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Two-dimensional exchange spectroscopy revisited: Accounting
for the number of participating spins™
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The magnetization exchange between two groups of equivalent spins each
having different populations and overall relaxation rates has been analyzed. The results
suggest that either the spin population difference or the overall relaxation rate differ-
ence in an exchange spectrum can produce cross-peaks with volumes larger than that
of'the corresponding diagonal line. This is important for interpretation of the magneti-
zation exchange between water and macromolecular protons where both the popula-
tion differences and auto-relaxation rate differences can be very large. Theoretical
predictions of peak volume evolution were experimentally verified in the intermolecu-
lar magnetization exchange between the water and labile amide proton in a model
system N-acetylglycine/water.
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INTRODUCTION

In the twenty years since its inception,!-2 two-dimensional exchange spectros-
copy has matured into a well-established method for the study of incoherent magneti-
zation transfer.3 The principal sources of incoherent magnetization transfer are chemi-
cal exchange!-4 and cross-relaxation. -5 Although the two processes are physically quite
different, their experimental manifestations are almost indistinguishable and the phe-
nomenological description of both is similar. Thus, the magnetization exchange in an
N-spin system is described formally over the dynamic matrix L whose off-diagonal
clements are the magnetization exchange rate constants L, and the population matrix
N, = {diag n;} whose elements are equilibrium populations 7;:

A(tm) = exp(+ Lty) NA,. M

A(ty) 1s a matrix containing peak volumes of the exchange spectrum recorded with
a mixing time of #,,, and 4 is the peak volume of a single spin. If an exchange
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experiment is recorded so that initially each spinsite is in thermal equilibrium, the matrix
A is symmetric, 4;; = 4j;, The dynamic matrix, L, is not necessarily symmetric, L;; # Lj;,
but is quasi-symmetric.

niLji = njL; (2

a condition imposed by the principles of detailed balance and micro reversibility.8
By rearranging Eq. (2) a normalized magnetization exchange rate constant

L. L.
L% = |_JQI = ?IJ = l 3
i N

which represents a fraction of the unit spin magnetization exchanged in the unit time
interval can be obtained. The actual magnetization exchange rate constants can then
be expressed over the site populations n; and the normalized magnetization ex-
change rate constants Lj" as

Lij = niL% (4)
Lji =L

The normalized elements of the dynamic matrix are linear combinations of
their respective chemical exchange rate constant kl-jo and cross-relaxation rate

constant 0;:
L0 =k® - 0,0 . )

Thus, to calculate the normalized magnetization exchange rate constant L,~j0
(which is the only parameter that can be interpreted in terms of either chemical
exchange rate constants or interproton distances or molecular mobility) a knowledge
of the populations of individual spin sites is essential.

Whereas Eq. (1) can be solved numerically for an arbitraty N-spin system, an
explicit solution is possible only for special cases involving two-,1-> three-,” and
four-spins.”-%10 Here we present an explicit solution for a system of two groups of
equivalent spins with unequal populations and different overall relaxation rates. The
importance of this system stems from the recent interest in the magnetization
exchange between the water protons and (labile) protons of various macromole-
cules.!1;12 In particular, this work was triggered by the dilution enhanced exchange
spectroscopy (DEEXY)!3 experiment in the protein/water system where cross-
peaks much larger than the diagonal-peaks were observed. !4

THEORY

A. Basic equations. We consider a group of spins A and B with populations
na and ng, having overall relaxation rates R4 and R respectively, and a normalized
magnetization exchange rate constant Ly (Lo = LAg® = Lga?). By using Eq.(4) to
express the magnetization exchange rate constants, Lag, Lga over the normalized
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rate constant, L, the spectral, A, dynamic, L, and population. V,,, matrices are

[Baa(tm) aAB(tm)D [+Ra—ngly  naly O Ma 00
At,) = =0 =[ O
() =L () et D =0 Nelo  —Re-naloHNe=F0 mell  (©

