arsić and B. Furtula: Equiseparable chemical trees .. 549
T. J. Janjić, G. Vučković and M. B. Ćelap: Investigation of the compatibility between one-dimensional system parameters and the multidimensional Solvation parameter model in RP liquid column chromatography ... 565
S. D. Pawar and P. M. Dhadke: Extraction and separation studies of Ga(III), In(III), and Tl(III) using the neutral organophosphorous extractant, Cyanex-923 ... 581
A. Cecal, A. Paraschivescu, K. Popa, D. Colisnic, G. Timco and L. Singenerean: Radiolytic splitting of water molecules in the presence of some supramolecular compounds (Short communication) ... 593

Organic Chemistry and Biochemistry
A. Georgakopoulos: Aspects of solid state 13C CPMAS NMR spectroscopy in coals from the Balkan peninsula ... 599
D. Marković: Energy storage in the photosynthetic electron-transport chain. An analogy with Michaelis-Menten kinetics ... 615

Polymers
S. Koseva, S. Brezovska, V. Boševska and D. Burevski: Bentonite, stabilizer for suspension polymerization .. 629

Inorganic Chemistry
S. S. Konstantinović, B. C. Radovanović, Ž. Cakić and V. Vasić: Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 3-salicylidenehydrazono-2-indoline ... 641

Electrochemistry
M. G. Pavlović, N. D. Nikolić and K. I. Popov: The current efficiency during the cathodic period of reversing current in copper powder deposition and the overall current efficiency .. 649

Materials
B. R. Simonović, S. V. Mentus and R. Dimitrijević: Kinetic and structural aspects of tantalum hydride formation .. 657
D. Manasijević, D. Živković, I. Katayama and Ž. Živković: Calculation of activities in some gallium-based systems with a miscibility gap ... 665
E. Garskaite, D. Jasaitis and A. Kareiva: Sol-gel preparation and electrical behaviour of Ln: YAG (Ln = Ce, Nd, Ho, Er) ... 677

Analytical Chemistry
D. K. Singh, B. Srivastava and A. Sahu: Spectrophotometric determination of ajmaline and brucine by Folin Ciocalteu’s reagent ... 685
M. Jelikić-Stankov, P. Djurđjević and D. Stankov: Determination of uric acid in human serum by an enzymatic method using N-methyl-N-(4-aminophenyl)-3-methoxyaniline reagent ... 691
Organic Chemistry

G. S. Ušćumlić, A. A. Kshad and D. Ž. Mijin: Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 1,3-bis-substituted-5,5-dimethylhydantoins 699

Z. D. Petrović, D. Andjelković and Lj. Stevanović: Vitamin B12-catalyzed synthesis of some peracetylated alkyl β-D-xylpyranosides (Short communication) ... 719

V. V. Dabholkar and R. P. Gavande: A microwave-catalyzed rapid, efficient and ecofriendly synthesis of substituted pyrazol-5-ones (Short communication) .. 723

Inorganic Chemistry

H. S. Sellem, B. A. El-Shetary, S. M. E. Khalil and M. Shebl: Potentiometric and spectrophotometric studies of the complexation of Schiff-base hydrazones containing the pyrimidine moiety .. 729

W. Ferenc, A. Walkóv-Dziewulska and J. Chruściel: Spectral and thermal behaviours of rare earth element complexes with 3,5-dimethoxybenzoic acid .. 751

Analytical Chemistry

S. M. Rančić, R. P. Igov and T. G. Pečev: Kinetic determination of As(III) in solution 765

Materials

K. I. Popov, M. G. Pavlović, Lj. J. Pavlović, E. R. Ivanović, S. B. Krstić and M. Č. Obradović: The effect of the particle shape and structure on the flowability of electrolytic copper powder. II. The experimental verification of the model of the representative powder particle ... 779

Organic Chemistry

N. M. Krstić, M. S. Bjelaković, Lj. B. Lorenč and V. D. Pavlović: Oxidative fragmentation of 5-hydroxy-1-oxo-5α-cholestan-3β-yl acetate ... 785

V. Popsavin, S. Grubić, I. Krstić, M. Popsavin and D. Djoković: A formal synthesis of (−)-muricatacin from D-xylene ... 795

D. Zlatković, D. Jakovljević, D. Zeković and M. M. Vrić: A glucan from active dry baker’s yeast (Saccharomyces cerevisiae); chemical and enzymatic investigation of the structure (Preliminary communication) ... 805

