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A systematic study of various effects on the structure of the spectra of linear
triatomic molecules in the 3

P electronic states has been carried out. Paricular attention
was paid to the interplay between the vibronic and spin-orbit couplings. Variational and
perturbative computations at various levels of sophistication were performed fot the
A3

Pu state of the NCN radical.
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INTRODUCTION

The non-relativistic and the Born-Oppenheimer (adiabatic)1 approximation repre-
sent the two most important simplifications in the handling of molecular structure and
spectra. They are widely used in both the analysis of experimental data and in ab initio
calculations of spectral features. The general reliability of these approximations is based
on the fact that the contribution of non-adiabatic and relativistic effects to the total molec-
ular energy is usually relatively small, at least compared to the energies originating from
(non-relativistic) electronic and vibrational degrees of freedom. This particularly con-
cerns species of interest from the point of view of classical (especially organic) chemistry,
i.e., "closed-shell" molecules involving "light" atoms (belonging typically to the first two
or three rows of the Periodic Table). However, there is a number of important cases where
the relativistic and/or adiabatic effects cannot be neglected. In the present study, two of the
most common cases are considered. The vibration-electronic (vibronic) interaction
within the electronic states spatially degenerate with linear molecular geometry (the
Renner-Teller effect2), and the splitting of vibronic levels caused by spin-orbit coupling.
These effects determine crucially the structure, energetics, reactivity, and spectra of many
free radicals which are of great importance as intermediates in chemical processes and
represent key species for understanding of origin of the organic world.
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The great majority of the studies on the Renner-Teller effect were carried out for
triatomic molecules in doublet � electronic states. There are several reasons for this.
The Renner-Teller effect also occurs in molecules with more than three atoms, but the
theory becomes progressively more complicated with increasing number of atoms, and
thus of the bending modes which cause the vibronic coupling between the electronic
species spatially degenerate with linear geometry. A review of investigations on
four-atomic molecules in given if Ref. 3. On the other hand, while many important
triatomic radicals have a 2P electronic ground state, corresponding commonly to a sin-
gle unpaired electron in a � orbital (see, for example, reviews, Refs. 4 and 5), there is a
relatively little number of examples for other types of spatially degenerate ground states
(�, �, ...) and other spin multiplicities; the latter involve more than one unpaired elec-
tron and/or orbitals other than � and � ones. In several recent papers the results of
variational and perturbative ab initio calculations on the�5�g ground state of FeH2

6,7

and the 11�g excited state of NCN8 were published. In the present study we concentrate
on the interplay between the Renner-Teller effect and the spin-orbit coupling in 3P

states of triatomic molecules; we restrict ourselves to the case of relatively weak
vibronic interaction, when the splitting of potential surfaces does not lead to a
non-linear molecular equilibrium geometry. As a concrete example, the A3Pu state of
the cyanonitrene radical, NCN, is considered.

The low-lying electronic states of NCN have been the subject of extensive ab in-
itio computations carried out in our laboratory.8,9 In these references, a detailed litera-
ture survey is given. Only a few most important papers concerning the A3Pu state are
mentioned. The first observed spectrum of NCN corresponds to the A3Pu –�3�g

– elec-
tronic transition. It was detected in emission by Jennings and Linnet.10 Adetailed anal-
ysis of this electronic transition in absorption was carried out by Herzberg and Travis.11

Evidence of the Renner-Teller interaction in the upper state was given. Recent spectro-
scopic studies in the gas phase performed by McNaughton et al.12 and particularly by
Brown et al.13–16 provided precise values for the rotational constants and bending vi-
brational frequencies in the �3�g

– and A3Pu electronic states. An extensive ab initio
study of several valence-type excited states of NCN was published very recently by
Rajendra and Chandra.17 It involved the determination of the equilibrium geometry,
electronic structure and various molecular properties in these species.

The electronic configuration of the low-lying states of NCN is 1�g
2 1�u

2 2�g
2

3�g
2 2�u

2 4�g
2 3�u

2 1�u
4 1�g

2. This leads to the linear�3�g
–, 11�g and 11�g

+ species.
The electronic transitions between the ground state, �3�g

– , and the 11�g and 11�g
+

species are both dipole and spin forbidden. The lowest-lying electronic state into which
transition from the ground state is allowed is the A3Pu state with the leading electronic
configuration ... 3�u 1�u

4 1�g
3. This transistion is the subject of the present study.

Technical details concerning the computation of the bending potential energy
curves for the 13A1 and 23B1 states of NCN, correlating at linear geometry with the
A3Pu electronic species, are described in detail in Refs. 8 and 9. The atomic orbital ba-
sis consists of 96 Gaussian groups: Both the nitrogen and carbon atoms are described by
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the Dunning's (12s 6p 3d) cc-pVQZ AO basis contracted to �5s 4p 3d	.18 The computa-
tions are carried out using the MOLCAS program package.19 The configuration inter-
action (CI) calculations were performed by means of the DIESEL-MR-CI20 variance of
the multi-reference single-and-double excitation configuration interaction (MRD-CI)
method of Buenker and Peyerimhoff.21 It involves the usual configuration selection
and energy extrapolation procedures, accompanied by a perturbative estimation of hig-
her-order electronic excitations with respect to the reference species.22

HANDLING OF THE RENNER-TELLER EFFECT

Variational approach for handling the Renner-Teller effect in � electronic states

In the variational treatment of the Renner-Teller effect in the 13�u state of NCN,
the model Hamiltonian in the form was employed:

H = He + Tb + Tr
z + HSO (1)

He is the electronic Hamiltonian including also the nuclear repulsion term. Tb is the
kinetic energy operator for the bending vibrations of the nuclei. It involves the de-
rivatives of the coordinate 
 defined as the supplement of the bond angle (in radian)
and can be written in the form (in atomic units):