It is important to note the convention used for the matrix representation of
dynamic systems. The first index designates the final and the second, the initial state,
i.e. , Lap denotes the rate constant for the magnetization transfer from group B to
group A.8 For brevity we define the mismatch parameter d, and use, as before,’ the
cross-relaxation rate constant Rc, and the leakage relaxation rate constants Ry ;

d=(Ra=Rg) — (na—np)Lyg @)
=VdZ+4n,ngL3 ¥

= % [(Ra +Rg) + (Na + Ng)Lg] - %Rc- ©

Then, the diagonal asa, agp, and the cross-peak volumes app, aga in the
exchange spectrum recorded at the mixing time #,,, are:

dg
Banlt) = 3 NageXp(- RLtm)%r > D+H PR PO(RtDT  (0)
O 0
d
fastn) = 3 NeAcXp(Rotn) [ + ¢ e H - 2 Foxp(-Retol] an
NN O 0O O g
aag(tm) = aga(tn) = A o o2 Aexp(-Rt) [1 - exp(—Rcty)] (12)

For Ry > 0 the diagonal-peak volumes decrease steadily toward zero while the
cross-peak volume decreases only after reaching a maximum at #,,5°

1 (R, + R-O
trax = R nG LR CD (13)
c gt O

Equations(10)—(12) suggest that the cross-peak volume can be larger than the
volume of the smaller diagonal, Fig. 1. The volumes apg and as po become equal at

po L, 2Melo+d+Re (14)
X _RC 2n8L0+d_RC.

Similar expressions for volumes agg and aap can be obtained from Eq. (14)
by permuting the indices A and B respectively. (Index permutation also implies the
sign change in d, ¢f- Eq.(7)). By the principle of detailed balance (obviously),
cross-peak volume can exceed the volume of only one (smaller) diagonal at a time.
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It is irrelevant whether the diagonal line is smaller because of the smaller initial
magnetization of the higher overall relaxation rate. In the special case, when

Ra

TA _opa=-—B_ 15
» 2Ny L 2ng. 15)

the differences in the spin site populations and the autorelaxation rates compensate
and the volume crossing of cross-peak and diagonal-peak does not occur. Then, the
cross-peak and both diagonal-peak volumes asymptotically approach each other in
the course of mixing time.

B. Cross-peak volume normalization. A convenient method to determine the
normalized magnetization exchange rate Ly is to analyze the initial build-up rates
of the cross-peak volume, or to analyze the build-up rates of normalized cross-peak
volumes6-15

aag(tn)

1
Naaan(ty) = Loty +§ Lo[(Ra = Rg) — Lo(na — np)]t3 + O[t3]. (16)

Itis also useful to normalize the cross-peak volume by the population weighted
arithmetic average of the diagonals, aW4;

Ngaaa(tm) + Nadpa(ty) (17)

awa(t,) = > ,

because the normalized volume intensity is a linear function of mixing time up to
the third order

=—tanh G—=—

R, ey [F:Lot +2 4 (LoRE = 12nngLR)E3, + O[t]. (18)

Ngaaa + Nadgp

When one diagonal, agg, is not known, Eq. (17) can be expressed over the
other parameters as

Reaa(t,,) O
H00) = 2 DRt + e ™ 19
AP0 O
In either case
ang(tn) _ 2Lo [Retm 20
—AB ML tan hg—[[:Lt+O[t] (20)
alt) Rc 02 g ° "