Biochemistry

R. Mansukha, J. Anna Nikolić and O. Nedić: Membrane-associated insulin-like growth factor (IGF) binding structures in placental cells ... 811

R. M. Prodanović, M. B. Simić and Z. M. Vujčić: Immobilization of periodate oxidized invertase by adsorption on sepiolite ... 819
Physical Chemistry

D. Ž. Mijin, D. G. Antonović and B. Ž. Jovanović: Gas chromatographic retention indices for N-substituted amino-s-triazines on capillary columns. Part V. Temperature dependence of the retention index ... 825

A. Vujaković, A. Đaković, J. Lemić, A. Radosavljević-Mihajlović and M. Tomašević-Čanović: Adsorption of inorganic anionic contaminants on surfactant modified minerals .. 833

J. P. Popić and D. M. Dražić: Electrochemistry of active chromium. Part III. Effects of temperature...

Electrochemistry

X. Yang, Sh. Chen, Sh. Zhao, D. Li and H. Ma: Synthesis of copper nanorods using electrochemical methods.. 849

A. V. Tripković, K. Dj. Popović and J. D. Lović: Comparison of formic acid oxidation at supported Pt catalyst and at low-index Pt single crystal electrodes in sulfuric acid solution ... 859

S. Lj. Gogović: Electrochemical oxidation of methanol on Pt₃Co bulk alloy 871

Analytical Chemistry

D. Zondekovska and T. Stařilov: High-performance liquid chromatographic determination of famotidine in human plasma using solid-phase column extraction ... 883

Materials

V. Maksimović, S. Zec, V. Radmilović and M. T. Jovanović: The effect of microalloying with silicon and germanium on microstructure and hardness of a commercial aluminium alloy 893

K. I. Popov, P. M. Živković and S. B. Krstić: The apparent density as a function of the specific surface of copper powder and the shape of the particle size distribution curve .. 903

Errata.. 909

NUMBER 12

Biochemistry

V. D. Dragičević, S. Sredojević, M. B. Spasić and M. M. Vrvić: Ageing-induced changes of reduced and oxidized glutathione in fragments of maize seedlings .. 911

Inorganic Chemistry

Physical Chemistry

I. Gutman, B. Furtula and J. Belić: Note of the Hyper-Wiener index (Note)................................. 943

I. Gutman: Hyper-Wiener index and Laplacian spectrum .. 949

I. Hinić, G. Stanistić and Z. Popović: Influence of the synthesis conditions on the photoluminescence of silica gels ... 953

B. F. Abramović, V. B. Anderluh, A. S. Topalov and F. F. Gaïd: Direct photolysis and photocatalytic degradation of 2-amino-5-chloropyridine .. 961

M. M. Ačanoki: Normal-phase high performance liquid chromatography of estradiol derivatives on amino- and diol-columns .. 971
Subject index*

Acetonitrile + alcohol systems, 47
Acetylene, classification of electronic states of, 363
Achillea tingulata, lignans of, 277
Ajmaline and brucine determination, 685
Algae, chemoevolution of, 269
Aluminum alloy, microalloying with Si and Ge, 893
2-Amino-5-chloropyridine, photolysis of, 961
Antiaromatase activity of androstene derivatives, 707
Arsenic (III) detn. in soln., 131
As(III) kinetic detn. in solution, 765
Asteroid impact on Earth, 97

Balkan endemic nephropathy, 599
Bentonite stabilizer, 629
Bis-fluoran compounds, 607
Bismuth-phosphomolybdate complex, 65
Bleomycin, interaction of Pt(II) and Pd(II) with, 339
B-nor-secosteroidal ketones, 303

Carbon monoxide adsorption on X, Y and mordenite zeolites, 409
Carbon monoxide, oxidation of, 191
Char combustion, 137
Chemical trees, equiseparable, 549
Chromium, anodic dissolution of, 871
Co(II) and Co(III) complexes with azamacrocycles, 989
Co(II), Ni(II), Cu(II) and Zn(II) complexes with isatin, 641
Cobalt(III) complexes with salicylaldehyde, 919
CoNiFe films in presence of organic additives, 349
Contaminants, anionic, 833