Tb = –
1

2 2
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(2)

Tr
z represents the operator describing the rotation of the molecule around the (princi-

pal) axis z corresponding to the smallest moment of inertia – this axis coincides with a
linear nuclear arrangement with the molecular axis. Tr

z can be written in the form:

Tr
z = A(
) Rz

2 = A(
) (Nz – Lz)2 (3)

where Rz represents the z-component of the angular momentum of the nuclei, Nz is the
z-component of the total angular momentum excluding spin, and Lz of the electronic an-
gular momentum. A is the rotational constant, A = 1/2Izz. The model Hamiltonian (1)
commutes with Nz, and thus the quantum number K, corresponding to the latter opera-
tor, is a good quantum number. Explicit forms of the coefficients Ti and A depend on the
coordinate system employed, the level of approximation applied, etc. In the space-fixed
coordinate system at infinitesimal bending, the vibrations Tb + Tr

z reduces to the kinetic
energy operator of a two-dimensional harmonic oscillator:
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where � is reduced mass, and � represents the angle between the molecular plane and a
space-fixed plane with a common z-axis. HSO represents the leading part of the interplay
between the vibronic and spin-orbit couplings assumed in the phenomenological form:

HSO = ASO LzSz (5)

3� STATES OF TRIATOMIC MOLECULES
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ASO is the "spin-orbit constant", and Sz the z component of the electron spin of the
molecule, with the corresponding quantum number Sz' (we use this symbol instead
of �, because the latter is usually employed to denote K = 0 vibronic states); in the
case of triplet electronic states, Sz' = –1, 0 or 1. Besides with Nz, the model
Hamiltonian (1) also commutes with the projections of the electron spin and the to-
tal angular momentum onto the z-axis, J z ; thus the quantum number P correspond-
ing to Jz (P = K + Sz') is also a good quantum number. The Hamiltonian (1) does not
involve the terms describing the stretching vibrations and x,y-rotations. It is sup-
posed that these degrees of freedom can be separated from those contributing di-
rectly to the Renner-Teller effect. The wave function corresponding to the Hamil-
tonian (1) can be written in the form:

�m = �1f1m (
, �) + �2f2m (
, �) (6)

where�1 and�2 are electronic species, assumed to be eigenfunctions of Sz, and f1, f2 are
functions of nuclear coordinates �bending (
), z rotational (�)	; m is the running index
numbering vibronic states corresponding to a particular K value. Aconvenient electronic
basis set for variational treatment of the Runner-Teller effect consists of the functions:

�1 =�  � ��! !� � "1

2
( )e i

�2 =�  � "�"! !� � "1

2
( )e– i

(7)

where ! is the quantum number corresponding to Lz. We consider ! to be an unsigned
quantity, in contrast to the quantum numbers K, Sz', and P, which are assumed to be
signed; since the vibronic levels with |K|#0 (and $P$ #0) are always doubly degenerate in
the framework of the present model �one state corresponding to K = + $K$ and the other to
K = – $K$ (and analogously for P = + $P$ and P = – $P�)	, we shall deal, as a rule, with
non-negative values for K and P only. In the case of � electronic states, we consider,!=
1.�+ and�– represent the solutions of the electronic Schrödinger equation in the frame-
work of the Born-Oppenheimer approximation (adiabatic electronic functions):

He�+ = V+ �+; He�– = V– �– (8)

We assume�– to be imaginary. V+ and V– are the potentials for the states being invariant
and changing sign upon reflection in the molecular plane, respectively. In the one-elec-
tron approximation23 and for 
 �0, the electronic functions (7) reduce to:

lim
�0�! =
1

2�

!e Si

z
%&( ),, ; lim

1

2
( , ),


�
"! " !�  

�
& 
0 e Si

z
%

(9)

where % is the azimuthal coordinate conjugated to the electronic angular momen-
tum Lz (Lz = – i�/ �%), and & (
, Sz') represents the 
- and spin-dependent part of the
electronic basis functions. Thus in the lowest-order approximation, sufficing for a
reliable computation of the contribution of the kinetic energy matrix elements, the
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electronic basis functions do not depend on the nuclear angular coordinate �. The
vibrational parts, f1, f2, of the molecular wave function are expanded on a basis con-
sisting of the eigenfunctions of the two-dimensional harmonic oscillator with the
Hamiltonian H0 = T0 + 1/2k
2, :

�',l =
1

2
( ),e Ril

l
�

' 
 (10)

where ' (in this section we employ for the bending vibrational quantum number the
symbol ' unstead of the usual '2) is a non-negative integer and l takes the values ',
'– 2, ... 1 or 0. R',l are defined by:

R',l = N',l qlL',l(q) e
q"

1

2
2

(11)

where L',l are the associated Laguerre polynomials in the dimensionless bending
coordinate q���
. ( = )(k�). A convenient choice for k is the force constant corre-
sponding to the mean adiabatic potential (V+ + V–)/2.

Since the model Hamiltonian (1) commutes with both Nz and Jz, the vibro-
nic/spin-orbit problem can be solved within each K and P (i.e., Sz') subspace separately.
Furthermore, the matrix elements of the operators Tb, Tr

z and HSO are diagonal with re-
spect to the quantum nimber l. The factors exp(*i!�) (Eq. 7) determine the selection
rules for the off-diagonal elements of He: they do not vanish only between the functions
�',l ,�',l

', with l' = l*2!. This leads to the l values being restricled to K��. In terms of
the basis functions chosen, the vibronic wave function (6) has, thus, the form:
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the expansion coefficient c'K,Sz',m,, (,= 1 or 2) are obtained by solving in the basis of
the bending functions (11) the secular equation with the effective Hamiltonian, ob-
tained after integrating over the spatial and spin electronic coordinates and over �:

H
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To obtain (13), it is assumeed that the electronic mean value of the operator Lz is ex-
actly equal to !, and neglect the (normally weak) 
-dependece of ASO. With the
help of Eq. (7), the vibronic wave function (12) can be expressed in terms of the adi-
abatic electronic wave functions:
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In the calculations of the present study, two forms of the kinetic energy operator
are used.The first one represents the operator for infinitesimal bending vibrations (T0
given by Eq. (4)). The second one is the rigid bender operator derived by Hougen et
al.,24 allowing for a treatment of the large-amplitude bending vibrations at constant
bond lengths. The molecular potentials are assumed in the form of polynomial expan-
sions in the coordinate 
.

