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Chemical applications of the Laplacian spectrum. VI. On the
largest Laplacian eigenvalue of alkanes
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The largest Lapacian eigenvalue �1 of the molecular graph is a quantity important in
the theory of the photoelectron spectra of saturated hydrocarbons. It is shown that in the case
of alkanes, the presence or absence of quaternary carbon atoms is the main structural feature
on which �1 depends. Within sets of all alkanes with a given number of carbon atoms the
species (with and without quaternary carbons atoms) whose �1-values are minimal and
maximal are determined.
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Let G be a graph with n vertices. The Laplacian matrix of G is defined as L(G) = D(G) –
A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex
degrees of G. The eigenvalues of L(G), denoted by �1, �2, …, �n, form the Laplacian spectrum
of G. If they are labeled so that �1 � �2 � …� �n , then �n is always 0, whereas �n–1 > 0 if and
only if the graph G is connected. The largest Laplacian eigenvalue of G is thus �1 = �1 (G).

Two recent discoveries in theoretical chemistry resulted in a significant increase of the
interest in the Laplacian spectra of molecular graphs. First, the Wiener topological index W

of alkanes was shown to conform to the formula

W = n
ii
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1 ��

�

�
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Second, within the Heilbronner model, the ionization potentials of alkanes (as mea-
sured via the high-energy bands in their photoelectron spectra) are expressed as

� + (�i – 2) � ; i = 1, 2, 3, ... (2)

where � and � are pertinently chosen semiempirical constants. It follows from Eq. (2) that
�1 determines the first ionization potential of the respective alkane.
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For details about Eq. (1) see the papers1–3 and the references cited therein. For details
about Eq. (2) see the papers4–6 and the references cited therein. Parts I–V of the series
Chemical Applications of the Laplacian Spectrum are the papers.2,4–7 Details of the theory
of Laplacian eigenvalues can be found in the reviews.8–10

A REGULARITY IN THE STRUCTURE-DEPENDENCY OF THE LARGEST LAPLACIAN
EIGENVALUE OF ALKANES

Atree is a connected acyclic graph. Achemical tree is a tree in which no vertex has a
degree (= number of first neighbors) greater than 4. Chemical trees are molecular graphs
representing constitutional isomers of alkanes. If n is the number of vertices, then each
chemical tree represents a particular isomer of CnH2n+2.

Continuing our research on the Laplacian eigenvalues of molecular graphs, and, in partic-
ular, of the dependence of the largest Laplacian eigenvalue on molecular structure,7 the �1-val-
ues of all chemical trees with 20 and fewer vertices have been computed. When the isomeric
alkanes are ordered according to their �1-values a remarkable regularity is observed.

Denote the maximal degree of a vertex of the graph G by �. For molecular graphs � is
equal to either 2 or 3 or 4. (The condition � = 1 is satisfied only by ethane and is, therefore,
irrelevant for the present study.) In the case of alkanes, only the normal (unbranched) iso-
mers have � = 2. If the molecule possesses tertiary carbon atoms, but no quaternary carbon
atom, then � = 3. If there is at least one quaternary carbon atom in the molecule, then � = 4.

The chemical trees pertaining to the 18 isomeric octanes, ordered by increasing �1,
are depicted in Fig. 1. The isomer with the smallest �1-value is the unbranched normal oc-
tane (the unique species with � = 2). It is followed by 10 other isomers, with various ex-
tents of branching, none of which possesses a quaternary carbon atom (� = 3).The remain-
ing 7 octane isomers, with the largest �1–values, all possess a quaternary carbon atom (� =
4). Thus, by means of the largest Laplacian eigenvalue, the isomeric octanes are separated
into three groups according to their �–values.

The same regularity is found to exist for sets of isomeric alkanes with n carbon atoms,
4 	 n 	 12: The normal alkane (with � = 2) has the smallest �1. All alkanes with � = 3 have

smaller �1 values than any isomer with � = 4. This regularity is corroborated by the data
shown in Fig. 2, depicting the distribution of the �1-values of alkanes with 6 	 n 	 10 car-
bon atoms.

It can, thus, be concluded that � (the parameter indicating the presence or absence of
quaternary carbon atoms) is the main molecular structure-descriptor11 affecting the value
of the largest Laplacian eigenvalue of an alkane.

For n � 13 a slight violation of the above rule is found which is discussed in more de-
tail in the subsequent section.

The fact that the largest Laplacian eigenvalue of trees is bound from below by � + 1 and
from above by some linear function of the parameter � has been known for some time.8–10

408 GUTMAN, VIDOVI] and STEVANOVI]



Recently one of the present authors improved the upper boundary12 so that one now has

� + 1 < �1 < � + 1 + 2 � �1 (3)

The estimates (3) are in qualitative agreement with our finding that � significantly in-
fluences the value of the largest Laplacian eigenvalue. These estimates suggest that a
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Fig. 1. The molecular graphs representing isomeric octanes ordered according to increasing largest
Laplacian eigenvalue (given in parentheses); graphs 1, 2–11, and 12–18 have � = 2, � = 3 and � = 4,

respectively.



