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Two-dimensional exchange spectroscopy revisited: Accounting
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The magnetization exchange between two groups of equivalent spins each

havingdifferent populations and overall relaxation rates has been analyzed. The results

suggest that either the spin population difference or the overall relaxation rate differ-

ence in an exchange spectrum can produce cross-peaks with volumes larger than that

of the corresponding diagonal line. This is important for interpretation of the magneti-

zation exchange between water and macromolecular protons where both the popula-

tion differences and auto-relaxation rate differences can be very large. Theoretical

predictions of peak volume evolutionwere experimentally verified in the intermolecu-

lar magnetization exchange between the water and labile amide proton in a model

system N-acetylglycine/water.

Keywords: NMR, exchange spetroscopy, chemical exchange, hydrogen exchange.

INTRODUCTION

In the twenty years since its inception,1,2 two-dimensional exchange spectros-

copy has matured into a well-established method for the study of incoherent magneti-

zation transfer.3The principal sources of incoherent magnetization transfer are chemi-

calexchange1,4andcross-relaxation.1,5Although the twoprocessesarephysicallyquite

different, their experimental manifestations are almost indistinguishable and the phe-

nomenological description of both is similar. Thus, the magnetization exchange in an

N-spin system is described formally over the dynamic matrix L whose off-diagonal

elements are the magnetization exchange rate constants Lij, and the population matrix

Np = {diag ni} whose elements are equilibrium populations ni:

A(tm) = exp(+ Ltm) NA0. (1)

A(t
m
) is a matrix containing peak volumes of the exchange spectrum recorded with

a mixing time of t
m
, and A0 is the peak volume of a single spin. If an exchange
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experiment is recordedsothat initiallyeachspinsite is in thermalequilibrium, thematrix

A is symmetric,Aij=Aji. The dynamicmatrix,L, is not necessarily symmetric,Lij ≠Lji,

but is quasi-symmetric.
6,7

niLji = njLij (2)

a condition imposed by the principles of detailed balance and micro reversibility.
8

By rearranging Eq. (2) a normalized magnetization exchange rate constant

Lij
0 = Lji

0 = 
Lij

ni
 = 

Lji

nj

(3)

which represents a fraction of the unit spinmagnetization exchanged in the unit time

interval can be obtained. The actual magnetization exchange rate constants can then

be expressed over the site populations ni and the normalized magnetization ex-

change rate constants Lij
0
as

Lij = niLij
0

Lji = njLij
0

(4)

The normalized elements of the dynamic matrix are linear combinations of

their respective chemical exchange rate constant kij
0 and cross-relaxation rate

constant σij
0
:

Lij
0 = kij

0 – σij
0 . (5)

Thus, to calculate the normalized magnetization exchange rate constant Lij
0

(which is the only parameter that can be interpreted in terms of either chemical

exchange rate constants or interproton distances ormolecularmobility) a knowledge

of the populations of individual spin sites is essential.

Whereas Eq. (1) can be solved numerically for an arbitraty N-spin system, an

explicit solution is possible only for special cases involving two-,1,5 three-,7 and

four-spins.7,9,10 Here we present an explicit solution for a system of two groups of

equivalent spinswith unequal populations and different overall relaxation rates. The

importance of this system stems from the recent interest in the magnetization

exchange between the water protons and (labile) protons of various macromole-

cules.11,12 In particular, this work was triggered by the dilution enhanced exchange

spectroscopy (DEEXY)13 experiment in the protein/water system where cross-

peaks much larger than the diagonal-peaks were observed.14

THEORY

A. Basic equations. We consider a group of spins A and B with populations

nA and nB, having overall relaxation rates RA and RB respectively, and a normalized

magnetization exchange rate constant L0 (L0 = LAB
0
= LBA

0). By using Eq.(4) to

express the magnetization exchange rate constants, LAB, LBA over the normalized
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rate constant, L0, the spectral, A, dynamic, L, and population. Np, matrices are

A(tm) = 




aAA(tm) aAB(tm)
aBA(tm) aBB(tm)




