J.Serb.Chem.Soc. 67(2)69–75(2002) JSCS – 2925 UDC 66.091.2:547.1-311:661.834 Original scientific paper

# Hydride reduction of B-norcholestane 5a,6a-epoxide

MIRA S. BJELAKOVIĆ,<sup>a#</sup>, VLADIMIR D. PAVLOVIĆ,<sup>a,b#</sup> and LJUBINKA B. LORENC<sup>a,b\*#</sup>

<sup>a</sup>Center for Chemistry, ICTM, P. O. Box 473, YU-11001 Belgrade and <sup>b</sup>Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, P. O. Box 158, YU-11001 Belgrade, Yugoslavia

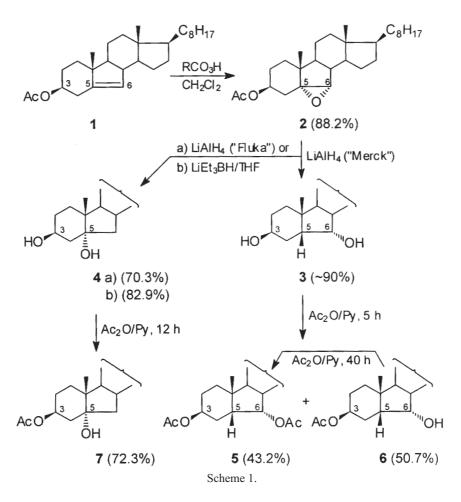
## (Received 4 September 2001)

B-Norcholestane epoxide **2** is reduced with lithium aluminium hydride to give either the  $3\beta_{,}6\alpha_{-}diol$  **3** or the corresponding  $3\beta_{,}5\alpha_{-}diol$  **4**, depending on the quality of the reducing reagent employed. A plausible mechanistic explanation of the obtained results is suggested.

*Keywords*:  $5\alpha$ , $6\alpha$ -epoxy-B-norcholestan- $3\beta$ -yl acetate,  $5\alpha$ -hydroxy-B-norcholestan- $3\beta$ -yl acetate,  $6\alpha$ -hydroxy-B-nor- $5\beta$ -cholestan- $3\beta$ -yl acetate, lithium aluminium hydride, lithium triethylborohydride.

### INTRODUCTION

Investigations concerning the epoxidation of the olefinic double bond in  $\Delta^5$ -unsaturated B-norsteroids (such as **1**, Scheme 1) have shown that this reaction takes place stereoselectively to give as the only stereoisomer the corresponding  $5\alpha,6\alpha$ -epoxides (of type **2**) in high yields of over 90 %.<sup>1–4</sup> However, for the reductive fission of the epoxide ring in these derivatives with lithium aluminium hydride, contradictory results exist in literature.


Thus, Dauben *et al.*<sup>2,5</sup> reported that  $5\alpha$ , $6\alpha$ -epoxy-B-norcholestan- $3\beta$ -yl acetate (2) reacts with lithium aluminium hydride to give a 3,6-diol, which, on the basis of chemical evidence, was characterized as the  $3\beta$ , $6\alpha$ -A/B *cis*-derivative **3**. On the other hand, Joška *et al.* upon similar reduction of the same substrate with lithium aluminium hydride isolated an isomeric 3,5-diol of the  $3\beta$ , $5\alpha$ -A/B *trans*-configuration<sup>4</sup> (compound **4**.)\*\*

Since 5-hydroxy-B-nor- $5\alpha$ -cholestan- $3\beta$ -yl acetate (7) was required as the starting material for our study of the oxidative fragmentation of the C(5)–C(10) bond in  $5\alpha$ -alcohols of the B-norsteroid series, it was considered of interest to re-examine the

<sup>#</sup> Serbian Chemical Society active member.

<sup>\*</sup> Author for correpondence.

