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On molecular graphs and digraphs of annulenes
and their spectra
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A molecular graph, consisting of undirected edges, can be represented as a sum
of two digraphs, consisting of oppositely oriented directed edges. In the case of
annulenes, the eigenvalue spectrum of the molecular graph is equal to the sum of the
eigenvalue spectra of the respective two molecular digraphs.
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INTRODUCTION

In thestandardgraphrepresentationoforganicmolecules1,2 edges representcovalent
chemical bonds (usually between two carbon atoms). These edges are assumed to be undi-
rected, as is theentiremoleculargraph.On theotherhand,anundirectededgecanalwaysbe
viewed as being equivalent to a pair of oppositely oriented directed edges:

Bearing in mind that a covalent bond is formed by a pair of electrons of oppositely
oriented spins, the right-hand side of the above diagram (as well as the entire concept of
molecular graph) gets a new interpretation. Such a view of molecular graphs was elabo-
rated in some details by one of the present authors.3

An unidrected graph G can be decomposed into a pair of digraphs,G
�

andG
�

*, con-
taining oppositely oriented directed edges.4 It may be said that G is the sum of the

diagraphs G
�

and G
�

*, and write G = G
�

+ G
�

*.

For instance, the azulene graph can be decomposed as follows:
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Clearly, this is not the only possible digraph decomposition of the azulene graph,
as the examples (B) and (C) show:

Of particular importance are the digraph decompositions of molecular graphs of

conjugated � -electron systems, in which there are directed cycles, such as (A) and (B).
The directed cycles in such molecular digraphs provide a model for the behavior of the

� -electrons in an external magnetic field and are thus relevant for the theory of ring cur-
rents and aromaticity.3,5–8

The molecular graphs representing annulenes are the (undirected) cycles Cn, n =

3,4,... . They have a unique decomposition into directed cycles C
�

n and C
�

*
n:

In what follows, it will be demonstrated that the directed cycles have another
unique property: the sum of their eigenvalues is equal to the eigenvalue of the undi-
rected cycle. In order to do this a few general properties of the spectra of (molecular) di-
graphs have to be established.

SOME PROPERTIES OF THE SPECTRA OF DIGRAPHS

The spectrum of a digraphG
�

is the collection of the eigenvalues of its adjacency

matrix A(G
�

). The adjacency matrix A(G
�

*) is the transpose of A(G
�

). Therefore one has:
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Theorem 1. The digraphs G
�

and G
�

* have equal spectra.

Because A(G
�

) is not symmetric, the eigenvalues of a digraph may be complex

numbers. However, if a complex number z belongs to the spectrum of G
�

, then also its
complex conjugate z* belongs to the spectrum. This has the following cosequence.

Let the digraphG
�

possess n vertices and let its eigenvalues be denoted by � 1(G
�

),

� 2(G
�

), ... , � n(G
�

).

Theorem 2. The eigenvalues of the digraphs G
�

andG
�

* can always be labeled so

that for all k = 1,2, ..., n, � k(G
�

) + � k(G
�

*) has a real-value.

Proof. If � k(G
�

) is real-valued, then choose � k(G
�

)* to be equal to � k(G
�

). Then, of

course, � k(G
�

) + � k(G
�

*) is also real-valued and Theorem 2 holds.

If � k(G
�

) is complex-valued, then choose � k(G
�

*) to be equal to � k(G
�

*), which also

is an eigenvalue ofG
�

. Theorem 2 follows from the fact that the sum of a complex num-
ber and its conjugate is real-valued.

Theorem 3. (a) IfG
�

does not possess directed cycles, then all its eigenvalues are

equal to zero. (b) IfG
�

does possess directed cycles, then at least one of its eigenvalues is
positive and real, and at least three of its eigenvalues are non-zero.

Proof. The Sachs theorem1,9,10 as formulated for digraphs has to be applied.9 If

the characteristic polynomial of G
�

is written in the form

� (G
�

, � ) = � n + a
k

K

n
n k

�
�

1

� – (1)

then

ak = (– ) ( )1 p S

S

� (2)

with the summation going over all k-vertex subgraphs S ofG
�

that consist entirely of

directed cycles; the number of directed cycles in S is p(S).

Note that the digraphs considered in this paper possess no directed 1- and
2-cycles, and therefore from (2) follows a1 = a2 = 0.

If directed cycles are absent fromG
�

, then ak = 0 for all k = 1,2, ..., n and the charac-

teristic polynomial (1) assumes the form � (G
�

, � ) = � n . From this, part (a) of Theorem 3
follows immediately.