; L = 





−RA − nBL0

nBL0

      nAL0

−RB−nAL0

     


; Np = 





nA

0
   0

nB

 



(6)

It is important to note the convention used for the matrix representation of

dynamic systems. The first index designates the final and the second, the initial state,

i.e. , LAB denotes the rate constant for the magnetization transfer from group B to

groupA.8 For brevity we define the mismatch parameter d, and use, as before,5 the

cross-relaxation rate constant RC, and the leakage relaxation rate constants RL:

d = (RA – RB) – (nA – nB)L0 (7)

RC = √d2 + 4nAnBL0
2  (8)

RL = 
1
2

 [(RA + RB) + (nA + nB)L0] – 
1
2

RC.
(9)

Then, the diagonal aAA, aBB, and the cross-peak volumes aAB, aBA in the

exchange spectrum recorded at the mixing time t
m

are:

aAA(tm) = 
1
2

 nAA0exp(–RLtm) 





1 − 

d
RC




 + 


1 + 

d
RC




 exp(−RCtm)


(10)

aBB(tm) = 
1
2

 nBA0exp(–RLtm) 





1 + 

d
RC




 + 


1 − 

d
RC




 exp(−RCtm)


(11)

aAB(tm) = aBA(tm) = 
nAnBL0

RC
 A0exp(–RLtm) [1 – exp(–RCtm)] (12)

ForRL > 0 the diagonal-peak volumes decrease steadily toward zerowhile the

cross-peak volume decreases only after reaching a maximum at t
max

5

tmax = 
1

RC
 ln





RL + RC

RL





(13)

Equations(10)�(12) suggest that the cross-peak volume can be larger than the

volume of the smaller diagonal, Fig. 1. The volumes aAB and aAA become equal at

txA = 
1

RC
 ln 

2nBL0 + d + RC

2nBL0 + d − RC
.

(14)

Similar expressions for volumes aBB and aAB can be obtained from Eq. (14)

by permuting the indices A and B respectively. (Index permutation also implies the

sign change in d, cf. Eq.(7)). By the principle of detailed balance (obviously),

cross-peak volume can exceed the volume of only one (smaller) diagonal at a time.
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It is irrelevant whether the diagonal line is smaller because of the smaller initial

magnetization of the higher overall relaxation rate. In the special case, when

RA

L0
 − 2nA = 

RB

L0
 − 2nB. (15)

the differences in the spin site populations and the autorelaxation rates compensate

and the volume crossing of cross-peak and diagonal-peak does not occur. Then, the

cross-peak and both diagonal-peak volumes asymptotically approach each other in

the course of mixing time.

B. Cross-peak volume normalization. A convenient method to determine the

normalized magnetization exchange rate L0 is to analyze the initial build-up rates

of the cross-peak volume,5 or to analyze the build-up rates of normalized cross-peak

volumes6,15

aAB(tm)
nBaAA(tm)

 ≈ L0tm + 
1
2

 L0[(RA − RB) − L0(nA − nB)]tm2  + O[tm3 ]. (16)

It is also useful to normalize the cross-peakvolumeby thepopulationweighted

arithmetic average of the diagonals, awa:

awa(tm) = 
nBaAA(tm) + nAaBB(tm)

2
 , (17)

because the normalized volume intensity is a linear function of mixing time up to

the third order

2aAB

nBaAA + nAaBB
 = 

2L0

RC
 tanh 





RCtm
2




 ≈ L0tm + 

1
24

 (L0RC
2  − 12nAnBL0

3)tm3  + O[tm4 ]. (18)

When one diagonal, aBB, is not known, Eq. (17) can be expressed over the

other parameters as

aAA
wa (tm) = 

nAnBA0

RC + d
 



d exp(−RLtm) + 

RCaAA(tm)
nAA0




 . (19)

In either case

aAB(tm)
aAA

wa (tm)
 = 

2L0

RC
 tanh 





RCtm
2

 



 ≈ L0tm + O[tm3 ]. (20)

C. Special cases. With added constraints, Eqs. (10)�(12) reduce to simpler,

already known, forms.

