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On the Klemm model for bistability of mixtures of interacting
enantiomers
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The solution of the Klemm model for spontaneous chiral stereoselection has
been obtained. It is shown that a system whose time-evolution is described by the
Klemm model, independently of the initial value of the enantiomeric excess, always
reaches a racemic terminal state. In a system described by the Klemm model bistability
never occurs.
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INTRODUCTION

The physico-chemical conditions under which a system that is initially racemic
(or without chiral constituents) can spontaneously evolve into a homochiral or almost
homochiral terminal state is a topic that has been investigated for a long time. -2 It is di-
rectly related to the puzzle of how homochirality of the biomolecules in modern terres-
trial life forms could have evolved from the racemic “primordial soup”. The problem
gained a great deal in importance after such phenomena were experimentally observed,
first in the crystallization of sodium chlorate-> and other compounds,® and, independ-
ently, within certain autocatalytic chemical reactions.”-3 Long before these experiments
were performed, Frank had already demonstrated® that a very simple kinetic scheme
may lead to spontaneous chiral stereoselection. Eventually, numerous modifications
and amendments of the Frank model were put forward.!0-23

Some time ago Klemm considered!223 a general expression for the time-evo-
lution of a system containing # x moles of one enantiomer (say, R) and (1 —x) moles of
the other enantiomer (say, S):

d[n x]
dt

where e, f1, 5, 21, €2, €3 are the respective rate constants. Consequently, in Eq. (1) all
possible zeroth, first and second order terms are included, whereas higher than second

=etnlfixth(l-x)]+n g +gx(1-0)+g1-x2] (1)
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order reactions are assumed to be absent. Because of symmetry, Egs. (1) and (2):
d[n(1-x)]

" etnlfi(l-0)+hx]+nt g1 (1x)?+gmx(l-x)+gx?] (2)

have to be simultaneously satisfied.

In the notation just introduced, the enantiomeric excess (expressed as the relative
excess of the enantiomer R over the enantiomer S) is equal to ee = 2x — 1. Therefore, by
determining the time-dependence of x, the time-evolution of ee is also established.If for
t— oo, ee — 0, it can be said that the system reaches a racemic terminal state. If, how-
ever, for  — oo there are two equally plausible limit values: ee — + 1 and ee — — 1, then
the system evolves into a bistable terminal state. If, in addition, ) = 1, then the terminal
states of the system are homochiral.

The various kinetic models?23 proposed for spontaneous chiral stereoselection
can be viewed as special cases of Egs. (1) and (2). In particular, the original Frank model
is obtained by choosing e =, = g1 =g3 =0, f1 > 0 and g» < 0. Recall that in the Frank
model the parameter 7 is not time-independent, but is an exponentially increasing func-
tion of #. This drawback of the Frank model was eventually overcome by an
open-flow-reactor modification.1:19 Both in the original Frank model and in its
open-flow-reactor variant, ee — + 1 or ee —— 1, depending on the initial conditions.

THE KLEMM MODEL

The model put forward by Klemm!2 is based on Egs. (1) and (2), but, in addition
(and in contrast to the Frank model), it is required that 7, the total amount of the two en-
antiomers, be constant, i.e., time-independent. If so, then by adding Egs. (1) and (2) one
obtains

2etn(fitf)tntlgitgs-2(g1-gtg)x(1-x)]=0 &)

In a previous publication,!2 by means of Eq. (3), the rate constant f; was ex-
pressed as

fi=—2eln—-fr-ng1+g3-2(1-g+g3)x(1-x)] 4)

and substituted back into Egs. (1) and (2). From a physico-chemical point of view
such an algebraic manipulation is not legitimate. First, according to Eq. (4), the rate
constant /1 would now be dependent on the concentrations of R and S. Second, by
substituting relation (4) into (1), a third-order term would appear in the model, con-
trary to the initial assumption.

If will now be shown how the Klemm model can be solved without having to rely
on Eq. (4).
SOLUTION OF THE KLEMM MODEL

Assuming that dn/dt = 0 and that n #0, Egs. (1) and (2) are immediately trans-
formed into
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d
%:e/n “hHng+lfi-ftnlg-2g)k+ng g +gya? O

d
—i: eln+fi+ng+[fa—fi+n(g—2g)x+n(g —gr+g3)x? ©)

which must hold simultaneously.

