J.Serb.Chem.Soc. 67 (2)99–102(2002) JSCS – 2928 UDC 543.632.5:547.21+541.62 Original scientific paper

Two theorems on connectivity indices

IVAN GUTMAN*

Faculty of Science, University of Kragujevac, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia

(Received 3 September 2001)

Two general cases are pointed out for which the ordering of molecules according to the connectivity index $C(\lambda)$ is the same for all values of the exponent λ . *Keywords*: connectivity index, isomer ordering.

INTRODUCTION

The definition of the connectivity index $C(\lambda) = C(\lambda; G) = C(G)$ can be found in the preceding paper¹ where also the ordering of alkanes with regard to $C(\lambda)$ is discussed. It was shown¹ that this ordering is very dependent on the numerical value of the exponent λ . In this paper it will be demonstrated that general classes of molecules (not necessarily alkanes) exist for which the ordering with regard to $C(\lambda)$ is the same for all values of λ .

THE FIRST THEOREM

Consider the molecular graphs G_1 and G_2 shown in Fig. 1, where *R* and *S* denote arbitrary fragments. Clearly, G_1 and G_2 represent a pair of consitutional isomers. It is necessary that *R* consists of more than a single vertex (because otherwise G_1 and G_2 would coincide implying $C(\lambda; G_1) = C(\lambda; G_2)$ for all λ . Therefore, in what follows it is assumed that the degree δ_x of the vertex *x* is greater than unity.

If $\lambda = 0$ then $C(\lambda, G)$ is equal to the number of edges of the graph G. Consequently, for $\lambda = 0$ all isomers have equal $C(\lambda)$ -values. Therefore, in what follows, only the case $\lambda \neq 0$ will be considered.

Theorem 1. For all non-zero values of λ , and for arbitrary *R* and *S*, provided $\delta_x > 1$ (*cf.* Fig. 1), the connectivity index *G*₁ is greater than the connectivity index of *G*₂.

Proof. Applying the definition of the connectivity index (see Eq. (1) in the preceding paper¹) to the molecular graphs G_1 and G_2 one obtains:

$$C(\lambda, G_1) = (1 \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot \delta_x)^{\lambda} + (3 \cdot \delta_y)^{\lambda} + C(R) + C(S)$$

^{*} Serbian Chemical Society active member.

GUTMAN

Fig. 1. The structure of the molecular graphs considered in Theorems 1 and 2 and the labeling of their fragments and vertices.

$$C(\lambda, G_2) = (1 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot \delta_x)^{\lambda} + (3 \cdot \delta_y)^{\lambda} + C(R) + C(S)$$

from which

$$C(\lambda, G_1) - C(\lambda, G_2) = 2^{\lambda} + (3\delta_x)^{\lambda} - 3^{\lambda} - (2\delta_x)^{\lambda} = (3^{\lambda} - 2^{\lambda})(\delta_x^{\lambda} - 1).$$
(1)

As $\delta_x > 1$, the expression on the right-hand side of (1) is positive for all non-zero values of λ . Indeed, if $\lambda > 0$, then $3^{\lambda} > 2^{\lambda}$ and $\delta_x^{\lambda} > 1$, both factors $(3^{\lambda} - 2^{\lambda})$ and $(\delta_x^{\lambda} - 1)$ are positive, and therefore their product is positive too. If $\lambda < 0$, then both $(3^{\lambda} - 2^{\lambda})$ and $(\delta_x^{\lambda} - 1)$ are negative, and therefore their product is positive again.

Theorem 1 follows.

In other words: Theorem 1 claims that by moving any substituent towards the end (to the β -position) of a carbon-atom chain the connectivity index will necessarily decrease.

THE SECOND THEOREM

Consider the molecular graphs H_1 and H_2 of a pair of constitutional isomers, shown in Fig. 1, where R_1 , R_2 , S_1 and S_2 denote arbitrary fragments. This time the groups R_1 , R_2 , S_1 , S_2 may be absent in which case the respective vertices x_1 , x_2 , y_1 , y_2 have degree 1.

Theorem 2. For all non-zero values of λ , and for arbitrary R_1, R_2, S_1, S_2 (*cf.* Fig. 1), the connectivity index of H_1 is greater than the connectivity index of H_2 .

Proof. Applying the definition of the connectivity index to the molecular graphs H_1 and H_2 one obtains:

$$C(\lambda, H_1) = (\delta_{x1} \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot 2)^{\lambda} + (2 \cdot \delta_{x2})^{\lambda} + (3 \cdot \delta_{y1})^{\lambda} + (3 \cdot \delta_{y2})^{\lambda} + C(R_1) + C(R_2) + C(S_1) + C(S_2)$$

100

$$C(\lambda, H_2) = (\delta_{x1} \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot \delta_{x2})^{\lambda} + (3 \cdot \delta_{y1})^{\lambda} + (3 \cdot \delta_{y2})^{\lambda} + C(R_1) + C(R_2) + C(S_1) + C(S_2)$$

from which

$$C(\lambda, H_1) - C(\lambda, H_2) = 9^{\lambda} + 4^{\lambda} - 2 \cdot 6^{\lambda} = (3^{\lambda})^2 - 2(3^{\lambda})(2^{\lambda}) + (2^{\lambda})^2 = (3^{\lambda} - 2^{\lambda})^2.$$
(2)

The expression of the right-hand side of (2) is evidently positive for all $\lambda \neq 0$. Theorem 2 follows.