Perturbative treatment of the Renner-Teller effect in the 3P electronic states of
triatomic molecules

The effective Hamiltonian used in the perturbative treatment of the Renner-Teller
effect in � electronic states of triatomic molecules is of the form H = H0 + H' with:

H0 = T0 +
1

2
7q2 , H' =

1

2
87q2 �e2i(% – �) + e–2i(% – �)	 * ASOSz'

(16)

The signs + and – in the last term of the expression for H' correspond to the electronic
basis functions�1 and�2 (Eqs. 7), respectively.7 = )(k/�) is the bending vibrational fre-
quency, and 8 the Renner parameter de – find as 8= (k+ – k–)/(k+ + k–), where k+ and k– are
(quadratic) force constants for the adiabatic potentials V+ and V–, respectively. The
zeroth-order vibronic functions $*!,',l,Sz' > are products of the electronic basis functions
(7) (�1 corresponds to thequantumnumber+!,�2 to–!, bothof themto thespinquantum
number Sz') and the vibrational/z-rotational functions (10). The model Hamiltonian (1) re-
duces to H0 + H' in the harmonic approximation, i.e., when the potentials involve only qua-
dratic terms and the zeroth-order kinetic energy operator (4) is used.

The zeroth-order energy of vibronic levels is E(0) = (' + 1)7. It is easy to derive
the second order perturbative formulae for the case considered when7>> 87, ASO. For
so-called unique levels, for which K ='+ 1, the zeroth-order vibronic level (for particu-
lar K and Sz' values) is non-degenerate; the zeroth-order vibronic/spin wave function is
$!, K–1,K–1,Sz

'> and the second order energy is:

E = (' + 1) 7 + AsoSz' –
1

8
827K(K + 1) (17)

In all other cases (i.e., for K <' + 1), the zeroth-order levels are twofold degenerate;
the basis functions are $!,', K–1,Sz' >� $1 > and $ –!,', K + 1, Sz' >� $2 >. The wave
functions corresponding to the first-order energy are:

�1 = c11 $19 + c12 $2 9; �2 = c21 $1 9 + c22 $2 9 (18)
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with
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The second order perturbative formula for energy reads:

E1,2 =7 " 8�
�
�

�
�
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:
;
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so
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Perturbative formulae for the combined effect of the vibronic and spin-orbit cou-
pling were first derived by Pople.25 Curiously enough, the original Pople formula
for K < ' + 1 was erroneous (it was corrected in a subsequent paper by Hougen,26

see also Ref. 27), as were the corresponding formulae for the � states, derived latter
by Merer and Travis28 (see, for example, Refs. 23 and 7).

The perturbative part of the Hamiltonian, H', involves two parts (the first one de-
scribing vibronic, the second for spin-orbit coupling) which can be of very different
magnitudes, so that the perturbative formulae (17) and (20) are generally only formally
second order. They are really such if 87 and Aso are of comparable magnitude. For weak
spin-orbit coupling compared to the vibronic interaction, i.e., when Aso << 87, the con-
tribution of both of these effects is better balanced in the expression:

E1,2 = 7 " 8�
�
�

�
�
� ' � * 8 7 ' � "1

1

8
( 1)

1

2
( 1)2 2 2K �

�
8 ' �

' � "

A K S

K

zso

2 2

( 1)

4 ( 1)

,

(21)

than in (20) from which (21) is derived. The coefficinets (19) in the first-order
vibronic wave functions (18) become then c11 = c21 = c221/)2, c12 = –1/)2; each
(non-unique) vibronic levels is equally shared between the electronic species �1
and�2, or, in other words, belongs predominantly to one of the adiabatic electronic
states. In the opposite case of relatively strong spin-orbit and weak vibronic cou-
pling, Aso >> 87, formula (20) reduces (for Sz' #0) to:

E1,2 =7 "�
�
�

�
�
� ' � * *1

1
( 1)2

so
,

8
8 A S z

*
8 7 � ' � " 	

8 7 ' �
2 2 2 2

so
,
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K

A S
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z

� (22)
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The coefficients (19) become approximately c11 = c22 = 1, c12 = c21 = 0. This means
that the vibronic levels belong now either to the electronic species �1 or to �2.

In the case when the spin-orbit coupling is much stronger than the vibronic cou-
pling, another partitioning of the Hamiltonian becomes sensible – the spin-orbit opera-
tor can be incorporated into the zeroth-order Hamiltonian, i.e.,

H0 = T0 +
1

2
7q2 * AsoSz; H' =

1

2
87q2 �e2i(% – �) + e–2i(% – �)	 (23)

This scheme which is often reliable, particularly for molecules involving "heavy" at-
oms (as for example in the case of FeH2, indeed for the�5�g state),6 has not been considered
thus far. The zeroth-order energy levels are now E(0) = (' + 1)7*AsoSz', and for Sz

' # 0 all
vibronic levels are computed in the tramework of the perturbation theory for non-degenerate
levels. The second order formula for the unique levels (K = ' + 1) is:

E = (' + 1) 7 + AsoSz' –
1

8
8272 K K

A S z

( 1)

so
,

�

7"

(24)

For other levels (K < ' + 1) one obtaines:

E1,2 = (' + 1) 7 * AsoSz
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+
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8
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(25)
The formulae (24) and (25) are valid regardless of the relative magnitude of the
bending frequency 7 and the spin-orbit constant ASO. In the case when ASO << 7
they become identical to the ASO >> 87 limit of the formulae (17) and (20).