Copper powder deposition, 649
Copper nanorods, 843
Copper powder, apparent density of, 903
Copper powder, electrolytic, 771, 779
Copper powder, free flow of, 511
Copper(II), detn. of ultramicro amounts, 219
Cyanex-923, use in separation of Ga(III), In(III) and Tl(III), 581

DC arc, ethanol loaded, plasma composition, 109
Deoxyribozymes, tiling of, 321
Diethylene glycol oxidation by chloramine-T, 535
Dihydoxy oligo(alkylene maleate) crosslinking in, 147
Dimethyl hydantoin, UV absorption spectra, 699
3,5-Dimethoxy benzoates, rare earth complexes, 751
1,4-Dioxane + n-alkane systems, 35
D-xylopyranosides, vitamin B12 catalyzed synthesis, 719

Estradiol derivatives, chromatography of, 971
Estradiol derivatives, retention on alumina, 163
Ethanol in *Salvia officinalis*, 17

Famotidine in human plasma, detn., 883
Formic acid oxidation at platinum, 849
Fullerene synthesis, significant physical parameters, 543

Gallium-based systems with a miscibility gap, 665
Germacranolides, conformational analysis of, 281

Indices were kindly prepared by Professor Slobodan Ribnikar
Glass ceramics, basalt-based, properties of, 505
Glutathione in maize seedlings, 911
Graphite lithiation, 119

Hemoglobin, lipid bonding to, 25
Hydrogen electrode in a soln. of KClO₄ in dimethyl sulfoxide, 497
Hyper-Wiener index and Laplacian Spectrum, 947
Hyper-Wiener index of a chemical tree, 943

Iron(III) complex with thiosemicarbazide-based ligands, 425
Iron(III) complexes with semicarbazones, 927

Lactoglobulin, modification by quinones, 243

Maclura pomifera, a stilbene from, 235
Methanol, electrochemical oxidation of, 859
3-Methylene-2-substituted-1,4-pentadienes, chemical shifts with, 525
Methylphthalazinium ylids, inactivation reactions with, 447
Mn(II) complexes of tetraazamacrocycles, 455
Mn(II), Co(II), Ni(II) and Cu(II) complexes with aminofuropyridine carboxamide 463
Muricatacin synthesis from D-xylose, 795

Nd:CaWO₄ single crystals, 1001
N-H…π hydrogen bonding, 715
Nicotinic acids, 2-substituted, reaction with diazodiphenylmethane, 515

Oil pollutants in alluvial sediments, 227
Oxonitriles, heterocyclization of, 383
Oxygen (O₂) in early Earth, 97

Pentadienes, ¹³C-NMR chem. shifts of, 67
Phenylene, linear, algebraic structure count, 391
Phosphorus, detn. in coal and coal ash, 65
Photosynthetic electron-transport chain, 615
Placental cell membranes, insulin-like growth factor, 811
Polyurethane, rheokinetic analysis, 147
Push-pull alkenes, hydrogen bonding in, 1
Pyrazol-5-ones, ecofriendly synthesis of, 723

Retention indices of capillary columns, 557
RP liquid column chromatography, 565
RuO₂-TiO₂ coating, 979

Saccharomyces cerevisiae, glucan from, 805
Salvia L. in the treatment of some diseases, 435
Salvia officinalis, chemical composition of, 17
Saturated-liquid heat capacity, polynomial models, 479
Schiff-base hydazones complexation, 729
16,17-Secosterone derivatives, 57
Selenium, immobilization of invertase, 819
Silica gels, photoluminescence of, 953
Solanidine extraction, 9
Solanum tuberosum, solanidine from, 9
S-Triazines, retention indices, 825
Suberites domuncula, composition of lipophilic extract, 249
Sulfur, retention by ash, 137, 171
Sulphonylhydrazine-Cu(II) complex, 85
Suspension polymerization, 629

Tantalum hydride formation, 657
Telomerase activity in sponges, 257
Tetrahydrokhusitone, synthesis of, 313
Tetraoxanes, phenyl substituted, antimycobacterial activity of, 291
Thiobacillus ferrooxidans depyritization of oil shale kerogen, 417
Triisocyanate in rheokinetic study, 147

Uric acid, detn. in human serum, 691

Water radiolysis, catalyzed, 593
Wiener-type indices and internal molecular energy, 401

Yeast alcohol dehydrogenase, 77
Yttrium aluminium garnet preparation, 677
Yttrium and neodymium complexes, 183
Zeolite synthesized from coal fly ash, 471

