
J.Serb.Chem.Soc. 66(9)605–611(2001) UDC 669.18é
JSCS – 2890 Original scientific paper

Choosing the exponent in the definition of the connectivity index
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Let �� denote the degree of the vertex � of a molecular graph G. Then the connec-
tivity index of G is defined as C (�) = G (�; C) = � (�

u
��)�, where the summation goes

over all pairs of adjacent vertices. The exponent � is usually chosen to be equal to –1/2,
but other options were considered as well, especially � = –1. We show that whereas
C(–1/2) is a suitable measure of branching of the carbon-atom skeleton of organic mole-
cules, and thus applicable as a topological index for modeling physico-chemical proper-
ties of the respective compounds, this is not the case with C(–1). The value of � is estab-
lished, beyond which C(�) fails to correctly reflect molecular branching.
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INTRODUCTION

The connectivity index (originally named1 “branching indes”) is defined as

x = x(G) = ( ) /

,

� � �
�

u
u

�
�

1 2 (1)

where �u denotes the degree (= number of first neighbors) of the vertex u of the mo-
lecular graph G, and where the summation goes over all pairs of adjacent vertices of
G. This structure-descriptor, introduced a quarter of century ago,1 eventually be-
came one of the most popular topological indices. Two books2,3 and scores of pa-
pers have been written on its applications for predicting physico-chemical and
pharmacologic properties of organic compounds details and further bibliography
can be found in three crecent monographs.4–6

Formula (1) is a special case of a more general “connectivity index” C, defined as

C(�) = C(�; G) = ( )
,

� � �
�

�
u

u

� (2)

Evidently, x = C(–1/2).

Another special case of Eq. (2) is C(�) for � = +1, the so-called “2nd Zagreb
group index”, put forward7,8 as early as in 1972; for details on C(1) see the book.5 Some
properties of this, otherwise not much studied, topological index were recently commu-
nicated.9
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Already in the seminal paper1 there was no convincing argument given why in
formula (2) one should choose � = –1/2. The original aim was to provide a numerical
measure of the branching10–12 of the carbon-atom skeleton of an alkane. Based on the
analysis of the data obtained for butane, pentane and hexane isomers, it was concluded1

that both choices � = –1/2 and � = –1 were equally plausible. The former choice was
preferred because C(–1/2) had greater isomer-discriminating power13 than C(–1).
Eventually, the possibility that the exponent � assumes values other than –0.5 was con-
sidered in several papers.14–17 Indeed, if one would view � as a variable that is adjusted
so as to optimize the correlation between C(�) and some physico-chemical property,
then � so determined would differ from –0.5. The disadvantage of such an approach is
that the chosen value of � significantly depends both on the physico-chemical property
used and on the sample of molecules employed.

The option � = –1 was recently examined in some detail by Clark and Moon.18 In
what follows we denote C(–1) = C(–1; G) by � = �(G).

In this paper we are concerned with certain properties of the connectivity index C(�)
of trees. Recall that a tree is a connected acyclic graph. Achemical tree is a tree with prop-
erty �� � 4 for all vertices �. Chemical trees provide a graph representation of alkanes.

MEASURING BRANCHING BY MEANS OF CONNECTIVITY INDICES

As far as branching is concerned there are two distinguishable trees: the path Pn

(with the property �� � 2 for all vertices) and the star Sn (possessing a vertex u with �u =
n – 1 and �� = 1 for all other vertices).19

Within the set of all n-vertex trees, the path Pn is the least branched and the star Sn
the most branched species. In view of this, a necessary condition for any topological in-
dex to be an acceptable measure of branching is that its values be extremal for Pn and Sn.
Indeed, if T is any n-vertex tree, but T 	Pn, Sn, then

x(Sn) < x(T) < x(Pn) (3)

The proofs of the general validity of the left- and right-hand side inequalities in
(3) were recently given by Bollobás and Erdös9 and by Caporossi et al., 20 respectively.
Paths Pn are, of course, chemical trees (representing the normal alkanes). The stars Sn

are chemical trees only up to n = 5. For n 
 � the chemical trees with minimal � were
characterized.21

It was previously anticipated1 that analogous inequalities hold when � = – 1,
namely:

�(Sn) < �(T) < �(Pn) (4)

As a kind of surprise, Clark and Moon established18 that when n is sufficiently
large the right-hand side inequality in (4) is violated, i.e., Pn is not the tree with the max-
imal �-value. Consequently, � cannot be used as a measure of branching and its appli-
cability in QSPR and QSAR studies is doubtful.
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In order to learn more on the validity of the inequalities (4), we determined the
n-vertex tree(s) with minimal and maximal �-values for n up to 20. For all the examined
values of n, the star has the minimal �-value, in agreement with (4). For n � 9 the path
has the maximal �-value, in agreement with (4). However, for n 
 10 the trees with
maximal � differ significantly from Pn; these trees are depicted in Fig. 1.

From Fig. 1 it is evident that the trees with maximal �-index are highly branched.
Otherwise, their general structure is not easy to characterize. For n = 16 and n = 19 (and
most probably for other values of n > 20), the tree with maximal � is not unique.