The case Sz'= 0 requires special consideration, because the corresponding formu-
lae cannot be generally obtained from those presented above by substituting Sz' = 0 in to
them; the correct second order energy expressions are:

E = �(' + 1) –
1

8
82 K (K + 1) 	 7 (26)

for unique levels, and

E � = 7 1
1

8
2" 8�

�
�

�
�
� (' + 1) *

1

2
87 ( 1)2 2' � " K (27)

for other levels, i.e., there are the same as for singlet electronic states (see, for exam-
ple Ref. 27).

NUMERICAL RESULTS AND DISCUSSION

The ab initio computed bending potential energy curves for the components of
the A3�u electronic state of NCN show a rather weak splitting, with the totally symmet-
ric component, 13A1, lying below its 23B1 counterpart. By fitting the ab initio com-
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puted electronic energies in the range of the bond angle values between 180 and 120º
the folowing quadratic-order polynomials are obtained:

V+ = 0.0471 
2 + 0.0055 
4

V– = 0.0669 
2 + 0.0085 
4 (28)

where V+ and V– stand, respectively, for the 13A1 and 23B1 species. These expan-
sions correspond to the quadratic force constant k = 0.114 for the mean potential, V

= (V– + V+)/2, and the Renner parameter 8 = (k+ – k–)/(k+ + k–) = – 0.1737. The equi-
librium bond lengths in the A3�u state of NCN are 2.328 Å, which leads to the re-
duced mass for infinitesimal bending vibrations in 14N12C14N of � = 11.3819 and
the harmonic bending frequency of 72 = 514.47 cm–1. These results are in reason-
able agreement with their experimentally derived counterparts,11,27,16 as well as
with the ab initio calculations by Rajendra and Chandra.17 Our bending frequency
is almost identical to the old experimental results of Herzberg and Travis, 72 = 510
cm–1, 11,27 and the ab initio calculated value of 515 cm–1.17 It is somewhat lower
than the new experimental result of Beaton and Brown �533.95 cm–1	.16 The agree-
ment is even better for the Renner parameter (8= – 0.168,11 – 0.161,17 – 0.1706616).

In our recent study we carried out computations of the NCN spectrum by employ-
ing both the ab initio derived potentials (Eq. (28)) and those derived from the experi-
mental findings of Beaton and Brown (72 = 533.95 cm–1, 8 = –0.17066),16

V+ = 0.05092 
2

V– = 0.07188 
2 (29)

and showed that the results are very similar. Since the main goal of the present study
was a systematic analysis of the various factors influencing the features of the spec-
trum arising by combined vibronic and spin-orbit couplings, we find it plausible to
use the quadratic potentials (29) as the starting points, rather than their ab initio
quartic order counterparts (28).

The current version of the DIESEL-CI program package, employed in the present
work, does not involve routines for handling relativistic effects; on the other hand, in the
framework of our model only one parameter is needed to describe the major effects of the
interplaybetween thevibronicandspin-orbit effects,namely thevalueof thespin-orbit cou-
plingconstantat theequilibrium(linear)nucleararrangement.For this reason, in thepresent
study the experimentally derived value ASO = –37 cm–1,16 was used.

The results of variational calculation of the low-lying K = 0 – 4 vibronic levels of
the A3�u electronic state of NCN (with respect to the minimum of the potential surface)
are presented in Table I. The potentials given by Eq. (29) are employed. One set of com-
putations was carried out with the kinetic energy operator for infinitesimal bending vi-
brations (Eq. (4)), in the other one the rigid bender operator of Hougen et al.24 was used.
The convergence of all results is achieved already with 20 vibrational basis functions
for each vibronic symmetry in question. The different forms of the kinetic energy oper-
ator do not have any qualitative effect on the structure of the spectrum; the vibronic lev-
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els computed employing the large amplitude kinetic energy operator lie below their
counterparts generated in computations in which the operator for infinitesimal bending
vibrations was used, with discrepancies of roughly 1 %.

The fact that the hierarchy of the enrgetic effects determines the structure of the
spectrum in question, namely the magnitude of the bending frequency (roughly 500
cm–1) vs. 872 (about 100 cm–1), as a quantitative measure for the vibronic coupling ef-
fects, vs. magnitude of the spin-orbit constant (37 cm–1), is clearly pronouced in the
present case (roughly 15:3:1), enables a straightforward assignment of the vibronic
states. In Table I, they are assigned according to the value of the corresponding bending
quantum number '2 (linear notation) and the Born-Oppenheimer electronic state to
which they predominantly belong (superscript + for 13A1, and – for 23B1 species); the
unique vibronic states, nearly equally shared between both electronic species 13A1 and
23B1 �or, in other words, belonging almost exclusively to the electronic species�1 (Eq.
(6))	, are denoted by the subscrit u. The quantum numbers '2 and +/– are generally ap-
proximate ones; on the other hand, K and P = K + Sz' are good quantum numbers in the
framework of our model. This is also the parity number +/– in the case of P = K (i.e., Sz'
= 0) spin-vibronic states. The g/u quantum numbers, which lead to trivial additional as-
signation of vibronic levels (g for even K, u for odd K values), are omitted.