Zinc anodic dissolution, 207
Zinc cytochrome c and plastocyanin, gated electron transfer, 327.
Author index

Abd el Waheed M. G., 463
Abramović B. F., 961
Aćanski M. M., 57, 163, 971
Aljančić I., 281
Anderluh V. B., 961
Andjelković D., 719
Andrić N., 707
Antonović D. G., 557, 715, 825
Arsić B., 549
Babić-Samardžija K., 989
Baranac M., 1, 383
Belić J., 941
Blagwat V. W., 535
Bjelaković M. S., 303, 785
Bjelica L. J., 929
Blinzanac B., 119
Bončić-Carićić G., 557
Boševska V., 629
Bošković S., 505
Božić N., 243
Božić T., 243
Bratsos I., 329
Brečevskaja S., 629
Burevski D., 629
Čakić Ž., 641
Caprosu M., 447
Cecal A., 593
Choube A., 535
Chrusciel J., 751
Colisnic D. 593
Cnogorac M. M., 327
Cvetković O., 417
Cvjetičanin N., 119
Češljević V. I., 425, 919
Čeković Ž., 313
Čelap M. B., 565
Dabholkar V. V., 723
Dabović M. M., 303
Dakojić A., 833
De Meijere, A., 67
De Rosa S., 249
Degang Li, 843
Dekanski A. B., 979
Dhadke P. M., 581
Dima St., 447
Dimitrijević R., 657
Dimitrova-Konaklieva S., 269
Divjaković V., 425
Djapić N., 235
Djarmati Z., 235
Djoković D., 277
Djoković D., 795
Djonlagić J., 147
Djordjević A. B., 35
Djordjević B. D., 35, 47
Djordjević P., 691
Djurendić E., 707
Djurić S., 1001
Dondur V., 409
Dražić D. M., 871
Dragićević V. D., 911
Dragutinović V., 417
Drmanić S. Ž., 515
Dumitrasc M., 447
Dunjić B., 147
Džambaski Z., 1, 383
El-Shetary B. A., 729
F
Fazlić R., 425
Ferenc W., 751
Filip S., 235
Furtula B., 401, 549, 943
Gaál F. F., 961
Gajić R., 1001
Garskaite E., 677
Gavande R. P., 723
Georgakopoulos A., 599
Gobor L., 715
Gojković S. Lj., 859
Golubović A., 1001
Grabež S., 795
Grahovac Z. M., 219
Grgrur B., 307
Grgrur B. N., 191
Grgrur I. R., 35, 47
Grozdanić D. K., 479
Grubor B., 137, 171
Gupta N., 455
Gutman I. 391, 401, 549, 943, 949

Harek Y., 85
Hercigonja R., 409
Hinić I., 953
Hoekstra D., 25
Holclajtner-Antunović I., 65, 109
Houyi Ma, 843
Hubicka H., 183

Ignjatović N. R., 65
Igov A. R., 131
Igov R. P., 131, 765
Ilić M., 171, 137
Ilić S. N., 435
Iodice C., 249
Ivanović E. R., 771, 779

Jakovljević D., 805
Janjić T. J., 565
Jankov R. M., 235
Jasaitis D., 677
Jelikić-Stanković M., 691
Jerosimić S., 363
Jevrčić L., 57
Jevtović V. S., 927
Jovančević B., 171, 227
Jovanović B. Ž, 515, 557, 825
Jovanović J. D., 479
Jovanović Lj. S., 927
Jovanović M. T., 893
Jovanović V. M., 987
Jovanović-Santa S., 57, 707
Juranić I., 281
Juranić I. O., 67

Kaljević V. M., 65
Kamenarska Z. G., 269
Kareiva A., 677
Katayama I., 665
Katsaros, N., 339
Khail S. M. E., 729
Kijevčanin M. Lj., 35, 47
Klappe K., 25
Kolodynska D., 183
Konstantinović S. S., 641
Koseva S., 629
Kostić N. M., 327
Kozhushkov S. L., 67
Krstajić N., 207
Krstić I., 795
Krstić N. M., 785
Krstić S. B., 511, 771, 779, 903
Kshad A. A., 699
Kyle D. E., 291

Larabi L., 85
Lazić P., 471
Lemčić J., 833
Leskovac V. M., 425, 919, 929
Logar M., 505
Lorenc Lj. B., 303, 785
Lović J. D., 849

