
J. Serb. Chem .Soc. 64(12)745-752(1999) UDC 546.74�331��(669.245)
JSCS-2713 Original scientific paper

Examination of the kinetics of Zr1.02Ni0.98 alloy hydriding
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The hydriding kinetics of Zr1.02Ni0.98 alloy was examined in dependence on the

number of hydriding/dehydriding cycles. The rate constants relating to three subsequent

hydriding procedures of an alloy sample, at five temperatures: 423, 448, 473, 498 and

523K,were determined.The rate constant increases, and the activation energydecreases

on each repetition of the hydriding/dehydriding cycle at a given temperature. This

behavior was explained by sample crushing, leading to an increase in the surface area

accessible to hydrogen.

Keywords: hydriding/dehydriding, zirconium-nickel alloy, hydriding rate constant,

activaiton energy.

Some metals and alloys are able to absorb large amounts of hydrogen, and

thereby undergo transformation into new chemical compounds � hydrides. The

equilibrium hydrogen pressure of a hydride is a characteristic of each material. The

possibility of hydrides to be applied as hydrogen storage materials1 provoked

extensive investigation of these topics. Besides pure metals and simple binary

alloys, a large number of different multicomponent alloys were also studied. The

alloy called "mishmetal", which presents a complex rare metal alloy, including La,

Ce, Pr, Nd and Sm, stabilized by the addition of other metals, such as Co, Ni, Al etc,

is already being used as a hydrogen electrode2 to replace the ecologically inconven-

ient cadmium anode in Cd-Ni secondary power sources.

A hydrogen storage material should satisfy some particular requirements

relating to hydriding/dehydriding cycles. Namely, reversibility of cycling, and the

closeness of the hydrogen equilibirum pressure to the atmospheric one, are both

required. It is also important that, during cycling, the alloy maintains its basic

charactericstics (phase composition, particle size, hydriding capacity, hydriding

rate, etc.). Up to date, no metal or alloy has been found which satisfy all these

requirements. The most promising seems to be some "mishmetal" based alloys.

The kinetics of the hydriding reactions of different metals and alloys has been

studied elsewhere.3�7 Some recent results were presented at the International
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Symposium on Metal-Hydrogen Systems, Fundamentals and Applications, Stu-
ttgart, Deutchland, September 4�9 (1988).3The hydriding rates of puremetals, such

as U, Th, Y, La, Ce, Nd, and Gd, were investigated at 21 ºC, and 10 kPa hydrogen
pressure, during a time period of several ks.4 Josephy and Ron5 determined the

activation energy, rate constant and pre-exponential factor for LaNi5 and

MmNi4.5Fe0.85 (Mm= "mishmetal") hydriding. Xianglong and Suda6measured the

kinetic parameters for LaNi4.7Al0.3 hydriding under constant volume at variable
hydrogen pressures. Watanble et al.7 examined the activation process and absorp-

tion/desorptionof hydrogen and their isotopes forZr-Ni alloys byXPS-SIMS (X-ray
Photoelectron Spectrometry - Secondary Ion Mass Spectrometry).

Previously,8 we stated that the multiple repetition of hydriding/dehydriding
cycles of a sample of Zr1.02Ni0.98 alloy leads to both a progressive increase in the

hydriding rate and a progressive decrease in the maximal hydriding capacity. In this
work, these properties of Zr1.02Ni0.98 alloy are reconsidered in a more quantitative

manner.

EXPERIMENTAL

The subject of examination was a Zr1.02Ni0.98 alloy, synthesized at Baykov Institute, Moscow,

Russia. After grinding, the fraction of 4 mmmean particle diameter was used to examine the hydriding

kinetics.

The hydriding/dehydriding cycles were performed in a typical volumetric apparatus. A quartz

tube with a weighed quantity of Zr1.02Ni0.98 alloy, typical value being 0.1 g, was inserted into a

tube-like furnace. The sample tube was connected by a set of valves to other compartments of the

apparatus, permitting either evacuation (up to 5·10-3 mm Hg) or introduction of gaseous hydrogen at

atmospheric pressure (760 mm Hg). XRPD (X-Ray Powder Diffraction) measurements were carried

out with a Philips PW-1710 diffractometer, using a Cu tube operated at 40 kV and 30 mA.