The results presented in Table I represent the typical structure of the spectrum of a
linear triatomic molecule in a 3� electronic state. The spin-orbit splitting is most
pronouced in unique levels, where it is roughly equal to the magnitude of the spin-orbit
coupling constant. Since this constant has a – sign, the unique levels with the lowest P
value for a given K (i.e., those corresponding to Sz' = – 1) have the highest energy. In the
other K # 0 states <i.e., for K < '2 – 1) the spin-orbit splitting is more or less effectively
quenched, because of the comparable contribution from both the�1 and�2 electronic
basis functions in the corresponding vibronic wave functions. The K = 0 levels are split
due to the spin-orbit coupling into two levels: corresponding to Sz = 0 (i.e., P = 0) in
non-degenerate, while the other (Sz = *1) is doubly degenerate.

The results of perturbative computations according the formulae (17) and (20), in
which the same parameters are employed as in the above described variational calcula-
tions (in this case only the kinetic energy operator for infinitesimal bending vibrations is
used) are presented in Table II. Maximal deviations of these results from their
variational counterparts are few wavenumbers, reflecting the fact that the second order
perturbation theory is in the present case very reliable, being a consequence of the rela-
tive smallness of the perturbing terms.

The qualitative and quantitative features of the vibronic spectrum in 3� electronic
states depend on several parameters and we find it instructive to analyze these effects in
somedetails. In thesimplest limitingcasewhen themeanbendingpotential isharmonic, the
splitting of the potentials upon bending and the magnitude of the spin-orbit coupling con-
stant arenegligible (i.e.,8=0,Aso=0)and thekinetic energyopeator is that for infinitesimal
bending vibrations (T0), the vibronic energies depend only on the vibrational quantum
number'2 , i.e., E = ('2 + 1)7. Each vibronic level is then 6('2 + 1) - fold degenerate: For
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each quantum number'2 there is a series of sub-levels with the value of the vibrational an-
gular quantum number l, l ='2 ,'2 – 2, ... , –'2 , the number of them being thus'2 + 1. The
quantum numbers l combines with the electronic angular quantum number!= 1 into K = l

*:B In the framework of the present model the energy of vibronic levels never depends on
the sign of the quantum number K and in the following we classify the vibronic levels ac-
cording to the absolute value of K. For each'2 value there is one vibronic level with K ='2
+1(unique level)andapairof levels foreachK='2 –1,K='2 –3, ...K=1or0(eachK	0
level has a + �K$ and a – $K� component). Finally, each K value is combined with the spin
quantum number Sz', with possible values 1, 0, and –1, into P = K + Sz'. This situation is pre-
sented at the left and right edges of Fig. 1.

TABLE I. Vibronic spectrum in the A3�u electronic state of NCN, computed variationally employing the fol-
lowing parameters: V+ (in hartree) = 0.05092
2, V- = 0.07188
2, Aso = –37 cm-1. K is the vibronic quantum
number;'2 the bending quantum number ("linear" notation); Sz' the quantum number for the z component of
the electron spin. The superscripts + and – denote vibronic levels belonging (exactly or predominantly) to the
13A1 and 23B1 components of the A3�u electronic state, the subscript u stands for unique levels. The energy
values are in reciprocal centimeters. Zero point on the energy scale corresponds to the minimum of the A3�u
potential surface. The energy levels given without parentheses were obtained employing the kinetic energy
operator for infinitesimal bending vibrations�= 11.3819), the values in parentheses are the results of compu-
tations which employ the rigid bender kinetic energy operator of Hougen et al.26

K '2 Sz' = –1 Sz' = 0 Sz' = 1

1+ 965.40 (957.81) 972.51 (964.91) 965.40 (957.81)

1- 1162.53 (1155.20) 1155.46 (1148.14) 1162.53 (1155.20)

0 3+ 1941.51 (1919.86) 1945.02 (1923.35) 1941.51 (1919.86)

3- 2314.32 (2293.12) 2310.91 (2289.72) 2314.32 (2293.12)

5+ 2915.39 (2870.56) 2917.53 (2872.68) 2915.39 (2870.56)

5- 3468.31 (3423.95) 3466.37 (3422.05) 3468.31 (3423.95)

0u 567.72 (561.10) 530.01 (524.40) 493.27 (487.65)

2+ 1463.23 (1452.10) 1466.70 (1454.67) 1460.15 (1447.27)

1 2- 1728.30 (1716.12) 1725.20 (1713.93) 1732.00 (1721.58)

4+ 2434.96 (2404.81) 2436.08 (2405.41) 2431.70 (2400.55)

4- 2884.31 (2853.95) 2883.73 (2853.91) 2888.38 (2859.04)

1u 1092.21 (1084.76) 1056.09 (1048.65) 1019.86 (1012.42)

3+ 1969.31 (1954.86) 1969.83 (1953.92) 1962.45 (1945.21)

2 3- 2285.59 (2270.21) 2285.83 (2271.91) 2293.78 (2281.20)

5+ 2935.30 (2897.11) 2934.04 (2895.00) 2928.32 (2888.47)

5- 3446.92 (3408.85) 3449.29 (3412.14) 3455.77 (3419.44)

2u 1613.59 (1605.26) 1578.31 (1569.98) 1542.82 (1534.49)

3 4+ 2479.79 (2462.31) 2477.42 (2458.13) 2468.64 (2447.72)

4- 2838.17 (2821.13) 2841.72 (2826.52) 2851.45 (2837.90)

3u 2131.07 (2122.82) 2096.85 (2088.59) 2062.30 (2054.03)

4 5+ 2992.70 (2972.50) 2987.46 (2965.25) 2976.99 (2953.00)

5- 3387.88 (3370.73) 3394.77 (3379.67) 3406.61 (3393.33)
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TABLE II. Vibronic spectrum in the A3�u electronic state of NCN, computed in the framework of the

second order perturbation theory with the parameters72 = 533.95 cm-1, 8 = –0.17066, Aso = –37 cm-1.
For key to notation see Table I