Maksimović V., 893
Manasijević D., 665
Manović V., 171, 137
Marinković A. D., 515
Marinković M., 543
Marković D., 109, 615
Marković N. M., 191
Marković R., 1, 383
Marković Z., 543
Masnikosa R., 811
Matić V., 417
Matović B., 505
Mentus S., 119, 497, 657
Mészáros Szécsényi K., 919
Mišić-Vuković M. M., 515
Mišković-Stanković V. B., 979
Milhajlović R. P., 65
Mijin D. Ž., 557, 699, 825
Milhous W. K., 291
Miljanović I., 471
Milonjić S. K., 977
Milosavić N., 243
Milosavljević S., 277, 281
Minić D. 1
Mitić N. D., 435
Mitić S. S., 219
Mladenović M. R., 715
Mostafa M. M., 85
Müller I. M., 257
Müller W. E. G., 257

Nechev J., 249
Nedić O., 811
Nenadović T., 543
Niketić V., 25
Nikić D. B., 321
Nikolić A. D., 715
Nikolić A. J. 811
Nikolić B. Ž., 977
Nikolić M., 25
Nikolić N. Ć., 9
Nikolić N. D., 649
Nikolić S., 1001
Novaković I. , 243

Obradović M. Ć., 771, 779
Odochian L., 447
Opsenica D., 291

Panić V. V., 977
Papakyriakou A., 329
Paraschivescu A., 593
Pare B., 535
Patel J. V., 607
Patel M. P., 607
Patel R. G., 607
Pavlović Lj. J., 771, 779
Pavlović M. G., 511, 649, 771, 779
Pavlović N., 119
Pavlović V. D., 303, 785
Pawar S. D., 581
Pecev E. T., 219
Pecev T. G., 765
Penov-Gaši K., 707
Perić M., 363
Perićin D., 77
Petrovanu M., 447
Petrović G., 313
Petrović S. D., 715
Petrović Z. D., 719
Popa K., 593
Popić J. P., 871
Popov K. J., 511, 649, 771, 779, 903
Popov S. S., 269
Popov S., 249
Popović K. Đ., 849
Popović Z., 951
Popsavin M., 707, 795
Popsavin V., 795
Prasad R. N., 455
Premović P. I., 97
Prodanović R. M., 819