<sup>\*\*</sup> These authors observed that the reduction of the analogous B-norandrostane  $5\alpha$ , $6\alpha$ -epoxides with lithium aluminium hydride also gives the corresponding  $5\alpha$ -alcohols.<sup>4</sup>



lithium aluminium hydride reduction of epoxide **2** with the specific aim: (i) to find out a possible explanation for its different behaviour towards lithium aluminium hydride and (ii) to determine optimal experimental conditions by which the  $5\alpha$ -hydroxy compound, rather than the corresponding  $6\alpha$ -isomer, can be obtained.

In addition, in this paper the spectral characteristics (IR, <sup>1</sup>H- and <sup>13</sup>C-NMR data) of the prepared compounds, which have not been described in previous studies, are presented and discussed.

## RESULTS AND DISCUSSION

 $5\alpha,6\alpha$ -Epoxy-B-norcholestan- $3\beta$ -yl acetate (2) was reduced with a large excess of lithium aluminium hydride (produced by Merck) in either diethyl ether or tetrahydrofuran, at reflux until complete consumption of substrate (53 h in the former, and 3 h in the latter solvent). In both cases, the  $3\beta,6\alpha$ -diol **3** was isolated as the sole reduction product in a high yield of *ca*. 90% (see Experimental). Diol **3** was acetylated with acetic

anydride in pyridine at room temperature for 5 h to give two products which were separated by column chromatography.

The more mobile component (isolated as an oil in 43.2 % yield) was identified as the  $3\beta$ , $6\alpha$ -diacetate **5** on the basis of the following evidences. In its IR spectrum the absorption by a free hydroxyl group was absent. The <sup>1</sup>H-NMR spectrum showed two singlets for secondary acetate groups at  $\delta$  2.00 ppm and  $\delta$  2.08 ppm and the signals of the corresponding protons at  $\delta$  5.01 ppm and  $\delta$  5.30 ppm, respectively. In addition, the number of the primary, secondary, tertiary and H-free C-atoms in the DEPT <sup>13</sup>C-NMR spectrum (7 CH<sub>3</sub>, 10 CH<sub>2</sub>, 9 CH and 4 H-free C atoms) is in complete agreement with structure **5**.

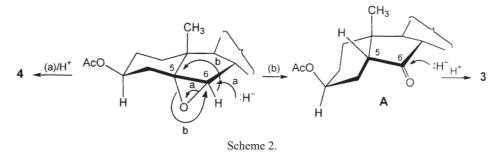
For the more polar component (obtained in 50.7 % yield) the analytical and spectral data (see Experimental) indicated the structure of the diol monoacetate **6**. This compound was subjected to a prolonged acetylation (with acetic anhydride in pyridine at room temperature for 40 h) to give the diacetate **5**.

The 5 $\beta$ -configuration in compounds **5** and **6** was supported by <sup>13</sup>C-chemical shifts of their H<sub>3</sub>C(19) carbons. The resonances at 23.42 ppm and 23.75 ppm, assigned to H<sub>3</sub>C(19) in compounds **5** and **6**, respectively, are characteristic for a 19-methyl group when present in 5 $\beta$ -derivatives of both the natural and B-norsteroid series.<sup>6</sup> However, the configuration at C(6) was deduced from the <sup>1</sup>H-NMR spectral parameters observed for the C(6) proton in these compounds. In **5** the signal appears at  $\delta$  5.30 ppm as *dd*, *J* = 5.2, 3.8 Hz, and in **6** at  $\delta$  3.98 ppm as *ft*, *J* = 3.6 Hz. Thus, in both cases the coupling constants between the C(6) proton and the vicinal C(5) and C(8) protons correspond to a dihedral angle which is less than 50°,<sup>7</sup> thus indicating the existence of 6 $\beta$ -oriented hydrogen in these compounds.