1. RA = RB = R0. Such a system has been analyzed before, with R0 = 0.7

Expressions for cross- and leakage relaxation rates and peak volumes are greatly

simplified in comparison to Eqs. (8)�(12):
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(RC)R = (nA + nB)L0 (21)

(RL)R = 
1
2

(RA + RB) = R0 
(22)

(aAA)R = 
nAnB

nA + nB
 A0 exp(−R0tm) 



nA

nB
 + exp[− (nA + nB)L0tm]


(23)

(aBB)R =  
nAnB

nA + nB
 A0 exp(−R0tm) 



nB

nA
 + exp[− (nA + nB)L0tm]


(24)

(aAB)R =  
nAnB

nA + nB
 A0 exp(−R0tm) 



1 − exp[− (nA + nB)L0tm]




(25)

(aAA
wa )R = 

nAnB

2
 A0 exp(−R0tm) 



1 + exp[− (nA + nB)L0tm]




(26)





aAB

aAA
wa



R

 = 
2

nA + nB
 tanh 





(nA + nB)L0tm
2




 ≈ L0tm + O[tm3 ] (27)

(txA) = 
1

(nA + nB)L0
 ln 

2nB

nB − nA
(28)

The subscript R in Eqs. (21)�(28) indicates that the expressions apply for the

special case of equal overall relaxation rates. Because the mixing time at which the

diagonal- and cross-peak volumes become equal depends only on the number of

spins, this case is potentially useful for determining the number of spins in the

intermolecular magnetization exchange.

2. nA= nB = n0. The equality of the spin populations in the two sites reduces

Eqs. (8)�(12) to Eqs. (22), (23) of our previous work.5 The previous analysis and

conclusions are strictly valid only when the numbers of spins in the two groups are

equal. However, if the difference (nA � nB) is small the original expressions may

hold for mixing times up to t
m
L0 ≈ 1. When the site populations are equal, the

cross-peak volume aABmay exceed the diagonal volume aAAwhen∆R=RA �RB>0
and volume aBB when ∆R<0. For the special case when RB = 0, the cross- and

diagonal-peak volumes become equal when the cross-peak reaches a maximum

(tAx )n = (tmax)n (29)

The index n points to a special condition, nA= nB. An increase in the relaxation

rate of spin site B, RB> 0, leads to the earlier appearance of a cross-peak maximum

ensuring that in general
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 (tAx )n  ≥ (tmax)n (30)

Thus, for nA = nB, cross- and diagonal-peak volumes may become equal only past

the mixing time at which the cross-peak reaches a maximum value.

3. (RA�RB)=2(nA�nB)L0. This condition, also expressedbyEq. (15), ensures

that the corss-peak volume is always smaller than the volume of diagonals. Thus,

with increasing mixing time the diagonal- and the cross-peak volumes asymptoti-

cally approach each in a manner analogous to an isolated spin pair

lim
tm →∞     





aAB

aAA



S

 = lim
tm→∞  

 




aAB

aBB



S

 = 1

The subscript S dinotes that these expressions are only valid for the special condition

defined by Eq. (15). Interestingly, expressions for the cross- and leakage relaxation

rates are the same as in case (1.), Eqs. (21, (22)

(RC)S = (RC)R;   (RL)S = (RL)R .

Fig. 1. Dependence of peak volumes, aAA, aBB, and aAB ( = aBA) in an nAnB spin system on the re-

duced mixing time, t
*

m = tmL0: a) nA = 1; nB = 3; R*A = RA/L0 = 0.5; R*B = RB/L0 = 0.5; b) nA = nB

= 3; R*A = 0.5; R*B = 4; c) nA = 1; nB = 3; R*A, R*B, satisfy Eq. (15): R*A = 0; R*B = 4. The smaller

diagonal volume (the site having a smaller population or a faster overall relaxation) becomes equal

to the volume of the cross-peak at the mixing time t
*
x(t*x = txL0). The volume crossing does not oc-

cur only in the special case (c). A corrected diagonal aAAwa is the weighted average of the diago-

nals aAA and aBB, Eq. (17). It is useful for initial build-up rate analysis because it produces

normalized cross-peak linear up to the third order in tm, Eq. (20).
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Similarly, expressions for the cross-peak volumes are the same

(aAB)S = (aAB)R

while the expressions for the diagonal-peaks are symmetrically proportional:

nB(aAA)S = nA(aBB)R.