CONNECTIVITY INDEX
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Fig. 1 The n-vertex trees with maximal connectivity indices � = C(–1). For n = 16 and n = 19 there
are four distinct trees with equal maximal �-value. For n = 10, 11, ..., 20 the respective maximal
�-values are: 2.77778, 3.02778, 3.29167, 3.55556, 3.81250, 4.08333, 4.60417, 4.87500, 5.12500

and 5.40000.



Most of the species depicted in Fig. 1 are chemical trees; exceptions are only the
19-vertex tree IV and the 20-vertex tree. We expect that more non-chemical trees will
be encountered for higher values of n.

Intending to shed more light on the phenomenon described above we compared
the orderings of trees according to decreasing � and �. Two characteristic results are
shown in Figs. 2 and 3, respectively. As seen from these Figures, the two orderings are
significantly different, especially for larger values of n (as in Fig. 3).
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Fig. 2. The first few 10-vertex trees ordered according to decreasing connectivity indices: the spe-
cies a1–a8 pertain to � whereas b1–b8 to �: �(a1) = 4.91421, �(a2) = �(a3) = �(a4) = 4.84606,

�(a5) = �(a6) = �(a7) = 4.80806, �(a8) = 4.79475, �(b1) = 2.77778, �(b2) = �(b3) = ... = �(b6) =
2.75000, �(b7) = �(b8) = 2.69444. Note that a1 = b2, a2 = b3, a3 = b4 and a4 = b5; hence in the

case n = 10 there is still some agreement between the two orderings.



THE BREAKDOWN OF THE CONNECTIVITY INDEX

The data presented in Figs. 2 and 3 clearly illustrate the fact that the connectivity in-
dex for � = –1/2 does, and the connectivity index for � = –1 does not provide a plausible
measure of molecular branching. In other words, when the exponent � is decreased from
–0.5 to –1.0 a breakdown of the connectivity index C(�) occurs, making it unsuitable for
QSPR and QSAR purposes (at least, as far as branching-dependent molecular properties
are concerned). In the case of n-vertex chemical trees this happens for all n 

��

The breakdown begins at the “critical” value of � = �crit, for which the equality

C(�; T) = C(�; Pn) (5)
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Fig. 3. Same data as in Fig. 2, for n = 14: �(c1) = 6.91421, �(c2) = �(c3) = ... = �(c9) = 6.84606,
�(d1) = 3.81250, �(d2) = �(d3) = 3.80556, �(d4) = 3.80000, �(d5) = �(d6) = ... = �(d9) = 3.79167.

No tree c1 – c9 coincides with any of the trees d1 – d9, indicating a complete disagreement be-
tween the two orderings.



is satisfied by the first n-vertex tree T, different from Pn. Usually (but not always) T
is just one of the trees depicted in Fig. 1.

TABLE I. Values of the exponent � below which the path Pn is no longer the tree with maximal connec-
tivity index, Eq. (1), and the tree T which takes over the lead; for details see Eq. (5)

n �crit T

10 – 0.90821 Tree in Figure 1

11 – 0.90821 Tree in Figure 1

12 – 0.91833 Tree in Figure 1

13 – 0.87976 Tree in Figure 1

14 – 0.87976 3,4,5-Triethylheptane

15 – 0.87642 Tree in Figure 1

16 – 0.86594 Trees I & IV in Figure 1

17 – 0.88191 Tree in Figure 1

18 – 0.85096 Tree in Figure 1

19 – 0.85096 Trees II & III in Figure 1

20 – 0.86108 Tree in Figure I

The critical values for the exponent �, calculated by means of Eq. (5), as well as
the respective tree T, are given in Table I.

DISCUSSION

From the data given in Table I, it can be seen that the breakdown of the connectiv-
ity index occurs around � = – 0.9, which is relatively far from the adopted value � =
– 0.5 and relatively near to � = –1, the other option initially considered as equally plausi-
ble. This may be the reason why the problems with C(–1) remained unnoticed for a long
time. It turns out that choosing � = – 0.5 for the exponent in the definition of the connec-
tivity index (instead of � = –1) was a rather fortunate decision. Our analysis sheds some
new light on the true meaning of this choice. Remarkably, this analysis comes more
than 25 years after the connectivity index was conceived. This delay seems to be caused
by the fact that genuine mathematical research of the connectivity index, revealing its
concealed properties, started only quite recently.9,18,20,21

I Z V O D

BIRAWE EKSPONENTA U DEFINICIJI INDEKSA POVEZANOSTI

IVAN GUTMAN i MIRKO LEPOVI]

Prirodno-matemati~ki fakultet u Kragujevcu

Neka �� ozna~ava stepen ~vora � molekulskog grafa G. Tada je indeks poveza-

nosti grafa G definisan kao C(�) = C(�; G) = � (�u ��)
�, gde se sumirawe vr{i preko svih

parova susednih ~vorova. Za eksponent � se obi~no uzima vrednost –1/2, mada su bile
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razmatrane i druge mogu}nosti, naro~ito � = –1. Pokazano je da dok C(–1/2) predstavqa

pogodnu meru razgranatosti ugqeni~nog skeleta organskih molekula, i zbog toga je

primenqiv kao topolo{ki indeks za modelovawe fizi~ko-hemijskih osobina odgo-

varaju}ih jediwewa, to nije slu~aj sa C(–1). Odre|ena je vrednost za � preko koje C(�)
prestaje da korektno odslikava razgranatost molekula.

(Primqeno 4. maja 2001)
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