

J. Serb. Chem. Soc. 80 (6) S208–S211 (2015)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Synthesis and spectroscopic characterization of mononuclear/binuclear organotin(IV) complexes with 1H-1,2,4-triazole-3-thiol: Comparative studies of their antibacterial/antifungal potencies

BUSHRA PARVEEN^{1*}, IFTIKHAR HUSSAIN BUKHARI¹, SAIRA SHAHZADI², SAQIB ALI², SHABBIR HUSSAIN¹, KULSOOM GHULAM ALI¹ and MUHAMMAD SHAHID³

¹Department of Chemistry, GC University, Faisalabad, Pakistan, ²Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan and ³Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad-38000, Pakistan

J. Serb. Chem. Soc. 80 (6) (2015) 755-766

Commd	Mol formula	MW	M.p.	Yield	Calcd. (found), %			
Compu.	WIOI. IOIIIIUIA	g mol ⁻¹	°C	%	С	Н	Ν	S
HL	C ₂ H ₃ N ₃ S	101	232-34	_	23.73	2.96	41.53	31.64
					(23.27)	(2.99)	(41.97)	(31.56)
1	C ₄ H ₈ ClN ₃ SSn	284.5	208-11	41.8	16.87	2.81	14.76	11.24
					(16.76)	(2.71)	(14.68)	(11.39)
2	C10H20ClN3SSn	368.5	219-22	91.2	32.56	5.42	11.39	8.68
					(32.51)	(5.41)	(11.49)	(8.62)
3	C14H29N3SSn	390	122-25	60	43.96	7.43	10.76	8.20
					(42.93)	(7.27)	(10.63)	(8.39)
4	C ₂₀ H ₁₇ N ₃ SSn	450	197–99	93.2	53.33	3.77	9.33	7.11(7.2
					(53.39)	(3.49)	(9.28)	0)
5	$C_7H_{13}Cl_2N_3S_3Sn_2$	544	202-04	58	15.44	2.38	7.72	17.64
					(15.40)	(2.55)	(7.75)	(17.54)
6	$C_{19}H_{37}Cl_2N_3S_3Sn_2$	712	214-15	68.3	31.97	5.19	5.89	13.48
					(31.86)	(5.23)	(5.73)	(13.66)
7	$C_{27}H_{55}N_3S_3Sn_2$	755	115–18	-	42.91	7.28	5.56	12.71
					(42.75)	(7.21)	(5.51)	(12.70)
8	$C_{39}H_{31}N_3S_3Sn_2$	875	183–185	79.3	53.48	3.54	4.80	10.97
					(53.22)	(3.46)	(4.42)	(10.80)

TABLE S-I. Physical data for the organotin(IV) complexes 1–8

* Corresponding author. E-mail: bushra_nauman@hotmail.com

S208

SUPPLEMENTARY MATERIAL

TABLE S-II. Infrared absorption bands (cm⁻¹) of organotin(IV) complexes 1-8

Compd.	ν(S–H)	v(N–H)	v(C–N)	$v(CS_2)_{asym}$	$\nu(CS_2)_{sym}$	v(Sn–C)	v(Sn–S)	v(Sn-Cl)
HL	2560	3148	-	_	_	-	-	-
1	_	3148	-	_	_	560	470	335
2	-	3149	-	_	_	535	447	328
3	-	3145	-	_	_	545	441	-
4	_	3143	-	_	_	265	437	_
5	-	-	1505	1048	973	563	471	336
6	-	-	1490	1044	976	539	449	320
7	_	-	1475	1051	972	556	445	_
8	-		1456	1034	963	263	438	-

For complex 1,5

For complex 2,3, 6,7

 $Sn-\overset{\alpha}{C}H_2-\overset{\beta}{C}H_2-\overset{\gamma}{C}H_2-\overset{\delta}{C}H_3$

For complex 4,8

 $\operatorname{Sn-CH}_{3}^{\alpha}$

Scheme S-1. Numbering scheme for NMR data.