Such symmetry implies equality of the weighted diagonal volume sums

nB(aAA)S + nA(aBB)S = nB(aAA)R + nA(aBB)R

which subsequently yields





aAB

awa



S

 = 




aAB

awa



R

The last equation shows that the normalized cross-peak in cases 1. and 3. are

identical even if the individual diagonal lines have different time evolutions.

4. nA= nB= n0andRA=RB=R0.This casemay look trivial because it reduces

the problem to the spin pair interaction. However, to extract a genuinemagnetization

exchange rate constant L0, it is essential to know the site populations n0. Because

Fig. 2. Dependence of normalized peak volumes in a nAnB spin system on the reduced mixing time,

t
*

m = tmL0: a) nA = l; nB = 3; R*A = RA/L0 = 0.5; R*B = RB/L0 = 0.5; b) nA = nB = 3; R*A = 0.5; R*B
= 4; c) nA = 1; nB = 3; R*A, R*B, satisfy Eq. (15): R*A = 0; R*B = 4. Normalization by aAA

wa gives

build-up lines that closely follow a straight L0tm (dashed) line. Systems a) and c) have the same

build-up curves (except that the two diagonals are permuted) although the evolution of their peak

volumes (Figs. 1a and 1c) is quite different.
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of the equality of peak volumes it is impossible to discern system A
n
B
n
from n(AB).

Thus, in order to extract a normalizedmagnetization exchange rate constant, n0must

be deduced independently.

Figure 1 shows the time evolution of peak volumes for the first three cases.

The most notable is that in the absence of data for the larger diagonal (for example

if the larger diagonal overlaps with a strong solvent signal) it is impossible to tell

whether the peakvolume crossing is caused bydifferent spin populations or different

overall relaxation rates. In practice, both can contribute and only detailed analysis

(vide infra) can reveal their individual contributions.

Figure 2 shows thebuild-up curves for the same threecases.Althoughderivedwith

different parameters, Figures 2a and 2c are almost identical, the only differencebeing that

indices AA and BB are permuted. This clearly indicates that a thorough analysis of the

peak volume time evolution is needed for a complete understanding of the system.

THE MODEL SYSTEM: N-ACETYLGLYCINE/WATER

For quantitative verification of the derived equations we have used a model
system, N-acetyl glycine, in which a single amide proton may exchange with water

protons. The chemical exchange rate can be controlled by altering the temperature,
pH, concentration or solvent composition.

EXPERIMENTAL

A. Sample preparation

N-acetyl(-d6)-glycine(-2-
13
C-

15
N) was prepared by condensation of acetic anhydride-d6 (Cam-

bridge Isotopes Laboratories, Inc., Andover, MA, USA) with glycine-2-
13
C-

15
N(CIL) according to pub-

lished procedures.
16
An NMR sample was made by dissolving 10mg ofN-acetyl-glycine in 1 ml of water

with desired D/H = 15. The unbuffered sample had pH* = 2.4 (uncorrected reading for isotope effects).

B. NMR experiment

To eliminate possible problems associated with radiation damping, a series of one-dimensional

(1D) difference experiments were recorded instead of the standard 2D exchange experiments. The

equivalence of 1D experiments (used in this work), and 2D experiments, which were analyzed

theoretically, is proved in the Appendix.

1D difference measurements were conducted at 45 ºC on a Bruker 600MHz Avance spectrometer

using the pulse sequence diagramed in Fig. 3. Experimental details of the sequence are given in the figure

caption. The pulse sequence was designed after theWNOESYsequence
12
with improved sensitivity

17
and

a modification to ensure complete removal of water magnetization radiation dumping. Specifically, water

inversion by soft pulses was avoided, and during J-coupling evolution periods water magnetization was

dephased and rephased by weak gradients. Data were collected in an interleave mode storing "d+cp" and

"d�cp"experiments separately ("d" representsamidediagonalvolumedataand"cp"amide/watercross-peak

volumedata).AsisshownintheAppendix,threescansareadequate torecoverthecross-anddiagonal-peaks.