Prior to each hydriding procedure, the sample was pre-treated at 773 K under a vacuum of

5·10�3 mm Hg for 20 h. The duration of pre-treatment was double that needed to achieve complete

dehydriding. The completeness of dehydriding was shown by the absence of hydride phase patterns

in the XRPD spectrum. After this pre-treatment, the sample was heated up to the required temperature,

in the range 423�523 K (150�250 ºC). After a constant temperature had been obtained, hydriding was

undertaken, starting with a hydrogen pressure of 103.4 kPa (760 mm Hg). The hydrogen pressure

decreased during hydriding. The pressure decrease, typically amounting to 1�5 % of its initial value,

was monitored by a closed mercury manometer, as a function of time. The hydrogen/alloy mole ratio,

as a time dependent variable, was calculated on the basis of the pressure drop.

On completion of the hydriding reaction, when a final equilibrium pressure was achieved,

dehydriding was undertaken. The next, second hydriding, as well as the third one, were repeated under

identical conditions to those used for the first hydriding.

The multiple hydriding was carried out isothermally at five constant temperatures, i.e., 423 K,

448 K, 473 K, 498 K and 523 K.

RESULTS AND DISCUSSION

In a previously published paper,8 in which cyclic hydriding/dehydriding of a

Zr1.02Ni0.98 alloy sample was examined, it was observed that each subsequent

hydriding of the same sample proceeded remarkably faster than the previous one.
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In the present work, the initial parts of hydriding isotherms were used for a detailed

kinetic study.

Assuming the hydriding reaction to be reversible, one can apply the following
equation:

A + n/2 H2 ‹fi   AHn
(1)

where A represents the Zr1.02Ni0.98 alloy, and AHn is the corresponding hydride.

The dependence of the hydriding rate on the hydrogen pressure has been

derived elsewhere5:
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where p, pe and pf are the hydrogen pressures at a given time, the plateau pressure

(if one is dealing with a two-step isotherm), and the final equilibrium pressure,

respectively; n and nf are themole ratios of atomic hydrogen/alloy, at a certain time,

and in the equilibrium state, respectively. The rate constant is designated by k and

the reaction order with respect to hydrogen is designated by a.

Typical curves depicting the time change of the mole ratio atomic hydro-

gen/Zr1.02Ni0.98 alloy, relating to the first hydriding at various temperatures, are
presented in Fig. 1.

The experimental data from Fig. 1 were fitted to Eq. (2) by plotting the

hydriding rate (dn/dt) vs. (p/pe)2 [1�(pf/pe)2 n/nf]. A series of straight lines was

Fig. 1. The initial parts of the hydriding isotherms of Zr1.02Ni0.98 alloy, relating to the first hydrid-

ing, at the following temperatures 423, 448, 473, 498 and 523 K.
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obtained, which are presented in Fig.2. Using Eq. (2), a reaction order of 2 was

found to be the best fitting parameter.

The time dependence of the H/Zr1.02Ni0.98 mole ratio at 423 K, for three
subsequent hydriding procedures, is presented in Fig. 3, illustrating the increase in

hydriding rate at each repetition of hydriding/dehydriding cycle. Similar plots were
obtained also at temperatures 448, 473, 498 and 523 K. The data relating to the

second hydriding were used to draw linear plots of hydriding rate vs. (p/pe)
2

Fig. 2. The hydriding rate vs.

(p/pe)
2[1�(pf/p)

2
n/nf]for the first

hydriding of a Zr1.02Ni0.98 alloy

at 423, 448, 473, 498 and 523 K.

Fig. 3. The initial parts of the hydriding isotherms of a Zr1.02Ni0.98 alloy sample, for the first, sec-

ond and third subsequent hydriding at 423 K.
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[1�(pf/pe)
2
n/nf], according to the Eq. (2), using a = 2. These plots are presented in Fig.

4. The results of the third subsequent hydriding are presented in the same manner in

Fig. 5. From Figs. 2, 4 and 5 it is obvious that the hydriding rate, expressed as the time
change of the H/Zr1.02Ni0.98 mole ratio, depends strongly on temperature.

The rate constants calculated from the slopes of the straight lines in Figs. 2, 4
and 5, using a = 2, together with the corresponding temperatures, enabledArrhenius

Fig. 4 The hydriding rate vs. (p/pe)
2 [1�(pf/p)

2
n/nf]for the second subsequent hydriding of

Zr1.02Ni0.98 alloy at the following temperatures: 423, 448, 473, 498 and 523 K.

Fig.5.Thehydridingratevs. (p/pe)
2

[1�(pf/p)
2
n/nf] for the third sub-

sequent hydriding reactions of

Zr1.02Ni0.98 alloy at the following

temperatures: 423, 448, 473, 498

and 523 K.
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plots to be drawn (presented in Fig. 6) from which the activation energies for the
first, the second and the third hydriding reactions could be determined.

The activation energies calculated from the slopes of Arrhenius plots amount
to 9.2 kJ/mol, 7.5 kJ/mol and 4.72 kJ/mol for the first, second and third hydriding,

respectively. The decrease in the activation energy upon each repetition of the
hydriding is clearly evident.