C. Special cases. With added constraints, Egs. (10)~(12) reduce to simpler,
already known, forms.

1. R4 = Rp = Ry. Such a system has been analyzed before, with Ry = 0.7
Expressions for cross- and leakage relaxation rates and peak volumes are greatly
simplified in comparison to Eqs. (8)—(12):
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(Re)r= (na + )Ly (21)
1 22
RUr= E(RA +Rg) =Ry @2
nAnB EnA D
ann)r = A, exp(—Rgt +exp[— (na + ng)Lgt (23)
(@ana)r N+ Ng 0 exp( Om)Hg pl— (A B)Om]%
nAnB EnB D
agg)r = A, exp(-Rt +exp[— (Na + Ng)Lgt (24)
(aB)r A + N 0 eXp( Om)ai p[- (na B)Om]%
nan o (25)
(@a)r = ——— Ag exp(—Roty) 1 —exp[- (na + Ng)Lotm] -
Np +Ng
nan
(A%d)r = A2 ® Ag exp(—Rty) 1 +exp[— (na + Ng)Lotml (26)
[&ABD 2 nA + nB)I-Otm[|
= tanh Lot + O[t3
Fﬂ% ot é( > EF otm + O[tR] (27)
1 2ng
) = In
(&) (na+ng)ly  nNg—nyp (28)

The subscript R in Egs. (21)~«28) indicates that the expressions apply for the
special case of equal overall relaxation rates. Because the mixing time at which the
diagonal- and cross-peak volumes become equal depends only on the number of
spins, this case is potentially useful for determining the number of spins in the
intermolecular magnetization exchange.

2. ny = ng = ny. The equality of the spin populations in the two sites reduces
Egs. (8)(12) to Egs. (22), (23) of our previous work.5 The previous analysis and
conclusions are strictly valid only when the numbers of spins in the two groups are
equal. However, if the difference (15 — npg) is small the original expressions may

hold for mixing times up to #,Lo = 1. When the site populations are equal, the
cross-peak volume aa g may exceed the diagonal volume ap o when AR=Rp — Rg>0
and volume agg when AR<(. For the special case when Rg = 0, the cross- and
diagonal-peak volumes become equal when the cross-peak reaches a maximum

(tA)n = (tmaxn (29

The index 7 points to a special condition, n = ng. Anincrease in the relaxation
rate of spin site B, Rg > 0, leads to the carlier appearance of a cross-peak maximum
ensuring that in general
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Fig. 1. Dependence of peak volumes, aaa, aBB, and aaB ( = aBa) in an nang spin system on the re-
duced mixing time, ¢*m = tmLo: a) na = 1; n3=23; R*A=Ra/Lo=0.5; R"3 = Rp/Lo = 0.5; b) nan = np
=3; R*A=0.5;R'5=4;c) na=1; ng=3; R*a, R"B, satisfy Eq. (15): R*A =0; R*p = 4. The smaller
diagonal volume (the site having a smaller population or a faster overall relaxation) becomes equal
to the volume of the cross-peak at the mixing time t*x(t*x = tyLg). The volume crossing does not oc-
cur only in the special case (c¢). A corrected diagonal aaa™? is the weighted average of the diago-
nals aaa and agg, Eq. (17). It is useful for initial build-up rate analysis because it produces
normalized cross-peak linear up to the third order in #m, Eq. (20).

(tf&)n 2 (tmax)n (30)

Thus, for np = np, cross- and diagonal-peak volumes may become equal only past
the mixing time at which the cross-peak reaches a maximum value.

3. (R4—Rp)=2(n4—np)Ly. This condition, also expressed by Eq. (15), ensures
that the corss-peak volume is always smaller than the volume of diagonals. Thus,
with increasing mixing time the diagonal- and the cross-peak volumes asymptoti-
cally approach each in a manner analogous to an isolated spin pair

I|m D =lim FD 1
tm 00 AA @ t 00
The subscript S dinotes that these expressions are only valid for the special condition

defined by Eq. (15). Interestingly, expressions for the cross- and leakage relaxation
rates are the same as in case (1.), Egs. (21, (22)

(Re)s = (Ro)ws (RUs=RDR -
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Fig. 2. Dependence of normalized peak volumes in a nang spin system on the reduced mixing time,
' m = tmLo: ayna=1;ng=3; R'A=RA/Lo=0.5; R*3=Rp/Lyg = 0.5;b) na =n=3; R'A=0.5:R"s
=4;¢)na=1;n=3; R*a, R"B, satisfy Eq. (15): R*A = 0; R*5 = 4. Normalization by aaar"“ gives

build-up lines that closely follow a straight Lozm (dashed) line. Systems a) and ¢) have the same
build-up curves (except that the two diagonals are permuted) although the evolution of their peak
volumes (Figs. la and 1c) is quite different.