However, to follow the phase rotations of a 2DNOESY
18

experiment exactly, one additional scan (scan 0)

(I-III described in Appendix) is recorded. To illustrate the relationship between the cross- and the

diagonal-peaks a 2D exchange spectrum
1
with tm= 4 s was recorded.

C. Data analysis

Experimental data were transformed into pure diagonal and pure cross-peak volume data by

summing or subtracting "d+cp" and "d�cp" data, respectively. The mixing time dependence of the
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Fig. 5. Time evolution of peak volumes in chemical exchange between the N-acetyl-glycine amide

protons and water protons. Squares represent experimental points and full lines the best fit accord-

ing to Eqs. (10), (12), (18) and (19).

Fig. 4. Contour plot of a 2D exchange spectrum of 15N enriched N-acetyl-glycine in water with a

D/H ratio in water 15/1. The amide resonance at 8.3 ppm is split into a doublet (1JNH ≈ 90 Hz) due

to heteronuclear coupling to 15N. A cross section along the amide resonance at 8.3 ppm clearly

shows that the cross-peak is much larger than corresponding diagonal.
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diagonal- and cross-peak volumes were fitted by a grid search according to Eqs. (10), (12), (19) and

(20). The error limits for each parameter were found by individually varying the parameter value until

the standard deviation of the best fit is doubled.

RESULTS

Figure 4 shows a 2D exchange spectrum at 4 s mixing time which clearly
indicates that the cross-peakwithwater ismuch larger than the amidediagonal-peak.

A representative data on time evolution of the cross-diagonal and normalized
cross-peak volumes is shown in Fig. 5. Individual points represent experimental

data and continuous lines the theoretical curves whose parameters were optimized
by the grid search. For the sample with D/H = 15 and stoichiometric ratio nB/nA=

550, the best fit values obtained are nB = 570±400, nBL0= 0.76±0.03 s
�1

, RA = 0.19

±0.02 s
�1

, RB = 0.056±0.002 s
�1

.

DISCUSSION AND CONCLUSIONS

Like other methods, 2D exchange spectroscopy studies dynamic systems by
inserting a suitable label and monitoring its redistribution among the system

components in time. The labels are resonance frequencies of the respective spin sites
and are introduced as signal modulation by the frequencies during the evolution

time. At the end of the evolution time, the magnetization components are left
unperturbed for a brief period, the mixing time, during which magnetization

exchange take place. After mixing, the magnetization redistribution is detected
during a subsequent acquisition period.

The principal advantages of 2D exchange spectroscopy in multi site exchange

are its inherent ability to label andmonitor redistribution of all components simultane-
ously and that the label (nuclear magnetization) does not perturb the original dynamic

equilibrium. Adisadvantage is nuclear spins relaxation during the exchange. If all spin
sites have similar relaxation rates then the relaxation leads merely to the sensitivity

losses. However, a difference in relaxation rates among spin sites can be an additional
cause of magnetization redistribution. For example, in the special case when nA = nB

andRB = 0, the times of peak volume crossing and cross-peakmaximum coincide, Eq.
(29). Magnetization from site A migrates to site B until the original Amagnetization

becomesequallydistributedamong thetwosites.At thatmoment thecross-peakreaches
itsmaximumvalue and the diagonal- and cross-peak volumesbecomeequal.Addition-

ally, the exchange process that always occurs, irrespective of the magnetization distri-
bution, does not lead to net magnetization transfer. However, relaxation continues to

diminish magnetization at the site A. Since it is assumed that the site B by itself does
not relax, the only way for its magnetization to "leak out" is through relaxation of site