K '2 Sz' = –1 Sz' = 0 Sz' = 1

1+ 965.66 972.89 965.66

1- 1162.36 1155.14 1162.36

0 3+ 1942.06 1945.78 1942.06

3- 2313.99 2310.27 2313.99

5+ 2916.17 2918.66 2916.17

5- 3467.90 3465.41 3467.90

0u 567.06 530.06 493.06

2+ 1463.55 1467.15 1460.33

1 2- 1728.48 1724.89 1731.70

4+ 2435.37 2436.82 2432.19

4- 2884.69 2883.24 2887.87

1u 1093.24 1056.24 1019.24

3+ 1969.46 1970.19 1962.36

2 3- 2286.59 2285.86 2293.68

5+ 2934.97 2934.30 2928.34

5- 3449.10 3449.77 3455.73

2u 1615.52 1578.52 1541.52

3 4+ 2479.87 2477.78 2468.26

4- 2840.19 2842.28 2851.80

3u 2133.92 2096.92 2059.92

4 5+ 2993.28 2988.28 2976.61

5- 3390.79 3395.80 3407.46

Let us consider now the case differing from the above one only in the value of the
spin-orbit constant, assumed now to be Aso = –37 cm–1 (instead of zero). The energy levels
for this situation are presented in Table III (numbers without parentheses) and by the second
columnfromthe left inFig.1. Inspectionof thestructureof secular equation (13) shows that
in this case three double degenerate effective bending potentials exist, involving the mean
electronic energy and the contribution from the spin-orbit part of the Hamiltonian, with en-
ergy spacing equal to $Aso$: The lowest-energy ones correspond to!= 1, Sz' = 1 and!= –1,
Sz'=–1, thenext twoto!=1,Sz'=0and!=–1,Sz '=0,and thehighest-energypair to!=1,
Sz '= –1 and! = –1, Sz '= 1. Each zeroth-order vibrational level (corresponding to the case
when Aso = 0) with a particular value'2 is now split into three levels, each of which belongs
to one of the effective potentials. These levels are generally degenerate, involving all possi-
ble K species with the combinations of quantum numbers! and Sz' associated with the ef-
fective potential in question. The exceptions are the levels corresponding to '2 = 0, being
non-degenerate (except for the *$K$ degeneracy). These three� (K = 0) vibronic levels in
increasing order of energy correspond to the basis functions $!= 1,'2 = 0, l = 0, Sz'= 1 >, $1,
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0, 0, 0 >, and $1, 0, 0, –1 >. The lowest-energy level corresponding to'2 = 1 involves two�
(K = 0) and one� (K = 2) vibronic states, the wave functions of which are $1, 1, –1, 1 >, $–1,
1, 1, –1 >, and $1, 1, 1, 1 >, respectively. The next level involves $1, 1, –1, 0 >, $–1, 1, 1,0 >�,
and $1, 1, 1, 0 >� species. The highest-energy'2 = 1 level comprises $1, 1, –1, –1 >, $–1, 1, 1,
1 >�, and $1, 1, 1, –1 >� vibronic states. Extension of this scheme to higher'2 values is a
matter of straightforward book-keeping.
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Fig. 1. Low-lying part (for the bending vibrational quantum number '2 = 0, 1, and 2) of the
vibronic spectrum of a triatomic molecule in the 3� electronic state with linear equilibrium geome-

try, computed for various values of the Renner parameter 8 and the spin-orbit constant, Aso (in
cm-1). The spectrum shown in the center of the Figure (8 = –0.17, ASO = –37 cm-1) corresponds to
the A3�g state of NCN. The zero on the energy scale represents the minimum of the potential en-

ergy surface. The solid lines: K = 0 (�) vibronic levels; the dashed lines: K = 1 (�) levels; the
dash-dotted lines: K = 2 (�) levels; the dotted lines: K = 3 (�) levels. Levels are denoted by the

value of the corresponding quantum number P (= K + Sz').



TABLE III. Vibronic spectrum in the 3�u electronic state of a triatomic molecule, computed variationally

employing the following parameters: V+ (in hartree) = V- = 0.0614
2, ASO = –37 cm-1. The energy levels
given without parentheses were obtained employing kinetic energy operator for infinitesimal bending vi-

brations (� = 11.3819), the values in parentheses are the results of computations which employ the rigid
bender kinetic energy operator of Hougen et al.26 For key to notation see also Table I.

K '2 Sz' = –1 Sz' = 0 Sz' = 1

1 1030.91 (1023.46) 1067.91 (1060.46) 1030.91 (1023.46)

1 1104.91 (1097.46) 1067.91 (1060.46) 1104.91 (1097.46)

0 3 2098.82 (2077.41) 2135.81 (2114.40) 2098.82 (2077.41)

3 2172.82 (2151.40) 2135.81 (2114.40) 2172.82 (2151.40)

5 3166.72 (3122.15) 3203.72 (3159.15) 3166.72 (3122.15)

5 3240.72 (3196.15) 3203.72 (3159.15) 3240.72 (3196.15)

0 570.95 (565.34) 533.95 (528.34) 496.95 (491.34)

2 1564.86 (1556.48) 1601.86 (1586.97) 1564.86 (1549.97)

1 2 1638.86 (1623.96) 1601.86 (1593.48) 1638.86 (1630.48)

4 2632.77 (2605.80) 2669.77 (2636.29) 2632.77 (2599.30)

4 2706.77 (2673.29) 2669.77 (2642.78) 2706.77 (2679.78)

1 1104.91 (1097.46) 1067.91 (1060.46) 1030.91 (1023.46)

3 2098.82 (2090.41) 2135.81 (2114.40) 2098.82 (2077.41)

2 3 2172.82 (2151.40) 2135.81 (2127.40) 2172.82 (2164.40)

5 3166.72 (3135.09) 3203.72 (3159.15) 3166.72 (3122.15)