Similarly, expressions for the cross-peak volumes are the same
(aa)s = (aa)r
while the expressions for the diagonal-peaks are symmetrically proportional:
Ng(aan)s = Na(@se)r-
Such symmetry implies equality of the weighted diagonal volume sums
Ne(@an)s + Na(@sg)s = Ne(@aa)r + Na(ase)r

which subsequently yields

asd _ [@agd
Wa% - %wa%2

The last equation shows that the normalized cross-peak in cases /. and 3. are
identical even if the individual diagonal lines have different time evolutions.

4.n4=ng= ngand R 4= Rp= Ry. This case may look trivial because it reduces

the problem to the spin pair interaction. However, to extract a genuine magnetization
exchange rate constant L, it is essential to know the site populations 7g. Because
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of the equality of peak volumes it is impossible to discern system 4,,B,, from n(AB).
Thus, in order to extract a normalized magnetization exchange rate constant, ng must
be deduced independently.

Figure 1 shows the time evolution of peak volumes for the first three cases.
The most notable is that in the absence of data for the larger diagonal (for example
if the larger diagonal overlaps with a strong solvent signal) it is impossible to tell
whether the peak volume crossing is caused by different spin populations or different
overall relaxation rates. In practice, both can contribute and only detailed analysis
(vide infra) can reveal their individual contributions.

Figure 2 shows the build-up curves for the same three cases. Although derived with
different parameters, Figures 2a and 2c are almost identical, the only difference being that
indices AA and BB are permuted. This clearly indicates that a thorough analysis of the
peak volume time evolution is needed for a complete understanding of the system.

THE MODEL SYSTEM: N-ACETYL GLYCINE/WATER

For quantitative verification of the derived equations we have used a model
system, N-acetyl glycine, in which a single amide proton may exchange with water
protons. The chemical exchange rate can be controlled by altering the temperature,
pH, concentration or solvent composition.

EXPERIMENTAL

A. Sample preparation

N-acetyl(-de)-glycine(-2- Be. 15N) was prepared by condensatlon of acetlc anhydride-ds (Cam-
bridge Isotopes Laboratories, Inc., Andover, MA, USA) with glyc1ne-2 ¢! N(CIL) according to pub-
lished procedures. 16 An NMR sample was made by dissolving 10 mg of N-acetyl-glycine in 1 ml of water
with desired D/H = 15. The unbuffered sample had pH* = 2.4 (uncorrected reading for isotope effects).

B. NMR experiment

To eliminate possible problems associated with radiation damping, a series of one-dimensional
(1D) difference experiments were recorded instead of the standard 2D exchange experiments. The
equivalence of 1D experiments (used in this work), and 2D experiments, which were analyzed
theoretically, is proved in the Appendix.

1D difference measurements were conducted at 45 °C on a Bruker 600 MHz Avance spectrometer
using the pulse sequence diagramed in Fig, 3. Experimental details of the sequence are given in the ﬁ
caption. The pulse sequence was designed after the WNOESY sequence12 with improved sensmVlty and
a modification to ensure complete removal of water magnetization radiation dumping. Specifically, water
inversion by soft pulses was avoided, and during J-coupling evolution periods water magnetization was
dephased and rephased by weak gradients. Data were collected in an interleave mode storing "d-+cp" and
"d—cp" experiments separately ("d" represents amide diagonal volume data and "cp" amide/water cross-peak
volume data). Asis shown in the Appendix, three scans are adequate to recover the cross-and diagonal-peaks.
However, to follow the phase rotations of a 2D NOESY'® experiment exactly, one additional scan (scan 0)
(I-I described in Appendix) is recorded. To illustrate the relationship between the cross- and the
diagonal-peaks a 2D exchange spectruml with t, =4 s was recorded.