Aaftermagnetizationback-transfer, (B→A).Theoverall effect is thatafter themaximum,
the cross-peak volume aAB becomes larger than the faster relaxing diagonal aAA, even if

nA= nB.The same process takes placewhen both sites relaxwith different rates,RA≠RB,

but the situation becomes complicated by the additional relaxation of site B. In special

caseswhen the populations of both sites are equal, (nA= nB, d=RA �RB), the cross-peak
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volume may become equal to the diagonal-peak volume of the faster relaxing site
only at times greater than the t

max
, Eq. (30). This can be observed practically only in

experiments with high signal to noise ratio since the difference in the peak volumes can
be masked by the loss of signal due to the relaxation. Equation (13) evaluates the exact

point at which aAA= aAB for any combination of relaxation rates.

An important parameter to be analyzed is the influence of site populations
because their difference can lead tomore pronounced peak volume differences (e.g.,

aAB > aAA) even at very short mixing times. When nA≠nB the principal source for
the cross-peak volume overshoot is the law of mixing. If the populations of sites A

and B are nA and nB, then their respective mole fractions are nA/(nA + nB) and
nB/(nA + nB). Neglecting all relaxation processes, the original magnetization of site

A, nAI0,will be distributed, after sufficient time, between the sitesAandBaccording
to their respective fractions: I0nA

2
/(nA + nB) remains at A, and I0nAnB/(nA + nB)

migrates to B. If nA < nB then the fraction of magnetization transferred from A to
B may be much larger than the fraction that remains at A. Indeed, in the limit

RCt
m

→∞, neglecting leakage relaxation, aAA∝nA
2
/(nA + nB) and aAB∝nΒ/(nA +

nB). Thus, a site with smaller population becomes quickly depleted merely by the

law of mixing and the respective diagonal-peak volume becomes unusually low,
aAB > aAA.

The equations derived herein are quantitatively verified in a system composed

of N-acetyl-glycine/water chemical exchange between the glycine amide and water

protons can readily be observed. A grid search fit of the experimental cross- and

diagonal (glycine only) peaks according to Eqs. (10), (12) (19) and (20), was

performed. The water diagonal, aBB, was not recorded (and thus not used in the

fitting procedure) for two reasons. First, to ensure accurate quantitation of the amide

signal, the water signal was filtered out during the acquisition. Second, even if

recorded (it would be easy in experiments without filtering) the water diagonal

should be used with caution since not necessarily all the water molecules may

participate in the exchange process. Rather than explicitly using the number of

participating water molecules, the number is obtained from the fit of the cross-peak

and amide diagonal data. Figure 5 illustrates the thorough agreement between the

experiment and the theory. The derived value for the number of participating water

molecules, nB = 570±400,matches the stoichiometric concentration, n = 550,within

the error of the method. Such a large error is caused by the low sensitivity of the

magnetization transfer to the number of participating spins when the ratio nB/nA >

20. A low sensitivity to the number of participating spins for large nB/nA ratios is

an intrinsic weakness of the method.

Theagreementbetweentheexperimentalpointsandtheoreticalcurveshasseveral

important practical implications. The derived expressions accurately predict the cross-

ing of the diagonal- and cross-peaks, and for the two groups of equivalent spins, the

expressions are exact in the whole range of mixing times. The equations also explain a

difference between chemical exchange and cross-relaxation regarding the peak volume
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crossing. In chemical exchange, the magnetization exchange rate constant k, is

unrelated to overall relaxation rates and the volume crossing caused either by the

population difference of the overall relaxation rate difference can be easily observed.

In contrast, the cross-relaxation rate constant σ, in small molecules is related to the

overall relaxation rate,19 (RA = 2 nAL0 +Rex) in amanner similar to Eq. (12). Thus, for

similar external relaxation rates the cross- and diagonal-peak volumes may become

equal only at very long mixing times. In small molecules the peak volume crossing is

seldom observed because cross-relaxation is rarely monitored at such a long mixing

times.

The derived equations presented are particularly important for the study of

chemical exchangebetween labile soluteprotonsandsolventprotonswhere thenumber

of participatiing protons does not necessarily need to match the stoichiometric ratio in

the mixture. Thus, the equations can provide insight into the elementary relationship

among the exchanging partners which is not readily available by other methods.
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manuscript.