By summing (5) and (6) one arrives at Eq. (3). The left-hand side of relation (3)
can be viewed as a polynomial in the variable x. This polynomial will be identically
equal to zero if all its coefficients are equal to zero, i.e., if

2e+n(fi+f)+n*(g1+g)=0 (7
2n?(g1-g2+23)=0 (8)
Because of (8), the differential equations (5) or (6) can now be simplified as

X _ 4 Bx ©)
dt

where
A=eln+f>+ng3
B=f—fi—n(g2—2g3).

Note that from (8),

24— B=2e/n+f1+f+ng

=2e/n+fi+fr+n(g+g3)
and thus because of (7).

24-B=0. (10)
Denote by x, the initial value of the variable x.

From the identity (10) it can be seen that B=0ifand only if 4 =0. If 4= B=0 then Eq.
(9) reduces to dx/dt = 0 which implies x = x,, for all values of 7, i.e., no change occurs in the
system considered. Therefore, in what follows it is assumed that 4 and B differ from zero.

The differential equation (9) is easy to integrate because both 4 and B are inde-
pendent of x and #. One immediately obtains

|4 + Bx| = |4 + Bx,| e Bt
which in view of relation (10) becomes
|2x — 1| = |2x, — 1| e B! (11)
or
|lee| = |ee, | e Bt (12)

Egs. (11) and (12) represent the solution of the Klemm kinetic model.12
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DISCUSSION

Because of 0 <x <1 or because of—1 <ee <+1, the left-hand sides of (11) and (12)
cannot be greater than 1. If B were negative-valued then the right-hand sides of (11) and
(12) would exceed 1 for large values of ¢. Therefore B must be positive-valued.

Now three cases:

Case 1°:x,>0.5

Case 2°:x,=0.5

Case 3°:x,<0.5

have to be distinguished.

Case 1°. The right-hand side of (11) is now equal to (2x,— 1) exp(— Bt) and is pos-
itive-valued for all # > 0. Therefore the right-hand side of (11) will never be equal to
Zero.

For near-zero values of ¢ also 2x — 1 must be positive-valued and therefore |2x — 1|
=2x— 1. Because 2x — 1 will never be equal to zero it must be concluded that it must re-
main positive-valued for all # > 0. Therefore Egs. (11) and (12) become:

-1 =(2xg— 1) e Blicx= ;[1 +(2xg— 1) B (13)

ee = ee, e Bl (14)

From (13) and (14) is now evident that with increasing ¢, x — 0.5 and ee — 0. In
other words: if x, > 0.5, no matter what the initial value of the enantiomeric excess is,
the system evolves towards a racemic terminal state.

Case 2°. If x,= 0.5 then the right-hand sides of (11) and (12) are equal to zero for
all values of # and hence are independent of z. Then for all values of 2, x = 0.5 and ee = 0.
In other words: if the system is racemic in the initial moment, it remains racemic all the
time.

Case 3° is analyzed analogously as Case 1°. Eqs (13) and (14) remain valid im-
plying again that no matter what the initial value of the enantiomeric excess is, the sys-
tem evolves towards a racemic terminal state.

The conclusion of this analysis is that a system in which the total amount of the
enantiomers R and S'is constant, and in which only chemical reactions of the zeroth, first
and second order may occur (= the Klemm model) will become racemic irrespective of
the chirality of its initial state. In such a system no bistability will occur.

Acknowledgement. The author thanks the Alexander von Humboldt Foundation for a Fellow-
ship in 2000.
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3B O
O KJIIEMOBOM MOJIEJTY 3A BUCTABMJIHOCT CMEIE UHTEPATYJYRUX EHAHTUOMEPA
WBAH T'YTMAH
IIpupoono-maitiemaiiiuuxu gaxyriiei y Kpazyjesyy

Haleno je pemiee KitemoBor Mojiena 3a crioHTany xupainy crepeocenekimjy. [Tokasano je
Jla CUCTEM 4Hja BPEMCHCKa eBOJylHja je omucaHa KiieMOBHM MOJIEIOM, HE3aBUCHO O] TIOYETHE
BPEAHOCTH €HAHTHOMEPHOT BHIIKA, YBEK JOCTHKE PALIEMCKO KOHAYHO CTame. Y CHCTEMY ONHUCAHOM
KiieMOBHM MOJIEJIOM GUCTAOMITHOCT CE HUKAJIa HE jaBJba.

(ITpumsbeno 19. anpuna 2001)
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