In a repeat experiment the epoxide **2** was reduced (in tetrahydrofuran at reflux for 48 h) with lithium aluminium hydride produced by Fluka. In this case, to our great surprise, the  $3\beta$ , $5\alpha$ -diol **4** was obtained as the only reaction product (in *ca*. 70 % yield). It was identified by its melting point (which was identical to the one reported by Joška *et al.*<sup>4</sup> for diol **4**) and its structure was substantiated by the spectral characteristics presented in the Experimental.

The same  $3\beta$ , $5\alpha$ -diol **4** was obtained (in about 83 % yield) when the reduction of epoxide **2** was performed with lithium triethylborohydride in tetrahydrofuran at reflux for 24 h.

After acetylation (with acetic anhydride in pyridine) diol 4 was transformed to diol monoacetate 7. Its structure was confirmed by spectral analysis, *i.e.*, the IR (absorptions between 3560–3450 cm<sup>-1</sup> for the hydroxyl group and at 1712 and 1270 cm<sup>-1</sup> for the acetoxyl group), <sup>1</sup>H-NMR (singlet at  $\delta$  2.02 ppm for AcO group and multiplet at  $\delta$  5.23 ppm for the corresponding C(3) proton), and <sup>13</sup>C-NMR spectral data (singlet at 84.12 ppm for the hydroxylated C(5) carbon and quartet at 15.92 ppm for the H<sub>3</sub>C(19) carbon).


The  ${}^{13}$ C-NMR chemical shifts of selected carbons of the B-norsteroid derivatives 2 and 4–7 are listed in Table I.

A comparison of the data for the  $H_3C(19)$  signals of the 5 $\alpha$ - and the 5 $\beta$ -B-norsteroidal compounds indicates that in the 5 $\alpha$ -derivatives, due to the shielding interaction of the C(2)-H $\beta$  bond with the  $H_3C(19)$  group, the C(19) signal is shifted upfield with respect to the C(19) signal in the 5 $\beta$ -B-norcompounds. Therefore, the stereochemistry of the A/B ring junction in the modified B-norsteroids can be deduced from the C-19 shielding, as was previously observed for compounds of the natural 5 $\alpha$ - and 5 $\beta$ -series.<sup>6</sup>

| Carbon | 2             | 4             | 5             | 6             | 7             |
|--------|---------------|---------------|---------------|---------------|---------------|
| C(1)   | 30.9 <i>t</i> | 30.1 <i>t</i> | 33.6 <i>t</i> | 33.8 <i>t</i> | 27.3 t        |
| C(2)   | 26.9 t        | 27.5 <i>t</i> | 26.6 t        | 26.7 t        | 25.9 t        |
| C(3)   | 72.1 <i>d</i> | 68.3 d        | 70.0 <i>d</i> | 71.1 <i>d</i> | 71.7 <i>d</i> |
| C(4)   | 31.1 <i>t</i> | 40.4 t        | 26.1 <i>t</i> | 26.4 t        | 39.7 t        |
| C(5)   | 68.3 <i>s</i> | 84.9 <i>s</i> | 43.7 <i>d</i> | 45.6 d        | 84.1 <i>s</i> |
| C(6)   | 60.3 <i>d</i> | 39.6 <i>t</i> | 77.4 d        | 75.7 d        | 36.8 t        |
| C(8)   | 42.3 d        | 38.7 d        | 47.0 <i>d</i> | 48.3 <i>d</i> | 38.7 d        |
| C(9)   | 48.0 <i>d</i> | 52.8 d        | 49.9 <i>d</i> | 49.8 <i>d</i> | 52.6 d        |
| C(10)  | 38.7 <i>s</i> | 45.1 <i>s</i> | 38.7 <i>s</i> | 38.7 <i>s</i> | 45.1 s        |
| C(18)  | 12.0 <i>q</i> | 12.5 q        | 12.0 <i>q</i> | 12.1 q        | 12.5 q        |
| C(19)  | 15.3 q        | 16.0 <i>q</i> | 23.4 q        | 23.7 q        | 15.9 q        |

TABLE I. Selected <sup>13</sup>C-NMR chemical shifts [ppm] of **2** and **4–7** in CDCl<sub>3</sub> solution

The obtained results show that the manner in which the B-norcholestane epoxide **2** reacts with lithium aluminium hydride is highly dependent upon the quality of the reducing agent used.



