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If G is a molecular graph with n vertices and if &1, A,, ..., A, are its eigenvalues,
then the energy of G is equal to E(G) = |hq| + [Ap|+ ... +|A,|. IFE(G) > 2n—2, then G is said
to be hyperenergetic. We show that no Hiickel graph (= the graph representation of a
conjugated hydrocarbon within the Hiickel molecular orbital model) is hyperenergetic.
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The concept of hyperenergetic graphs was introduced in a recent work.! A graph
G with n vertices is said to be hyperenergetic if its energy £(G) satisfies the relation
E(G) > 2n — 2. As usual, E(G) = || + |Ag| + ... + Ay, where A1, Ay, ..., A, are the
eigenvalues of G. The energy of a graph is a quantity closely related to the Hiickel mo-
lecular orbital total m-electron energy.?

Although the existence of hyperenergetic graphs has been known for quite some
time,3 their systematic design was first achieved by three of the present authors,* followed
by others.!->-7 All the hitherto known hyperenergetic graphs possess a large number of
edges and, from a chemical point of view, may be considered as cluster graphs.! Among
the ordinary molecular graphs representing conjugated molecules, so-called Hiickel
graphs,2:8 not a single hyperenergetic species has been detected. We now show that this
necessarily has to be the case: Hiickel graphs cannot be hyperenergetic.

We first deduce an auxiliary result.

Theorem 1. A graph with n verices and m edges, such that m <2n — 2 cannot be
hyperenergetic.

Proof. In order to show the validity of Theorem 1 we recall the recently obtained
upper bound for the total n-electron energy®
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2m 2mY’
E(G)£n+\/(n—l){2m—(n) } (1)

which holds for all (n, m)-graphs. Now, whenever the condition

2m 2mY
n+\/(n—1)|:2m—(nj :|<2I/l—2 )

is satisfied, then because of Eq. (1) the graph G cannot be hyperenergetic.

The inequality (2) is easily transformed into
2n3 —4n? +2n —3mn + 2m% + 4m — mn2 > 0

which is simplified as

2m2 —m(n—1)(n+4)+ 2n(n—1)2>0. 3)
Considering the right-hand side of (3) as a polynomial in the variable m we conclude
that itis positive for m <m1 and m > my, where m and m, are the two solutions of the
equation

2m2 —m(n—1)(n+4)+2n(n—1)2=0.
By direct calculation we get

my=2m—-1);my=n(n—1)2

The condition m > n(n — 1)/2 is impossible, because the complete graph has n(n —
1)/2 edges, which is the maximal number of edges that an n-vertex graph may possess.
There remains the condition m <2(n— 1) which is just what has been stated in Theorem 1.

We are now prepared to prove our main result:

Theorem 2. No Hiickel graph is hyperenergetic

Proof. As is well known,2-8 every vertex of a Hiickel graph has a degree (= num-
ber of first neighbors) of at most 3. Consequently, an n vertex Hiickel graph has at most
3n/2 edges. (Exactly 3n/2 edges have the molecular graphs of fullerenes.)

By Theorem 1 we know that whenever m <2n —2, then the respective graph can-
not be hyperenergetic. Now,

—4
3 ppn
2

and for n >4 we see that 3n/2 <2n —2. In other words, all Hiickel graphs with more
than four vertices have fewer than 2n — 2 edges and are thus not hyperenergetic.

The fact that graphs with 4 or fewer vertices are also not hyperenergetic is easily
verified by direct checking.
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HHIENAH XWKEJIOB I'PA® HUJE XHUITEPEHEPI'ETCKI
WM. TYTMAH,*J. HOU,® H. B. VALIKAR,* H. S. RAMANE” n P. R. HAMPIHOLI*

a _ _ . _ . 6 _ _ .
TIpupoono-mattiemattivuxy axyaitienri y Kpazyjeeuy, "O0cex sa mattiemattiuxy, Kurecku Ynusepsuitieiti Hayke u
itiexrnonozuje, Xegpej, Kuna, “Odcex 3a maitiemainiuxy, Ynusepsuitieii Kapnaitiarx, Beazaym, Hnouja u O Texroaoutrcu
unciuiyini Tozitie, Beazaym, Hrouja

Hexa je G monexyiicku rpad ca n 4BOpoBa U HeKa €y M, A2, ..., hy BbET'OBE COIICTBEHE
spepnoctu. Exepruja rpada G je E(G) = [M |+ 22| + ... + [ha|. Akoje E(G) > 2n—2 KaxeMo fia je
rpa G xunepeneprercku. [lokazauno je ma mujeman Xukesnos rpag (= rpadoscka penpe-
3EeHTAIK]a KOHjYrOBAHOT MOJIEKYJIa Y OKBUPY XMKETOBOI MOJIEKYIICKO OPOUTAITHOT MOjIea)

HHUje XUTepeHepreTCKH.
(IIpummbeno 10. jyna 2000)
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