C. Data analysis

Experimental data were transformed into pure diagonal and pure cross-peak volume data by
summing or subtracting "d+cp" and "d—cp" data, respectively. The mixing time dependence of the
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Fig. 4. Contour plot of a 2D exchange spectrum of !N enriched N-acetyl-glycine in water with a
D/H ratio in water 15/1. The amide resonance at 8.3 ppm is split into a doublet (!/xu = 90 Hz) due
to heteronuclear coupling to !5N. A cross section along the amide resonance at 8.3 ppm clearly
shows that the cross-peak is much larger than corresponding diagonal.
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Fig. 5. Time evolution of peak volumes in chemical exchange between the N-acetyl-glycine amide
protons and water protons. Squares represent experimental points and full lines the best fit accord-
ing to Egs. (10), (12), (18) and (19).
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diagonal- and cross-peak volumes were fitted by a grid search according to Eqs. (10), (12), (19) and
(20). The error limits for each parameter were found by individually varying the parameter value until
the standard deviation of the best fit is doubled.

RESULTS

Figure 4 shows a 2D exchange spectrum at 4 s mixing time which clearly
indicates that the cross-peak with water is much larger than the amide diagonal-peak.
A representative data on time evolution of the cross-diagonal and normalized
cross-peak volumes is shown in Fig. 5. Individual points represent experimental
data and continuous lines the theoretical curves whose parameters were optimized
by the grid search. For the sample with D/H = 15 and stoichiometric ratio ng/na =
550, the best fit values obtained are ng = 570+400, ngLo=0.76+0.03 s, R, =0.19
+0.02 s, Ry =0.056+0.002 s~

DISCUSSION AND CONCLUSIONS

Like other methods, 2D exchange spectroscopy studies dynamic systems by
inserting a suitable label and monitoring its redistribution among the system
components in time. The labels are resonance frequencies of the respective spin sites
and are introduced as signal modulation by the frequencies during the evolution
time. At the end of the evolution time, the magnetization components are left
unperturbed for a brief period, the mixing time, during which magnetization
exchange take place. After mixing, the magnetization redistribution is detected
during a subsequent acquisition period.

The principal advantages of 2D exchange spectroscopy in multi site exchange
are its inherent ability to label and monitor redistribution of all components simultane-
ously and that the label (nuclear magnetization) does not perturb the original dynamic
equilibrium. A disadvantage is nuclear spins relaxation during the exchange. If all spin
sites have similar relaxation rates then the relaxation leads merely to the sensitivity
losses. However, a difference in relaxation rates among spin sites can be an additional
causc of magnetization redistribution. For example, in the special case when na = ng
and Rg = 0, the times of peak volume crossing and cross-peak maximum coincide, Eq.
(29). Magnetization from site A migrates to sitc B until the original A magnetization
becomes equally distributed among the two sites. At that moment the cross-peak reaches
its maximum value and the diagonal- and cross-peak volumes become equal. Addition-
ally, the exchange process that always occurs, irrespective of the magnetization distri-
bution, does not lead to net magnetization transfer. However, relaxation continues to
diminish magnetization at the site A. Since it is assumed that the site B by itself does
not relax, the only way for its magnetization to "leak out" is through relaxation of site
A after magnetization back-transfer, (B — A). The overall effect is that after the maximum,
the cross-peak volume as g becomes larger than the faster relaxing diagonal ap s even if
na = ng. The same process takes place when both sites relax with different rates, Ra#Rp,
but the situation becomes complicated by the additional relaxation of site B. In special
cases when the populations of both sites are equal, (na = ng, d= R —Rp), the cross-peak
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volume may become equal to the diagonal-peak volume of the faster relaxing site
only at times greater than the #,,x, Eq. (30). This can be observed practically only in
experiments with high signal to noise ratio since the difference in the peak volumes can
be masked by the loss of signal due to the relaxation. Equation (13) evaluates the exact
point at which as A = aap for any combination of relaxation rates.