It is known that, in general, the reduction of an epoxide ring with lithium aluminium hydride (which proceeds by  $S_N2$  nucleophilic substitution by hydride ion) takes place at the least substituted carbon atom to give the more substituted alcohol. In this case the "normal" reaction course, *i.e.*, hydride attack at the less substituted C(6) position of epoxide **2** (path (a), Scheme 2), gives finally the  $3\beta$ , $5\alpha$ -diol **4**. However, the "reversed reduction", leading to the  $3\beta$ , $6\alpha$ -diol **3**, requires a different mechanistic pathway. It can be safely assumed that some impurity (probably a salt) present in traces in the reducing reagent can act as a Lewis acid<sup>#</sup> to induce hydride shift from the C(6) to the

<sup>#</sup> On the basis of the present data it is still uncertain which species can act as a Lewis catalyst. Preliminary experiments in which reductions were performed in the presence of catalytic amounts of AlCl<sub>3</sub> and LiCl, respectively, have shown that the former salt induces a skeletal rearrangement in epoxide  $2^{5}$  while the latter salt was without effect on the reaction course.

C(5) position (path (b), Scheme 2) producing the carbonyl intermediate **A** which is further reduced (from the less hindered  $\beta$ -side) to give the  $3\beta$ , $6\alpha$ -diol **3**.<sup>#</sup>

The different behaviour of the  $5\alpha,6\alpha$ -B-nor epoxide **2** in reductions performed with lithium aluminium hydride of various qualities (not observed in similar reactions of the natural steroid  $5\alpha,6\alpha$ -epoxides) is probably due to the strain which exists in its B-ring moiety. Therefore, if it is required that a diol of type **4** (starting from the corresponding epoxide) be prepared, reduction with lithium triethylborohydride is recommended.

### EXPERIMENTAL

#### General

Column chromatography: silica gel 0.040–0.063 mm. TLC: silica gel G (Stahl), detection with 50 % aq. H<sub>2</sub>SO<sub>4</sub> soln. M.ps.: uncorrected. IR Spectra: Perkin-Elmer-337 spectrophotometer; v in cm<sup>-1</sup>. NMR Spectra: Varian Gemini 200(<sup>1</sup>H at 200, <sup>13</sup>C at 50 MHz); CDCl<sub>3</sub> soln. at r.t.; SiMe<sub>4</sub> as internal standard:  $\delta$  in ppm, *J* in Hz. Mass spectra: Finnigan-MAT 8230; *m/z* (rel. intensity in %); ionization energy 70 eV.

## B-Norcholest-5-en-3 $\beta$ -yl acetate (1)<sup>9,10</sup>

M.p. 76–77 °C (from MeOH) (lit.<sup>11</sup> m.p.77–79 °C). IR (KBr): 1729, 1243, <sup>1</sup>H-NMR: 0.67 (*s*, Me(18)), 0.85 (*s*, Me(19)), 2.04 (*s*, AcO), 4.64 (*m*, H-C(3)), 5.39 (*fs*, H-C(6)). <sup>13</sup>C-NMR: 170.5 (*s*, CH<sub>3</sub>COO), 147.6 (*s*, C(5)), 126.4 (*d*, C(6)), 73.7 (*d*, C(3)), 62.3 (*d*, C(9)), 55.7 (*d*, C(17)), 54.3 (*d*, C(14)), 46.1 (*d*, C(8)), 44.8 (*s*, C(10)), 44.4 (*s*, C(13)), 40.0 (*t*, C(12)), 39.4 (*t*, C(24)), 36.9 (*t*, C(1)), 36.2 (*t*, C(22)), 35.6 (*d*, C(20)), 32.7 (*t*, C(4)), 28.5 (*t*, C(16)), 27.9 (*d*, C(25)), 27.9 (*t*, C(2)), 24.2 (*t*, C(15)), 23.8 (*t*, C(23)), 22.8 (*q*, C(27)), 22.5 (*q*, C(26)), 21.3 (*q*, CH<sub>3</sub>COO), 21.1 (*t*, C(11)), 18.7 (*q*, C(21)), 14.9 (*q*, C(19)), 12.2 (*q*, C(18)).