I Z V O D

DVODIMENZIONALNA SPEKTROSKOPIJA IZMENE: ISPITIVAWE UTICAJA

BROJA SPINOVA

NENAD JURANI], @OLT ZOLNAI I SLOBODANMACURA

Odsek za biohemiju i molekulsku biologiju, Mejo klinika, Ro~ester, Minesota, SAD

Ispitivali smo razmenu magnetizacije izme|u dve grupe ekvivalentnih spinova

koje imaju razli~ite koncentracije i razli~ite brzine ukupne relaksacije i pokazali

da razlika u koncentracijama ili u brzinama ukupne relaksacije, u dvodimenzionalnom

spektru, mo�e da dovede do pojave nedijagonalnih spektralnih linija sa zapreminom

ve}om od zapremine wima pripadaju}ih dijagonalnih linija. Ovo je posebno va�no za

tuma~ewe razmene magnetizacije izme|u molekula vode i izmenqivih protona makro-

molekula. Teorijska predvi|awa su eksperimentalno potvr|ena u hemijskoj izmeni

izme|u protona vode i amidnog protona u modelnom sistemu N-acetil-glicin/voda.

(Primqeno 18. decembra 1999)
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APPENDIX

Equivalence of 1D difference and 2D exchange experiments

A dynamic matrix L

L =

−∑Li1

i≠1

 − R1 L12 ... L1N

(A-1)
L21

−∑Li2

i≠2

 − R2 ... L2N

... ... ...

LN1 LN2 ... −∑LiN

i≠N

 − RN

completely describes the magnetization exchange in a system consisting of N groups of equivalent

spins. Matrix elements Lij represent magnetization exchange rate constants for the magnetization

transfer from group j to group i, and Ri all relaxation rates by which the magnetization from group i

is lost into the environment. An exchange experiment recordedwith a mixing time tm consists of cross-

and diagonal-peaks whose volumes aij(tm) and aii(tm) form a spectral matrix A(tm)

A(tm) = 

a11(tm) a12(tm) ... a1N(tm)

(A-2)
a21(tm) a12(tm) ... a2N(tm)

... ... ...

aN1(tm) aN2(tm) ... aNN(tm)

The dynamic matrix and the spectral matrix are related by
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A(tm) = exp (L tm) NpA0 (A-3)

where A is a peak volume of a single spin and Np the population matrix

Np = 

n1 0

(A-4)
n2

0 nN

Alternatively, the dynamic matrix can be deduced from a series of 1D difference spectra. In a

system with N groups of equivalent spins the deviation of the total magnetization from equilibrium,

m, can be represented as an N dimensional column vector, m(tm), of individual magnetization

components mi(tm), (mi(tm) = Ii(t) - Ii(0); Ii(t) actual, Ii(0) equilibrium magnetization)

m(tm) = 

m1(tm)

(A-5)
m2(tm)

...

mN(tm)

The time evolution of the vectorm(tm) can be described by the system of differential equations

m(tm) = L m(tm) (A-6)

whereL is the same dynamicmatrix andm(tm) a column vector of the time derivatives of the individual

magnetization components:

m(tm) = 

m1(tm)

(A-7)
m2(tm)

...

mN(tm)

The general solution

m(tm) = exp(L tm)m0 (A-8)

depends on the initial conditions, m0 = m(0)

m0 = 

m0.1

(A-9)
m0.2

...

m0.N

Equations (A-3) and (A-8) have a common exponential term. This helps to establish a relation

between the magnetization vector m and the spectral matrix A

m(tm) = 
1

A0
A(tm) Np

−−1 m0
(A-10)

or in a scalar form

mi(tm) = 
1
A0

 ∑ 
i

aij(tm)
nj

 m0.j

(A11)

Thus, the magnetization vector component is a sum of the spectral matrix elements taken along
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the matrix row, weighted by the corresponding spin populations. Individual matrix elements, aij, can

be obtained from N experiments recorded with linearly independent initial conditions. The simplest

way to get a set of linearly independent initial conditions is to perturb one spectral line at a time. If the

perturbation is performed in each experiment with the same tip angle, then the initial non-equilibrium

state of each component is a constant fraction, c, of the initial magnetization, njI0

mj
0 = c nj A0 ej = c nj I0 

01

(A-12)

...