5 3240.72 (3196.15) 3203.72 (3172.09) 3240.72 (3209.09)

2 1638.86 (1630.48) 1601.86 (1593.48) 1564.86 (1556.48)

3 4 2632.77 (2625.23) 2669.77 (2642.78) 2632.77 (2605.78)

4 2706.77 (2679.78) 2669.77 (2662.23) 2706.77 (2699.23)

3 2172.81 (2164.40) 2135.81 (2127.40) 2098.82 (2090.41)

4 5 3166.72 (3160.97) 3203.72 (3172.09) 3166.72 (3135.09)

5 3240.72 (3209.09) 3203.72 (3197.97) 3240.72 (3234.97)

The introduction of vibronic coupling (8 # 0) causes the removal of the above de-
generacies and leads to the general vibronic/spin-orbit pattern given in Table I and in the
central part of Fig. 1. Each vibronic level is characterized by a particular K and P = K +
Sz' quantum number (i.e., by a particular K, Sz' combination). The exception represent
the� (K = 0), P =* 1 levels, remaining degenerate from each other. The composition of
the unique states remains essentially unchanged with respect to the case of no vibronic
coupling. The vibronic wave functions for the other vibronic species are predominantly
detemined by linear combinations of the basis functions $!= 1,'2 , l = K – 1, Sz'> and $!
= –1,'2 , l = K + 1, Sz'>. In the case when the vibronic coupling is weak compared to the
spin-orbit coupling (8<< Aso), the coarse structure of the spectrum is determined by the
spin-orbit effects. This is illustrated in Fig. 1 with the case 8 = – 0.0085 (corresponding
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to 87 = – 4.5 cm–1), Aso = –37 cm–1; note, for example, that the '2 = 1, K = 0 levels are
divided into three pairs of close-lying levels, with successive energetic separation be-
tween these pairs nearly equal to the value of the spin-orbit constant.

Let us now consider the rising of the vibronic/spin-orbit structure from the "opposite
side", when the vibronic interaction is dominant with respect to the spin-orbit coupling
(right-hand part of Fig. 1). For a non-zero value of the Renner parameter (in the concrete
case 8 = – 0.17) and Aso = 0, the vibrational level corresponding to the bending quantum
number'2 is split into'2 + 1 vibronic levels if'2 is even, and into'2 + 1 levels for odd'2
values. Each of these levels is threefold spin-degenerate. The energy of the central level of
each '2 manifold (unique level, K = '2 + 1) is relatively little changed with respect to the
case of no vibronic coupling. The corresponding vibronic wave function contains almost
exclusively the $! = 1,'2, l = K – 1, Sz' > basis function. Other vibronic levels (K <'2+ 1)
appear in pairs being roughly symmetrically placed around the unique levels. The corre-
sponding wave functions are predominantly built by linear combinations of the basis func-
tions $!=1,'2, l=K–1,Sz'>and $!=–1,'2, l=K+1,Sz

'>,with theexpansioncoefficients
being of exactly (for K = 0) or nearly (for K 	 0) equal magnitude. In constrast to the unique
levels, which can be looked upon as belonging to the mean bending potential, or in other
words, to be equally shared between both A1 and B1 components of the� electronic state,
allothervibronicstatesareassociatedeitherexactly (forK=0),orapproximately (forK#0)
withaparticularadiabaticelectronicstate.The� (K=0)statescanbeclassifiedaccording to
their behavior upon reflections in the symmetry planes to�+ (belonging to the A1 adiabatic
electronic state) and �– (belonging to the B1 state). The non-unique vibronic levels corre-
sponding to a particular '2 and belonging (predominantly) to a particular adiabatic elec-
tronic states lie energetically close to one another, compared with the energy difference be-
tween them and the corresponding unique level.

When an additional weak spin-orbit coupling is introduced (Fig. 1, 8= – 0.17, Aso
= –5 cm–1 case), the spin degeneracy of vibronic levels is removed, but the energy pat-
tern is quite different from that corresponding to the opposite case of strong spin-orbit
and weak vibronic coupling discussed above. The coarse structure of the spectrum is
the same as in the case of no spin-orbit coupling, the latter interaction causing relatively
small additional splitting of vibronic levels. This splitting is maximally pronounced in
unique levels, where it is roughly equal to the value of ASO, and almost negligible in
non-unique levels. The vibronic wave functions remain nearly the same as in the case
Aso = 0; the only qualitative difference concerns the K = 0, Sz' = * 1 vibronic states, the
wave functions of which cannot be classified exactly into �+ and �– species according
to behavior upon reflections in the symmetry planes.

When the vibronic and spin-orbit coupling are comparable strong, as in the case of
the A3�u electronic state of NCN (actually, although the quantities 872 and ASO for this
state are of the same order of magnitude, the former is roughly by a factor of three larger
than the latter), the coarse structure of the part of the vibronic spectrum corresponding to a
particular'2 quantum number is determined by the relatively large energetic separation of
the unique level from its non-unique counterparts, relatively large spin-orbit splitting of the
former, and small splitting of the latter ones. While the wave functions for the non-unique P
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= K (i.e., Sz'= 0) vibronic levels are represented by linear combinations of the $!= 1,'2, l =
K–1,Sz'=0>and $!=–1,'2, l=K+1,Sz'=0>basis functionswithexpansioncoefficients
of nearly (for K = 0, of exactly) equal magnitude, the magnitudes of these coefficients differ
considerably from each other for the Sz

' = *: cases, this difference becoming continuously
larger with increasing ratio $>SO / 87$.