### $5\alpha, 6\alpha$ -Epoxy-B-norcholestan- $3\beta$ -yl acetate (2)

To a stirred solution of **1** (11.10 g, 26.81 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (400 ml) *m*-chloroperbenzoic acid (assay 70%) (6.90 g, 27.99 mmol) was added, and the mixture left at room temperature for 1 h. The mixture was washed with aq. Na<sub>2</sub>SO<sub>3</sub> solution, aq. NaHCO<sub>3</sub> solution and water, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated *in vacuo* to afford the epoxide **2**, which was recrystallized from MeOH (10.17 g, 88.2%). M.p. 110–112 °C (lit.<sup>4</sup> m.p. 111–112 °C). IR (KBr): 1729, 1383, 1375, 1365, 1247, 1033. <sup>1</sup>H-NMR: 0.63 (*s*, Me(18)), 0.85 (*s*, Me(19)), 2.03 (*s*, AcO), 3.26 (*s*, H-C(6)), 4.98 (*m*, H-C(3)). <sup>13</sup>C-NMR: 170.2 (*s*, CH<sub>3</sub>COO), 72.1 (*d*, C(3)), 68.3 (*s*, C(5)), 60.3 (*d*, C(6)), 55.5 (*d*, C(17)), 50.5 (*d*, C(14)), 48.0 (*d*, C(9)), 44.3 (*s*, C(13)), 42.3 (*d*, C(8)), 39.6 (*t*, C(12)), 39.4 (*t*, C(24)), 38.7 (*s*, C(10)), 36.1 (*t*, C(22)), 35.6 (*d*, C(20)), 31.1 (*t*, C(4)), 30.9 (*t*, C(1)), 28.5 (*t*, C(16)), 27.9 (*d*, C(25)), 26.9 (*t*, C(2)), 24.1 (*t*, C(15)), 23.8 (*t*, C(23)), 22.7 (*q*, C(27)), 22.5 (*q*, C(26)), 21.2 (*q*, CH<sub>3</sub>COO), 20.8 (*t*, C(11)), 18.6 (*q*, C(21)), 15.3 (*q*, C(19)), 12.0 (*q*, C(18)). MS (CI): 431 (M<sup>+</sup> + 1), 353 (431–60–18, 100%).

### Reduction of the epoxide 2 with lithium aluminium hydride (Merck)

(i) In diethyl ether – The epoxide 2 (2.0 g) was dissolved in dry Et<sub>2</sub>O (100 ml) and reduced with LiAlH<sub>4</sub> (Merck) (1.5 g) in the usual way. After heating at reflux for 53 h, water was added until a thick white precipitate formed. The organic layer was washed with water, dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated *in vacuo* to dryness to give  $3\beta$ , $6\alpha$ -diol 3 (1.7 g, 93.92 %), m.p. 142–143 °C (lit.<sup>4</sup> m.p. 143–144 °C).

(ii) In tetrahydrofuran (THF) – The epoxide  $\mathbf{2}$  (0.60 g) in dry THF (30 ml) was reduced with LiAlH<sub>4</sub> (Merck) (0.49 g) by heating at reflux for 3 h. The mixsture was worked up in the usual manner to give diol  $\mathbf{3}$  (0.49 g, 90.04 %). M.p. 142–144 °C (MeOH) (lit.<sup>4</sup> m.p. 143–144 °C).