(rough) approximation for �1 could be obtained by a linear combination of the lower and
upper boundary in (3):

�1 

C C

C C

1 2

1 2

( 1) ( 1 2 1� � � � � � � �

�

)

i.e.,

�1 
 � +1 + � � �1 (4)

for some pertinently chosen constant � = 2C2/(C1 + C2). By numerical testing it was found
that for alkane graphs, � 
 0.2. Amore detailed examination reveals that � would depend on
both n and �, making the usage of formula (4) unnecessarily complicated.

ALKANES WITH MAXIMAL AND MINIMAL LARGEST LAPLACIAN EIGENVALUES

As already mentioned, we calculated �1 for all alkanes with 20 and fewer carbon at-
oms. From these data it is easy to see that among alkanes with a fixed values of n the nor-
mal alkane (whose graph representation is the path Pn, see Fig. 3) has minimal �1. It can
be shown that �1(Pn) = 2 + 2 cos(
/n). This, of course, is the alkane with � = 2 and mini-
mal �1.

The structure of the alkane isomers with � = 3 and � = 4, having minimal �1 is also
easily established. The respective chemical trees (Tn

min for � = 3 and Qn
min for � = 4) are

depicted in Fig. 3.
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Fig. 2. The distribution of the largest Laplacian eigenvalues (�1) of isomeric hexanes (n = 6), heptanes (n = 7), oc-
tanes (n = 8), nonanes (n = 9), and decanes (n = 10). In all these cases the data points are strictly separated into

groups with different � values.



The structure of the chemical trees Tn
max (for � = 3) and Qn

max (for � = 4), having
maximal �1, turns out to be much harder to characterize. Fortunately, however, the analo-
gous problem was earlier considered for a number of other molecular structure-de-
scriptors.13–15 In particular, we determined the chemical trees with minimal Wiener index
(W),13,15 minimal connectivity index,14 maximal largest (ordinary) graph eigenvalue
(�1),15 minimal Hosoya index,15 and minimal energy.15 What has now been established is
that Tn

max and Qn
max coincide with the chemical trees with the same n and �, having min-

imal W and maximal �1. These extreme � = 3 and � = 4 species are depicted in Figs. 4 and
5 for a few values of n. The precise characterization of the structure of Tn

max and Qn
max

(which is far from being elementary) can be found elsewhere.15
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Fig. 3. The n-vertex trees with � = 2, 3, 4 having
minimal �1. Graphs 1, 2, and 12 in Fig. 1 are the
same as Pn, Tn

min and Qn
min for n = 8.

Fig. 4. The n-vertex trees Tn
max with � = 3 having maximal �1, for n = 12, 13, …, 22. Graph 11 in Fig. 1 is

such a tree for n = 8.



In order to have a complete separation of alkane isomers without and with quaternary
carbon atoms (as shown in Fig. 2 and exemplified in Fig. 1), it is necessary that

(a) �1(Pn) be smaller than �1(Tn
min), cf. Fig. 3, and

(b) �1(Tn
max) be smaller than �1 (Qn

min), cf. Figs. 3 and 4.
Condition (a) is always obeyed. Moreover, �1(Pn) < 4 whereas all other n-vertex trees

have �1 > 4.
By direct calculation we have verified that condition (b) is obeyed for all n 	 12, but is

violated for n � 13. In particular, �1(T12
max) = 5.0825 and �1 (Q12

min) = 5.0981 whereas
�1(T13

max) = 5.1084 and �1 (Q13
min) = 5.0981.

Thus the rule formulated in the preceding section is not strictly obeyed. Violations
may occur for pairs of alkanes with a large number of carbon atoms, one of which (the spe-
cies with � = 3) must be highly branched. However, these cases of violations are of little
practical relevance, because highly branched alkanes (such as those corresponding to the
chemical trees depicted in Fig. 3) are hardly ever encountered in real-life chemistry.

I Z V O D

HEMIJSKE PRIMENE LAPLASOVOG SPEKTRA. VI. O NAJVE]OJ LAPLASOVOJ

SOPSTVENOJ VREDNOSTI ALKANA

IVAN GUTMAN, DU[ICA VIDOVI] i DRAGAN STEVANOVI]

Prirodno-matemati~ki fakultet u Kragujevcu i Prirodno-matemati~ki fakultet u Ni{u

Najve}a Laplasova sopstvena vrednost �1 molekulskog grafa je od zna~aja u teoriji fotoe-
lektronskih spektara zasi}enih ugqovodonika. Pokazano je da je, u slu~aju alkana, prisustvo ili

odsustvo kvaternernih ugqenikovih atoma najva`niji strukturni detaq od kojeg zavisi �1.
Odre|eni su izomeri koji me|u alkanima sa fiksiranim brojem ugqenikovih atoma (sa kvater-

nernim ugqenikovim atomima i bez wih) imaju najmawu i najve}u vrednost parametra �1.

(Primqeno 28. februara 2002)
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Fig. 5. The n-vertex trees Qn
max with � = 4

having maximal �1, for n = 13, 14, …, 22.
Graph 18 in Fig. 1 is such a tree for n = 8.
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