Rašković M., 109
Radmilović V., 893
Radosavljević-Mihajlović A., 833
Radovanović B. S., 641
Rajković O. S., 557
Rakić V., 409
Raničić S. M., 765
Randjelović N. V., 17
Reguig A., 85
Riemer S., 349
Ristić M. S., 17, 435
Rosić A., 471
Ross Ph. N. Jr., 191
Sahu A., 685
Sakač M., 707
Seleem H. S., 729
Sepulchre M., 147
Sepulchre M.-O., 147
Shebl M., 729
Shenhao Chen, 843
Shirazi A., 1
Shiyong Zhao, 843
Simić M. B., 819
Simonović B. R., 657
Simonović R. M., 131
Singerean L., 593
Singh D. K., 685
Sladić D., 243
Sovilj S. P., 989
Spasić M. B., 911
Spasić S., 417
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spassky N.</td>
<td>147</td>
</tr>
<tr>
<td>Sredojević S.</td>
<td>911</td>
</tr>
<tr>
<td>Srivastava B.</td>
<td>685</td>
</tr>
<tr>
<td>Statilov T.</td>
<td>883</td>
</tr>
<tr>
<td>Stanišić G.</td>
<td>951</td>
</tr>
<tr>
<td>Stankov D.</td>
<td>691</td>
</tr>
<tr>
<td>Stanković M. Z.</td>
<td>9</td>
</tr>
<tr>
<td>Stanković S.</td>
<td>207, 707</td>
</tr>
<tr>
<td>Steel P.</td>
<td>383</td>
</tr>
<tr>
<td>Stefanov K.</td>
<td>249</td>
</tr>
<tr>
<td>Stefanov Lj. K.</td>
<td>269</td>
</tr>
<tr>
<td>Stefanović D.</td>
<td>321</td>
</tr>
<tr>
<td>Stevanović Lj.</td>
<td>719</td>
</tr>
<tr>
<td>Stojanović M.</td>
<td>383</td>
</tr>
<tr>
<td>Stojanović M. N.</td>
<td>321</td>
</tr>
<tr>
<td>Stojanović S.</td>
<td>707</td>
</tr>
<tr>
<td>Šerbanović S. P.</td>
<td>35, 47</td>
</tr>
<tr>
<td>Šmelcerović A. A.</td>
<td>17</td>
</tr>
<tr>
<td>Šolaja B. A.</td>
<td>291</td>
</tr>
<tr>
<td>Šolević T.</td>
<td>227</td>
</tr>
<tr>
<td>Tabaković I.</td>
<td>349</td>
</tr>
<tr>
<td>Tasić A. Ž.</td>
<td>47</td>
</tr>
<tr>
<td>Tešević V.</td>
<td>277</td>
</tr>
<tr>
<td>Timeo G.</td>
<td>593</td>
</tr>
<tr>
<td>Tiwari J.</td>
<td>535</td>
</tr>
<tr>
<td>Todorovič M. R.</td>
<td>65</td>
</tr>
<tr>
<td>Todorović N.</td>
<td>281</td>
</tr>
<tr>
<td>Todorović–Marković B.</td>
<td>543</td>
</tr>
<tr>
<td>Tomašević N.</td>
<td>25</td>
</tr>
<tr>
<td>Tomašević-Čanović M.</td>
<td>833</td>
</tr>
<tr>
<td>Topalov A. S.</td>
<td>961</td>
</tr>
<tr>
<td>Trifunović S.</td>
<td>277</td>
</tr>
<tr>
<td>Tripković A. V.</td>
<td>849</td>
</tr>
<tr>
<td>Tripković M.</td>
<td>109</td>
</tr>
<tr>
<td>Trivić S.</td>
<td>77</td>
</tr>
<tr>
<td>Ušćumlić G. S.</td>
<td>67, 525, 699</td>
</tr>
<tr>
<td>Vajs V.</td>
<td>277, 281</td>
</tr>
<tr>
<td>Valentić N. V.</td>
<td>67, 525</td>
</tr>
<tr>
<td>Vasić V.</td>
<td>641</td>
</tr>
<tr>
<td>Veličković A. S.</td>
<td>17, 435</td>
</tr>
<tr>
<td>Veličković D. T.</td>
<td>17, 435</td>
</tr>
<tr>
<td>Vidojić D.</td>
<td>401</td>
</tr>
<tr>
<td>Vittini Ž.</td>
<td>67</td>
</tr>
<tr>
<td>Vitorović D.</td>
<td>242, 417</td>
</tr>
<tr>
<td>Vojinović Lj. S.</td>
<td>919</td>
</tr>
<tr>
<td>Vojinović V.</td>
<td>497</td>
</tr>
<tr>
<td>Vojinović M.</td>
<td>207</td>
</tr>
<tr>
<td>Vrvić M. M. ,</td>
<td>227, 417, 805, 911, 1011</td>
</tr>
<tr>
<td>Vučinić D. A.</td>
<td>471</td>
</tr>
<tr>
<td>Vučković G.</td>
<td>565</td>
</tr>
<tr>
<td>Vujčić Z.</td>
<td>243</td>
</tr>
<tr>
<td>Vujčić Z. M.</td>
<td>819</td>
</tr>
<tr>
<td>Vujaković A.</td>
<td>833</td>
</tr>
<tr>
<td>Vukašinović S.</td>
<td>147</td>
</tr>
<tr>
<td>Walkow-Dzewulska,</td>
<td>751</td>
</tr>
<tr>
<td>Wehner H.</td>
<td>227</td>
</tr>
<tr>
<td>Xuegeng Yang</td>
<td>843</td>
</tr>
<tr>
<td>Zec S.</td>
<td>893</td>
</tr>
<tr>
<td>Zeković Dj.</td>
<td>805</td>
</tr>
<tr>
<td>Zendelovska D.</td>
<td>883</td>
</tr>
<tr>
<td>Zenkevich I. G.</td>
<td>401</td>
</tr>
<tr>
<td>Zlatković D.</td>
<td>805</td>
</tr>
<tr>
<td>Živković Ž.</td>
<td>665</td>
</tr>
<tr>
<td>Živković D.</td>
<td>665</td>
</tr>
<tr>
<td>Živković P. M.</td>
<td>903</td>
</tr>
</tbody>
</table>

End of Volume 68.