<sup>#</sup> A similar explanation for "reversed reduction" of some aliphatic epoxides with "mixed hydride" (LiAlH<sub>4</sub>-AlCl<sub>3</sub>) is suggested by Eliel and Rerick.<sup>8</sup>

#### Acetylation of diol 3

The diol **3** was acetylated with Ac<sub>2</sub>O (12 ml) in dry pyridine (12 ml) at room temperature for 5 h. The usual work-up gave a residue (1.9 g) which was chromatographed on a SiO<sub>2</sub> column (100 g). Elution with toluene/EtOAc (95:5) gave 0.95 g (43.18 %) of pure  $3\beta$ , $6\alpha$ -diacetate **5** as an oil. IR (neat): 1734, 1715, 1265, 1030. <sup>1</sup>H-NMR: 0.64 (*s*, Me(18)), 0.85 (*s*, Me(19)), 0.88 and 0.94 (two *d*, Me(26) and Me(27)), 2.00 (*s*, AcO-C(3)), 2.08 (*s*, AcO-C(6)), 5.01 (*m*, H-C(3)), 5.30 (*dd*, *J* 3.8, 5.2, H-C(6)). <sup>13</sup>C-NMR: 170.49 (*s*, CH<sub>3</sub>COO-C(3)), 170.42 (*s*, CH<sub>3</sub>COO-C(6)), 77.44 (*d*, C(6)), 69.95 (*d*, C(3)), 55.41 (*d*, C(17)), 52.91 (*d*, C(14)), 49.89 (*d*, C(9)), 46.99 (*d*, C(8)), 44.17 (*s*, C(13)), 43.74 (*d*, C(5)), 39.31 (*t*, C(24)), 39.13 (*t*, C(12)), 26.55 (*t*, C(2)), 26.13 (*t*, C(4)), 23.87 (*t*, C(15)), 23.67 (*t*, C(23)), 23.42 (*q*, Me(19)), 22.65 (*q*, Me(27)), 22.40 (*q*, Me(26)), 21.65 (*t*, C(11)), 20.94 and 21.20 (two *q*, CH<sub>3</sub>COO), 18.63 (*q*, Me(21)), 11.97 (*q*, Me(18)).

Further elution with the same toluene/EtOAc (95:5) mixture gave 3β-acetoxy-B-nor-5β-cholestan-6α-ol (**6**) (1.02 g, 50.74 %). M.p. 72–73 °C (lit.<sup>4</sup> m.p. 77–79 °C). IR (neat): 3441, 1703, 1273. <sup>1</sup>H-NMR: 0.65 (*s*, Me(18)), 0.85 (*s*, Me(19)), 0.88 and 0.91 (two *d*, Me(26) and Me(27)), 2.02 (*s*, AcO), 3.98 (*ft*, *J* 3.6, H-C(6)), 5.12 (*m*, H-C(3)). <sup>13</sup>C-NMR: 170.93 (*s*, CH<sub>3</sub>COO), 75.71 (*d*, C(6)), 71.08 (*d*, C(3)), 55.55 (*d*, C(14)), 51.80 (*d*, C(17)), 49.76 (*d*, C(9)), 48.29 (*d*, C(8)), 45.59 (*d*, C(5)), 43.79 (*s*, C(13)), 39.44 (two *t*, C(12) and C(24)), 38.66 (*s*, C(10)), 36.18 (*t*, C(22)), 35.63 (*d*, C(20)), 33.85 (*t*, C(1)), 28.57 (*t*, C(16)), 27.95 (*d*, C(25)), 26.71 (*t*, C(2)), 26.40 (*t*, C(4)), 23.85 (*t*, C(23)), 23.75 (*q*, Me(19)), 23.75 (*t*, C(15)), 22.76 (*q*, Me(27)), 22.51 (*q*, Me(26)), 21.87 (*t*, C(11)), 21.49 (*q*, CH<sub>3</sub>COO), 18.70 (*q*, Me(21)), 12.15 (*q*, Me(18)). MS (CI):433 (M<sup>+</sup> + 1, 1 %), 355 (433–60–18, 100 %).