The rate constants calculated for various temperatures for the three subsequent

hydriding procedures are summarized in Table I. The increase in the value of the

rate constant upon each subsequent hydriding is clearly apparent. As is evident from

Table I, the rate constant relating to the second hydriding is about double the one

relating to the first hydriding. The rate constant of the third hydriding is even three

times higher than that relating to the second hydriding.

TABLE I. Hydriding rate constants for the three subsequent hydriding reactions of the Zr1.02Ni0.98

alloy sample at different temperatures

Temperature/K
Rate constant/s

-1

1st hydriding 2nd hydriding 3rd hydriding

423 0.00399 0.00755 0.02627

448 0.00565 0.00831 0.03088

473 0.00832 0.01190 0.03754

498 0.01055 0.01266 0.04213

523 0.01204 0.01706 0.04672

Fig. 6. Arrhenius plots for the

first, second and third subsequent

hydriding of Zr1.02Ni0.98 alloys.
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The increase in the hydriding rate upon each repetition of the hydriding

procedure had already been established qualitatively in one of our previously

published papers.8 The results presented in Table I now illustrate this in a quantita-

tive manner.

A possible explanation of the increase in the hydriding rate with increasing

number of hydriding/dehydriding cycles can be found in the crushing of the alloy

particles, leading to an increase in the surface area accessible to hydrogen.

An alternative explanation of the observed phenomenon might be that the

remaining hydride phase serves as some sort of activating substance for hydrogen

absorption.

In order to clarify this point the XRPD spectrum of the dehydrided samples

were recorded after each dehydriding. The XRPD patterns of the dehydrided alloy

samples always indicated the absence of a hydride phase. Based on these results,

the explanation based on a hydride phase serving as an activating substance could

be rejected.

Evidence of crushing and homogenization of alloy samples as a consequence

of hydriding, on the example of nickel alloys has already been published else-

where.9,10 Namely, Libowitz et al. published that hydride phase formation causes

the alloy particles to expand,9while Fukai10 found that the unit cell dimensions can

expand by up to 2·10�3 nm3 due to site-occupancy by H atoms in nickel at a mole

ratio H/Ni = 1.

Watanabe et al.7 found that changes in the ZrxNiy alloy composition influ-

ences the kinetic and thermodynamic parameters of hydrogen absorption, such as

activation energy, heat of absorption, kinetic isotope effect and selective pumping

property. Upon heating above 800 ºC for 10min in a vacuum, the samples of various

composition were exposed to hydrogen, the pressure of which varied in the range

10�6 �10�2Pa, during a period 10�180min, at temperatures in the range 25 � 400 ºC.

The activaiton energies of hydriding were found to amount to 2.6 kcal/mol for Zr,

2.8 kcal/mol for Zr85Ni15, 1.1 kcal/mol for Zr80Ni20 and 0.63 kcal/mol for Zr67Ni33.

Based on both literature data and theirs own results, the authors concluded that the

activation energy of hydriding depends on both the nature and the concentration of

the alloying element in Zr-based alloys.

The activation energies of hydriding of Zr1.02Ni0.98 alloy determined in the

present work are in good agreement with those reported byWatanabe et al., despite

the difference in alloy composition, as well as in other experimental conditions. Our

results also show that the activation energy evidently depends on the pre-history of

the alloy sample, i.e. on the number of subsequent hydriding processes the alloy had

previously undergone.
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I Z V O D

ISPITIVAWE REAKCIJE HIDRIRAWA LEGURE Zr1.02Ni0.98

BRANISLAV R. SIMONOVI],
*

SLAVKO V. MENTUS i MILENKO V. [U[I]

*

Institut za hemiju, tehnologiju i metalurgiju, 11000 Beograd, Wego{eva 12, i Fakultet za fizi~ku

hemiju, Univerzitet u Beogradu, Studentski trg 12, 11000 Beograd

Ispitivna je kinetika hidrirawa legureZr1.02Ni0.98 u zavisnosti od broja ciklusa

hidrirawa/dehidrirawa. Odre|ene su konstante brzina za tri uzastopne reakcije hi-

drirawa na uzorku legure, na pet temperatura: 423, 448, 473, 498 i 523 K. Ponavqawe

ciklusa hidrirawa/dehidrirawa pra}eno je stalnim porastom konstante brzine i opa-

dawem aktivacione energije. Ova pojava je obja{wena usitwavawem uzorka, {to dovodi

do pove}awa povr{ine koja je dostupna vodoniku.

(Primqeno 15. marta 1999)
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