TABLE IV. Vibronic spectrum in the 3�u electronic state of a triatomic molecule, computed varia-

tionally employing the following parameters: V+ (in hartree) = V- = 0.0614 
2 + 0.009 
4, ASO = –37

cm-1, the kinetic energy operator for infinitesimal bending vibrations (�= 11.3819). For key to notation
see also Table I

K '2 Sz' = –1 Sz' = 0 Sz' = 1

1 1035.52 1072.52 1035.52

1 1109.52 1072.52 1109.52

0 3 2117.12 2154.11 2117.12

3 2191.11 2154.11 2191.11

5 3207.59 3244.59 3207.59

5 3281.59 3244.59 3281.59

0 572.49 535.49 498.50

2 1574.05 1611.05 1575.57

1 2 1649.57 1612.57 1648.05

4 2660.13 2697.12 2661.63

4 2735.63 2698.63 2734.13

1 1109.52 1072.52 1035.52

3 2114.09 2151.09 2117.12

2 3 2191.11 2154.11 2188.09

5 3204.60 3241.60 3207.59

5 3281.59 3244.59 3278.60

2 1648.05 1611.05 1574.05

3 4 2655.62 2692.62 2660.13

4 2734.13 2697.12 2729.62

3 2188.09 2151.09 2114.09

4 5 3198.63 3235.63 3204.60

5 3278.60 3241.60 3272.63

The last two points of our analysis concern the effects of anharmonicity of the dending
potentials and replacement of the kinetic energy operator for infinitesimal vibrations by its
counterpart allowing for a reliable description of large amplitude bendings. They always in-
fluence quantitatively the vibronic energy terms, but there are situations where the anhar-
monicity and kinetic energy effects also change qualitatively the vibronic energy pattern. This
happenswhen thesplittingof thepotentialsuponbending isnegligible, as itwas foundforex-
ample in the�5�g state of FeH2. Very weak splitting of the components of spatially degener-
ate electronic states is expected particularly in electronic states with larger! values, because
the magnitude of the splitting depends for small deviations from linearity on 
2!.23 In Table
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IV are given the vibronic levels obtained in calculations in which the adiabatic potentials for
13A1 and 23B1 electronic states are assumed to be of the same form (i.e., not split from each
other) and slightly anharmonical; the zeroth-order kinetic energy operator T0 is employed.
Comparison of these results with their counterparts from Table III (vibronic energies without
parentheses), generated in computations in which the harmonic (unsplit) potentials are used,
shows that the systematic degeneracy of the latter vibronic levels is partly lifted and the posi-
tions of all vibronic levels are slightly changed as a consequence of the anharmonicity of the
potentials. In theabsenceofsplittingof thebendingpotentialscurves, allvibronicstateswitha
particular K value fall into two distinct groups: in the first one are those built from the basis
functions labelled by the quantum number l = K – 1, in the second one only the l = K + 1 basis
functions are involved. Thus the calculation of K vibronic levels in a� electronic state with
unsplitbendingpotentials isequivalent to thecalculationof l=K–1and l=K+1levels ina�
electronic state with the same bending potential. Under the effect of anharmonicity, the ener-
gies of the levels with the same '2 but different l values are not equal (being the case when
anharmonicity is absent); a quartic order anharmonicity with a positive sign (the present case)
causes the energy of all levels to increase, being more pronounced for levels with smaller l
quantumnumbers.SincetheK=0vibronic levelscorrespondto l=+1and l=+1bendinglev-
els remain degenerate (for a given'2) also in the case of anharmonicity, the K = 0 levels are
doubly degenerate even if anharmonicity is introduced. On the other hand, the double degen-
eracyofK#0levels is lifted,becauseonenumberofeachpaircorresponds to the l=K–1and
theother to the l=K+1level.The l=K+1componentofaKvibronic levelshas thesameen-
ergyas the l=K'–1componentof theK'=K+2levelcorresponding to thesame'2 quantum
number. Let us illustrate that on the example of'2 = 5 (Sz

'= 0) vibronic levels from Table IV:
There are two K = 0 levels of the same energy, 3244.59 cm–1, corresponding to l = +1 and l =
–1 bending levels of the� electronic state with the same potential. The K = 2 levels with the
same'2 havetheenergiesof3241.60(l=3)and3244.59(l=1).Theonly(unique, l=3)K=4
vibronic level corresponding to'2 = 5 possess an energy of 3241.60 cm–1, the same as itsK =
2, l = 3 counterpart.

Replacement of the kinetic energy operator for infinitesimal vibrations by its
large-amplitutde bending counterpart has the same qualitative effect concerning the removal
of degeneracy as the anharmonicity of the potential (see Table III, vibronic term values in pa-
rentheses). The difference in our case is that the vibronic energies are now shifted downwards
and that the l = K – 1 levels lie below their l = K + 1 counterparts. This kinetic energy effect is
thus quite equivalent to the effect of negative anharmonicity of the potentials.

CONCLUSION

The interplay between the vibronic and spin-orbit couplings in the 3� electronic
states of triatomic molecules has been little studied so far. In this paper the results of a
systematic study of the various effects determining the structure of such spectra are pre-
sented. As a concrete example was chosen the A3� state of the NCN radical. Both the
ab initio computed and the experimentally derived parameters (potential energy curves,
spin-orbit constant, equilibrium geometry) are employed in variational and pertur-
bative calculation carried out at various levels of sophistication.
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KOMBINACIJA VIBRONSKE I SPIN-ORBITNE SPREGE U 3P STAWIMA

TRIATOMSKIH MOLEKULA NA PRIMERU A3Pu ELEKTRONSKOG STAWA NCN

MARIJA KRMAR i MIQENKO PERI]
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Sistematski je studiran uticaj razli~itih efekata na strukturu spektara line-

arnih triatomskih molekula u 3P elektronskim stawima. Posebna pa`wa posve}ena je

kombinaciji vibronske i spin-orbitne sprege. Izvr{ena su varijaciona i perturbaciona

ra~unawa na razli~itim nivoima sofistikacije za A3Pu stawe radikala NCN.
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