When the dihydroxy derivative 3 was acetylated with  $Ac_2O$  in pyridine for 40 h, only the oily diacetate 5 was obtained.

#### Acetylation of $3\beta$ -acetoxy-B-nor- $5\beta$ -cholestan- $6\alpha$ -ol (6)

The monoacetate 6 was acetylated with  $Ac_2O$  in pyridine at room temperature for 40 h. The usual work-up gave the oily diacetate 5.

#### Reduction of the epoxide 2 with lithium aluminium hydride (Fluka)

The epoxide **2** (2.00 g) was reduced with LiAlH<sub>4</sub> (Fluka) (2.00 g) in dry THF (70 ml) at reflux for 48 h. The reaction mixture was worked up as usually. The crude  $3\beta$ , $5\alpha$ -diol **4** (1.43 g) was crystallized from methanol to give 1.27 g (70.3 %) of diol **4**. M.p. 139–140 °C (lit.<sup>4</sup> m.p. 138–139 °C). <sup>1</sup>H-NMR: 0.66 (*s*, Me(18)), 0.85 (*s*, Me(19)), 0.87 and 0.88 (two *d*, Me(26) and Me(27)), 0.91 (*d*, Me(21)), 4.16 (*m*, H-C(3)), <sup>13</sup>C-NMR: 84.88 (*s*, C(5)), 68.28 (*d*, C(3)), 56.61 (*d*, C(17)), 55.77 (*d*, C(14)), 52.84 (*d*, C(9)), 45.07 (two *s*, C(10) and C(13)), 40.39 (*t*, C(4)), 40.15 (*t*, C(12)), 39.59 (*t*, C(6)), 39.44 (*t*, C(24)), 38.75 (*d*, C(8)), 36.16 (*t*, C(22)), 35.63 (*d*, C(20)), 30.08 (*t*, C(1)), 28.39 (*t*, C(16)), 27.93 (*d*, C(25)), 27.46 (*t*, C(21)), 16.02 (*q*, C(19)), 12.53 (*q*, C(18)).

#### *Reduction of the epoxide 2 with lithium triethylborohydride*

The epoxide 2 (2.00 g, 4.6 mmol) was dissolved in dry THF (10 ml) and LiEt<sub>3</sub>BH (6 ml of 1 *m* solution, 6 mmol) was added to the solution. The mixture was heated at reflux with stirring for 24 h. Additional amount of LiEt<sub>3</sub>BH (6 ml, 6 mmol) was added, and the heating at reflux continued for 24 h. The mixture was cooled to room temperature, and water (2–3 ml) was added dropwise to hydrolyze the mixture. The reaction mixture was diluted with Et<sub>2</sub>O and washed with water, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated to dryness. The crude product was crystallized from MeOH to yield 1.50 g (82.87 %) of  $3\beta$ , $5\alpha$ -diol 4.

### Acetylation of 5-hydroxy-B-nor- $5\alpha$ -cholestan- $3\beta$ -yl-acetate (4)

The diol 4 (1.50 g) was acetylated with Ac<sub>2</sub>O (10 ml) in pyridine (12 ml) for 12 h. Working up and crystallization from MeOH afforded 1.20 g (72.29 %) of the  $3\beta$ -acetate 7, m.p. 121–122 °C (lit.<sup>4</sup>