In other words: Theorem 2 claims that by moving any two substituents from a vicinal into a non-vicinal mutual position the connectivity index will necessarily decrease.

AN APPLICATION

In order to illustrate the potentials of Theorems 1 and 2, the isomeric trimethylnonanes will be considered. There exist 19 distinct constitutional isomers of this kind, depicted and numbered in Fig. 2. These are grouped into 8 sets of *C*-equivalent¹ species, namely: $\tau_1 = \{1\}, \tau_2 = \{2, 3, 4, 6, 10, 13\}, \tau_3 = \{5\}, \tau_4 = \{7, 8, 11\}, \tau_5 = \{9, 12\}, \tau_6$ = $\{14, 19\}, \tau_7 = \{15, 16, 17\}$ and $\tau_8 = \{18\}$.

Fig. 2. Molecular graphs of the 19 isomeric trimethylnonanes.

Let T_i be any element of the set τ_i , i = 1, 2, ..., 8. Then by application of Theorem 1 one arrives at the following relations: $C(T_2) > C(T_3)$, $C(T_4) > C(T_5)$, $C(T_6) > C(T_1)$, $C(T_7) > C(T_2)$ and $C(T_8) > C(T_4)$. Application of Theorem 2 yields: $C(T_1) > C(T_2)$,

GUTMAN

 $C(T_2) > C(T_4)$, $C(T_3) > C(T_5)$, $C(T_6) > C(T_7)$ and $C(T_7) > C(T_8)$. In summary, the following orderings are established:

$$C(\lambda, T_{6}) > C(\lambda, T_{1}) > C(\lambda, T_{2}) > C(\lambda, T_{3}) > C(\lambda, T_{5})$$

$$C(\lambda, T_{6}) > C(\lambda, T_{7}) > C(\lambda, T_{8}) > C(\lambda, T_{4}) > C(\lambda, T_{5})$$

$$C(\lambda, T_{7}) > C(\lambda, T_{2}) > C(\lambda, T_{4})$$

which hold irrespective of the value of the exponent $\lambda \neq 0$.

In fact, the only pairs of trimethylnonane isomers that cannot be ordered by means of Theorems 1 and 2 are T_1 , T_7 ; T_1 , T_8 ; T_2 , T_8 ; T_3 , T_4 and T_3 , T_8 . These, however, cannot be ordered at all (in the sense of Theorems 1 and 2), because their order depends on λ . Namely, by direct calculation one finds the following:

$$C(\lambda, T_1) < C(\lambda, T_7) \text{ for } \lambda < 1 \text{ and } C(\lambda, T_1) > C(\lambda, T_7) \text{ for } \lambda > 1;$$

$$C(\lambda, T_1) < C(\lambda, T_8) \text{ for } \lambda < -0.2838 \text{ and } \lambda > 0 \text{ and } C(\lambda, T_1) > C(\lambda, T_8) \text{ for } -0.2838 < \lambda < 0;$$

$$C(\lambda, T_2) < C(\lambda, T_8) \text{ for } \lambda < 1 \text{ and } C(\lambda, T_2) > C(\lambda, T_8) \text{ for } \lambda > 1;$$

$$C(\lambda, T_3) < C(\lambda, T_4) \text{ for } \lambda < 1 \text{ and } C(\lambda, T_3) > C(\lambda, T_4) \text{ for } \lambda > 1;$$

$$C(\lambda, T_3) < C(\lambda, T_8) \text{ for } \lambda < 2.3686 \text{ and } C(\lambda, T_3) > C(\lambda, T_8) \text{ for } \lambda > 2.3686.$$

Thus, in the case of trimethylnonanes Theorems 1 and 2 suffice to deduce all λ -independent orderings with respect to the connectivity index $C(\lambda)$.

ИЗВОД

ДВЕ ТЕОРЕМЕ О ИНДЕКСИМА ПОВЕЗАНОСТИ

ИВАН ГУТМАН

Природно-машемашички факулшеш у Крагујевцу

Указано је на два општа случаја где је поредак молекула у односу на индекс повезаности $C(\lambda)$ исти за све вредности експонента λ .

(Примљено 3. септембра 2001)

REFERENCES

1. I. Gutman, D. Vidović, A. Nedić, J. Serb. Chem. Soc. 67 (2002) 87.