0j–1

1j

0j+1

...

0N

(Note that the peak volume of a single spin is the same as the equilibrium magnetization of a

single spin, A0 = I0).

For each of the N experiments with initial conditions m0
1
, m0

2
, ..., m0

N
exists a system of

differential equations

mj = m(tm) = exp(L tm)m0
j (A-13)

Then, the solution of N such systems of N differential equations can be grouped into a matrix

equation of size N ×N

M = exp(L tm)M0 (A-14)

where

M = (m1, m2, ..., mN) = 

m1
1 m1

2 ... m1
N

(A-15)
m2

1 m2
2 ... m2

N

... ... ...

mN
1 mN

2 ... mN
N

and

M0 = (m0
1, m0

2,..., m0
N) = 

m0,1
1 m0,1

2 ... m0,1
N

(A-16)
m0,2

1 m0,2
2 ... m0,2

N

... ... ...

m0,N
1 m0,N

2 ... m0,N
N

If in every experiment only one line is perturbed according the Eq. (A-12), then

M0 = c I0Np (A-17)

and

M = c exp(L tm)Np I0 (A-18)

Comparing Eqs. (A-3) and (A-18) we find

M = c A (A-19)

i.e., 2D exchange spectrum is equivalent to a series of N difference 1D experiments in which one

spectral line is perturbed at a time according to Eq. (A-12). Because the reference spectrum (1D
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spectrum without perturbation) is the same for all non equilibrium spectra, the total number of 1D

experiments needed to recover the dynamic matrix is N+1. The reference spectrum is not needed for

1D exchange experiments recorded in the rotating frame because then the equilibrium magnetization

is zero. Thus in the rotating frame N 1D experiments are sufficient.

Now it is easy to derive relations for a system with two groups of equivalent spins. If the two

groups A and B have populations nA and nB, and initial non equilibrium states mA
0
, mB

0
, then from

Eq. (A-11)

mA = 
mA

0

nAI0
aAA + 

mB
0

nBI0
aAB

mB = 
mB

0

nBI0
aBB + 

mA
0

nAI0
aAB

(A-20)

where a is a peak volume in a 2D exchange spectrum and I0 equilibrium magnetization of a single

spin. For N = 2 a total of three 1D experiments are needed to obtain all elements (peak volumes) of

spectral matrix:

Experiment
number

Initial spin
orientation

mA
0

mB
0

mA(tm) mB(tm)

I A↑Β↑ 0 0 0 0

II A↑B↓ 0 �2nBM0 �2 aAB �2 aBB

III A↓B↑ �2nAM0 0 �2 aAA �2 aAB

Then

mA
I – mA

III = 2aAA    mB
I
 – mB

III = 2aAB
mA

I – mA
II = 2aAB    mB

I– mB
II = 2aBB 

(A-21)

For rotating frame exchange, with the same initial conditions, only experiments II and III are

needed. Then, Eqs. (A-21) apply with m
I
= 0 and factor one (instead of 2).

With current hardware it is easy to perform selective spin inversion, a selective inversion

experiment may be advantageous compared to the 2D exchange experiment in a system with two

groups of spins. Provided excessive signal averaging is not needed, the selective inversion experiment

is much faster than the 2D exchange experiment. For slowly relaxing groups, like protons in isotope

diluted water, the perturbed magnetization can be realigned along the z-axis after the mixing period

which enables much shorter repetition times. Finally, selective inversion with shaped pulses could be

achieved within the order of tens of a millisecond compared to evolution time in 2D experiment that

can be as long as hundreds of milliseconds. Thus, provided the resonances of the groups A and B are

well sperated, in a two group of equivalent spins, 1D difference spectroscopy is more efficient than

2D exchange spectroscopy.
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