IfG
�

has at least one directed cycle, then by (2) at least one ak is non-zero, imply-
ing that not all eigenvalues are equal to zero. Then, from the Perron-Frobenius theo-

rem,10 one eigenvalue of G
�

must be positive. As a1 = 0, the sum of the eigenvalues is
equal to zero. As a2 = 0, the sum of the squares of the eigenvalues is equal to zero.
Therefore, at least one pair of eigenvalues must be complex-valued. This implies part
(b) of Theorem 3.
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Part (b) of Theorem 3 cannot be improved since digraphs with exactly one posi-

tive and two complex-valued eigenvalues (e.g., the directed triangle: � 1 = 1, � 2 = –1/2 +

i 3/2, � 3 = –1/2 – i 3/2) exist.

A RELATION BETWEEN THE SPECTRA OF THE ANNULENE GRAPHS AND DIGRAPHS

In this section, it is assumed that the eigenvalues of G
�

and G
�

* are labeled as de-

scribed in theProofofTheorem2,namelyso that the sum � k(G
�

)+ � k(G
�

*) is real-valued.

As iswellknown,1,10 theeigenvaluesofany (undirected)graphG
�

are real-valued.

In the general case, the eigenvalues � k(G
�

) are not related either to the eigenvalues

of G or to the sum � k(G
�

) + � k(G
�

*). At least, the present authors cannot envisage such a
relation. The annulene graphs Cn seem to provide a noteworthy exception. Namely, the

eigenvalues of Cn and C
�

n are related.

Theorem 4. If Cn=C
�

n +C
�

n
*, such thatC

�

n is a directed cycle, then � k(Cn) = � k(C
�

n)

+ � k(C
�

n*) hold for all k = 1,2, ... , n and for all n = 3,4, .... .

Proof. The fact that

� k(Cn) = 2 cos
2� k

n
; k = 1,2, ..., n (3)

is well known.1,10

It will now be shown that

� (C
�

n, � ) = � n – 1

To do this formula (2) is applied, noting that the only directed cycle contained in

C
�

n is C
�

n itself. Consequently, a1 = a2 = ... = an–1 = 0 and an = –1, because p(C
�

n) = 1.

Now, the eigenvalues of C
�

n are the solutions of the equation � (C
�

n, � ) = 0, i.e., of

� n – 1 = 0. These are just the n-th roots of unity:

� � � � � � ��

k
( ) exp

2i
cos

2
i sin

2
C

k

n

k

n

k

n
n ; k = 1,2,..., n. (4)

Consequently, the eigenvalues of Cn* are:

� � � �	


� �



� � ��

k nC
k

n

k

n
( ) exp

2i
cos

2
i– sin

2� k

n
; k = 1,2,..., n. (5)

Theorem 4 follows by combining Eqs. (3) – (5).

The chemical implications of Theorem 4 are based on the fact that the eige-

nvalues of a molecular graph of a � -electron system pertain to the � -molecular orbital
energy levels. In case of annulenes, these orbital energies may be decomposed into two
(complex-valued) contributions, each associated with a kind of circular motion of the
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� -electrons (in two opposite directions). This clearly has a relation to the cyclic conju-
gation in these molecules.

To the authors’ best knowledge, no graphs, other than the annulene graphs (and
edgeless graphs), possess the distinguished property

� k(G) = � k(G
�

) + � k(G
�

*) (6)

fol all k = 1,2, ... , n. The proof of the nonexistence of such graphs would be of some
value. The discovery of more graphs satisfying Eq. (6) would, however, be of much
greater importance.

Acknowledgement. I. G. thanks the Alexander von Humboldt Foundation for Fellowships in

1977 and 2000, which made possible the start and completion of this research.

I Z V O D

O MOLEKULSKIM GRAFOVIMA I DIGRAFOVIMA ANULENA I WIHOVIM

SPEKTRIMA

IVAN GUTMANa i PETER J. PLATb

aPrirodno-matemati~ki fakultet u Kragujevcu i bInstitut za primewenu i fizi~ku hemiju

Univerziteta u Bremenu, Nema~ka

Molekulski graf, koji sadr`i neorijentisane grane, mo`e se prikazati kao

zbir dvaju digrafova, koji sadr`e orijentisane grane suprotnog usmerewa. U slu~aju

anulena spektar sopstvenih vrednosti molekulskog grafa jednak je zbiru spektara

odgovaraju}a dva molekulska digrafa.

(Primqeno 25. decembra 2000)
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