An important parameter to be analyzed is the influence of site populations
because their difference can lead to more pronounced peak volume differences (e.g.,
aaB > aaa) even at very short mixing times. When na#ng the principal source for
the cross-peak volume overshoot is the law of mixing. If the populations of sites A
and B are na and np, then their respective mole fractions are na/(na + ng) and
ng/(np + ng). Neglecting all relaxation processes, the original magnetization of site
A, naly, will be distributed, after sufficient time, between the sites A and B according
to their respective fractions: Ign Az/(n A+ np) remains at A, and lgnang/(na + ng)
migrates to B. If np < ng then the fraction of magnetization transferred from A to
B may be much larger than the fraction that remains at A. Indeed, in the limit
Rty — %, neglecting leakage relaxation, apaOnp2/(na + ng) and apgOng/(ns +
ng). Thus, a site with smaller population becomes quickly depleted merely by the
law of mixing and the respective diagonal-peak volume becomes unusually low,
AAB =~ AAA-

The equations derived herein are quantitatively verified in a system composed
of N-acetyl-glycine/water chemical exchange between the glycine amide and water
protons can readily be observed. A grid search fit of the experimental cross- and
diagonal (glycine only) peaks according to Eqgs. (10), (12) (19) and (20), was
performed. The water diagonal, agg, was not recorded (and thus not used in the
fitting procedure) for two reasons. First, to ensure accurate quantitation of the amide
signal, the water signal was filtered out during the acquisition. Second, even if
recorded (it would be easy in experiments without filtering) the water diagonal
should be used with caution since not necessarily all the water molecules may
participate in the exchange process. Rather than explicitly using the number of
participating water molecules, the number is obtained from the fit of the cross-peak
and amide diagonal data. Figure 5 illustrates the thorough agreement between the
experiment and the theory. The derived value for the number of participating water
molecules, ng = 570+£400, matches the stoichiometric concentration, n =550, within
the error of the method. Such a large error is caused by the low sensitivity of the
magnetization transfer to the number of participating spins when the ratio ng/na >
20. A low sensitivity to the number of participating spins for large ng/na ratios is
an intrinsic weakness of the method.

The agreement between the experimental points and theoretical curves has several
important practical implications. The derived expressions accurately predict the cross-
ing of the diagonal- and cross-peaks, and for the two groups of equivalent spins, the
expressions are exact in the whole range of mixing times. The equations also explain a
difference between chemical exchange and cross-relaxation regarding the peak volume
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crossing. In chemical exchange, the magnetization exchange rate constant £, is
unrelated to overall relaxation rates and the volume crossing caused either by the
population difference of the overall relaxation rate difference can be easily observed.

In contrast, the cross-relaxation rate constant 0, in small molecules is related to the
overall relaxation rate,19 (Ry =2 naL( + Rex) in a manner similar to Eq. (12). Thus, for
similar external relaxation rates the cross- and diagonal-peak volumes may become
cqual only at very long mixing times. In small molecules the peak volume crossing is
seldom observed because cross-relaxation is rarely monitored at such a long mixing
times.

The derived equations presented are particularly important for the study of
chemical exchange between labile solute protons and solvent protons where the number
of participatiing protons does not necessarily need to match the stoichiometric ratio in
the mixture. Thus, the equations can provide insight into the elementary relationship
among the exchanging partners which is not readily available by other methods.