m.p. 121–122 °C). IR (KBr): 3557, 1714, 1260. <sup>1</sup>H-NMR: 0.65 (*s*, Me(18)), 0.85 (*s*, Me(19)), 0.87 (*d*, Me(26)), Me(27)), 0.91 (*d*, Me(21)), 2.02 (*s*, AcO), 5.23 (*m*, H-C(3)). <sup>13</sup>C-NMR: 170.73 (*s*, CH<sub>3</sub>COO), 84.12 (*s*, C(5)), 71.70 (*d*, C(3)), 56.44 (*d*, C(17)), 55.75 (*d*, C(14)), 52.62 (*d*, C(9)), 45.07 (two *s*, C(10) and C(13)), 40.09 (*t*, C(12)), 39.70 (*t*, C(4)), 39.46 (*t*, C(24)), 38.73 (*d*, C(8)), 36.80 (*t*, C(6)), 36.18 (*t*, C(22)), 35.67 (*d*, C(20)), 28.41 (*t*, C(16)), 27.95 (*d*, C(25)), 27.30 (*t*, C(1)), 25.88 (*t*, C(2)), 24.42 (*t*, C(15)), 23.80 (*t*, C(23)), 22.76 (*q*, C(27)), 22.53 (*q*, C(26)), 21.63 (*q*, CH<sub>3</sub>COO), 21.43 (*t*, C(11)), 18.70 (*q*, C(21)), 15.92 (*q*, C(19)), 12.53 (*q*, C(18)). MS (CI): 433 (M<sup>+</sup> + 1, 1%), 415 (433–18, 15 %), 355 (433–60–18, 100 %).

*Acknowledgement*: The authors are grateful to the Ministry of Science, Technology and Development of Serbia and the Serbian Academy of Sciences and Arts, for financial support.

#### ИЗВОД

#### ХИДРИДНА РЕДУКЦИЈА В-НОРХОЛЕСТАН-5а,6а-ЕПОКСИДА

## МИРА С. БЈЕЛАКОВИЋ, <sup>а</sup> ВЛАДИМИР Д. ПАВЛОВИЋ $^{a, \delta}$ и ЉУБИНКА ЛОРЕНЦ $^{a, \delta}$

<sup>а</sup>Ценшар за хемију, ИХТМ, п.пр. 473, 11001 Београд и <sup>б</sup>Хемијски факулшеш, Универзишеш у Београду, Студентиски трг 16, п.пр. 158, 11001 Београд

Редукцијом В-норхолестан-епоксида **2** помоћу литијум-алуминијум-хидрида добијени су одговарајући 3β,6α-диол **3** или 3β,5α-диол **4**, у зависности од квалитета употребљеног редукционог реагенса. Предложено је вероватно механистичко тумачење добијених резултата.

(Примљено 4. септембра 2001)

#### REFERENCES

- 1. F. Šorm, H. Dykova, Colllect. Czech. Chem. Commun. 13 (1948) 407
- 2. W. G. Dauben, Bull. Soc. Chim. France (1960) 1338
- 3. J. Joška, F. Šorm, Collect. Czech. Chem. Commun. 23 (1958) 1377
- 4. J. Joška, J. Fajkoš, F. Šorm, Collect. Czech. Chem. Commun. 28 (1963) 82
- 5. W. G. Dauben, G. A. Boswell, W. Templeton, J. W. McFarland, G. H. Berezin, J. Am. Chem. Soc. 85 (1963) 1672
- 6. V. Dave, J. B. Stothers, Can. J. Chem. 57 (1979) 1550
- 7. S. Bhacca, D. H. Williams, *Application of NMR Spectroscopy in Organic Chemistry*, Holden-Day, Inc., San Francisco, 1964, pp. 49–54
- 8. E. L. Eliel, M. N. Rerick, J. Am. Chem. Soc. 82 (1960) 1362
- 9. Lj. S. Stevović, V. D. Pavlović, S. B. Martinović, M. M. Dabović, I. O. Juranić, *J. Serb. Chem. Soc.* **63** (1998) 955
- J. Fried, J. A. Edwards, *Organic Reactions in Steroid Chemistry*, Van Nostrand Reinhold Company, New York, Vol. II, 1972, p. 430.