Acknowledgment: The authors are thankful to Dr. Martin Moncrieffe for critical reading of the
manuscript.

n3BO

JBOJUMEH3WOHAIIHA CIIEKTPOCKOITMJA UBMEHE: UCIIMTUBAILE YTULIAJA
BPOJA CITMHOBA

HEHAJNI JYPAHWR, KOJIT 30JTHAN 1 CIIOBOJTAH MAITYPA
Oocek 3a buoxemujy u moaexyacky buoaozujy, Mejo kaunuxa, Pouecitiep, Munecoitia, CAIl

WcnuruBanu cMO pa3MeHy MarHeTu3anuje u3Meby aBe rpyne eKBUBaJICHTHHAX CIIMHOBA
KOje MMajy pa3iIuunTe KOHIEHTPANUje U Pa3inuuTe Op3UHE YKYIHE Peslakcalyje ! NOKa3all
Jla pa3nuKa y KOHIIEHTpaljaMa uin y Op3uHaMa yKyIHe pejakcanyje, y JBOAIMEH3NOHATHOM
CIIEKTPY, MOXKeE Jia IOBeJE [0 M0jaBe HEeAWjarOHATHUX CIHEKTPAIHUX JIMHUjA ca 3allpEMUHOM
BehoM o1 3anpemuHe HUMa npunanajyhux aumjaroHanHux guaAja. OBO je moceGHO BasKHO 3a
TyMauewe pa3MeHe MarHeTH3anyuje n3sMeby MoseKyia Bojie ¥ H3MEH/bUBUX IPOTOHA MaKpo-
Mortekyna. Teopujcka mpepBubama Cy eKCIIEpUMEHTAIHO MOTBphHeHa Y XeMUjCKOj U3MEHHI
n3Meby IpoToHa BOAE M aMHUIHOT IPOTOHA Y MOJEITHOM cucTeMy N-ale THiI-IIIMIIH/BOAA.
(ITpumsbeno 18. penemGpa 1999)
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APPENDIX

Equivalence of 1D difference and 2D exchange experiments
A dynamic matrix L

_ZLil ~Re Li2 Lin
i#l
L21 _ZLiz ~Re Lon
L= i22 (A-1)
Ln1 Ln2 _Z“N ~RN
i#N

completely describes the magnetization exchange in a system consisting of N groups of equivalent
spins. Matrix elements L;; represent magnetization exchange rate constants for the magnetization
transfer from group j to group 7, and R; all relaxation rates by which the magnetization from group 7
is lost into the environment. An exchange experiment recorded with a mixing time #, consists of cross-
and diagonal-peaks whose volumes ;j(m) and a;i(tm) form a spectral matrix A(fm)

ai(tm)  an2(tm) .. ain(tm)
az1(tm) arz(tm) ... azn(tm)

A(tm) = . : : (A-2)
ani(tm)  anz2(tm) ... ann(tm)

The dynamic matrix and the spectral matrix are related by
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A(ty) = exp (L ty) NoA (A-3)
where 4 is a peak volume of a single spin and /V, the population matrix
ni 0
Np = " (A-4)
0 nN

Alternatively, the dynamic matrix can be deduced from a series of 1D difference spectra. In a
system with N groups of equivalent spins the deviation of the total magnetization from equilibrium,
m, can be represented as an N dimensional column vector, m(tm), of individual magnetization
components m;(tm), (mi(tm) = 1i(¢) - 1i(0); I(¢) actual, /;(0) equilibrium magnetization)

m 1(tm)

m2(tm)
mim) = | (A5)

mN(tm)
The time evolution of the vector m(¢,,) can be described by the system of differential equations
m(ty) = L m(ty) (A-6)

where L is the same dynamic matrix and m(#n) a column vector of the time derivatives of the individual
magnetization components:

my(tm)
m2(tm)
m(tm) = : (A-7)
mN(tm)
The general solution
m(tm) = EXp(L tm)mo (A'8)
depends on the initial conditions, mo = m(0)
mo.1
mo.2
mo = : (A-9)
Mo.N

Equations (A-3) and (A-8) have a common exponential term. This helps to establish a relation
between the magnetization vector m and the spectral matrix A

m(ty) = A%A(tm) NGt mg (A-10)

or in a scalar form

u(tm) (all)

1
Ml =55 2 "

Thus, the magnetization vector component is a sum of the spectral matrix elements taken along
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the matrix row, weighted by the corresponding spin populations. Individual matrix elements, a;;, can
be obtained from N experiments recorded with linearly independent initial conditions. The simplest
way to get a set of linearly independent initial conditions is to perturb one spectral line at a time. If the
perturbation is performed in each experiment with the same tip angle, then the initial non-equilibrium
state of each component is a constant fraction, ¢, of the initial magnetization, n;lo

01

, 0j-1
mho=cnjAcej=cnjlo| 1 (A-12)
Oj+1

ON

(Note that the peak volume of a single spin is the same as the equilibrium magnetization of a
single spin, 4o = lp).

For each of the N experiments with initial conditions mol, moz, s moN exists a system of
differential equations

mi = m(t,) = exp(L t,)mg (A-13)

Then, the solution of N such systems of N differential equations can be grouped into a matrix
equation of size N XN

M = exp(L t,,)Mq (A-14)
where
mit mi® mi"
) mt  mo? mo
M=(m! m? .., mN)= : : : (A-15)
le mN2 mNN
and
moal moi? .. moM
L \ mo2~  Mo2 . Mo
Mo = (Mg, mg®,..., Mo ") = : : : (A-16)
mon'  mon® .. mon

If in every experiment only one line is perturbed according the Eq. (A-12), then

Mo =c IgN, (A-17)
and
M = c exp(L t)N, o (A-18)
Comparing Eqgs. (A-3) and (A-18) we find
M=cA (A-19)

i.e., 2D exchange spectrum is equivalent to a series of N difference 1D experiments in which one
spectral line is perturbed at a time according to Eq. (A-12). Because the reference spectrum (1D
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spectrum without perturbation) is the same for all non equilibrium spectra, the total number of 1D
experiments needed to recover the dynamic matrix is N+1. The reference spectrum is not needed for
1D exchange experiments recorded in the rotating frame because then the equilibrium magnetization
is zero. Thus in the rotating frame N 1D experiments are sufficient.

Now it is easy to derive relations for a system with two groups of equivalent spins. If the two
groups A and B have populations na and ng, and initial non equilibrium states mAO, mBO, then from
Eq. (A-11)

mA mg
Mp = —laAA + —laAB
Nalo Nglo (A-20)
0 0
B nBIO BB nAIO AB

where a is a peak volume in a 2D exchange spectrum and I equilibrium magnetization of a single
spin. For N =2 a total of three 1D experiments are needed to obtain all elements (peak volumes) of
spectral matrix:

Experiment Initial spin 0 0
nIl)meer orientatlijon A s mA(fm) mi(fm)
1 A1B1 0 0 0 0
I A1Bl 0 —2nMo -2 aaB -2 aBB
111 AlB1 —2nAMo 0 —2 aaA 2 aAB
Then
ma' —mp!" = 2apn mg'—mg!!! = 2a5g (A-21)

mg'-mg' = 2agg

For rotating frame exchange, with the same initial conditions, only experiments II and I1I are
needed. Then, Eqs. (A-21) apply with m' = 0 and factor one (instead of 2).

With current hardware it is easy to perform selective spin inversion, a selective inversion
experiment may be advantageous compared to the 2D exchange experiment in a system with two
groups of spins. Provided excessive signal averaging is not needed, the selective inversion experiment
is much faster than the 2D exchange experiment. For slowly relaxing groups, like protons in isotope
diluted water, the perturbed magnetization can be realigned along the z-axis after the mixing period
which enables much shorter repetition times. Finally, selective inversion with shaped pulses could be
achieved within the order of tens of a millisecond compared to evolution time in 2D experiment that
can be as long as hundreds of milliseconds. Thus, provided the resonances of the groups A and B are
well sperated, in a two group of equivalent spins, 1D difference spectroscopy is more efficient than
2D exchange spectroscopy.