TABLE S-III.	¹ H-NMR	data (p)	pm) of the	organotin(IV) complexe	s 1–8 i	n DMSO-d _e
					/ I		,

Compd.	–CH	-NH	-SH	R
HL	8.21	11.48	13.357	_
1	8.24	11.45	_	1.03 (s)
2	8.24	11.48	-	1.62–1.58 (<i>m</i> , H <i>α</i>), 1.40–1.47 (<i>m</i> , H <i>β</i>), 1.32–1.23 (<i>m</i> , H <i>γ</i>),
				0.87 (t , H δ), ${}^{3}J$ = 7.2 Hz
3	8.24	11.43	-	1.54–1.46 (<i>m</i> , H <i>α</i>), 1.44–1.39 (<i>m</i> , H <i>β</i>), 1.27–1.13 (<i>m</i> , H <i>γ</i>),
				0.81 (t, H δ), ³ <i>J</i> = 7.0 Hz
4	8.23	11.30	-	7.97–7.72 (<i>m</i>), 7.52–7.36 (<i>m</i>)

Available on line at www.shd.org.rs/JSCS/

PARVEEN et al.

TABLE S-III.	Continued
--------------	-----------

S210

Compd.	–CH	–NH	–SH	R
5	8.20	_	-	1.46, s, ² J [79/76], Hα
6	8.21	_	-	1.63–1.55 (<i>m</i> , Hα), 1.39–1.47 (<i>m</i> , Hβ), 1.31–1.25 (<i>m</i> , Hγ),
				0.87 (t , ³ J = 7.2 Hz, H δ)
7	8.23	-	-	$1.52-1.48 (m, H\alpha), 1.44-1.40 (m, H\beta), 1.26-1.12 (m, H\gamma),$
				0.80 (t, ${}^{3}J = 7.0$ Hz, H δ)
8	8.23	-	-	7.96–7.74 (<i>m</i>), 7.48–7.31 (<i>m</i>)

Table S-IV. ¹³C-NMR data (ppm) of the organotin(IV) complexes **5–8**; Chemical shifts (δ) in ppm and ⁿ*J*[^{119/117}Sn, ¹³C] values in Hz are listed in square brackets

Compd.	1C	2C	-CSS	R
HL	140.44	165.57	-	_
5	140.78	153.36	191.36	10.6 (C- <i>α</i> , ¹ <i>J</i> [570,545])
6	140.65	154.16	193.80	26.5 (C- <i>α</i> , ¹ <i>J</i> [496/479]), 29.3 (C- <i>β</i> , ² <i>J</i> [44]), 28.3 (C- <i>γ</i> ,
				³ <i>J</i> [112/109]), 14.7 (C-δ)
7	140.32	153.15	194.85	25.4 (C- <i>α</i> , ¹ <i>J</i> [346/332]), 29.2 (C- <i>β</i> , ² <i>J</i> [34]), 27.1 (C- <i>γ</i> ,
				³ <i>J</i> [68/62]), 13.5 (C-δ)
8	140.35	152.15	191.78	138.1 (C- <i>α</i>), 136.3 (C- <i>β</i> , ² <i>J</i> [47.3/45]), 129.1 (C- <i>γ</i> ,
				³ <i>J</i> [61.5/59.2]), 129.5 (C-δ, ⁴ <i>J</i> [12.8])

TABLE S-V. (C-Sn-C) angles based on the NMR parameters of complexes 5-7

Compd.	$1 I(119 \text{sp} \ 13 \text{C}) / \text{Hz}$	$2I(119Sn^{-1}H)/Hz$	Angle, °		
	J(SII, C)/IIZ	J(511, 11)/112	^{1}J	^{2}J	
5	570	79	126.75	124	
6	495	-	120.1	_	
7	346	-	107.1	_	

Table S-VI. Mass fragments, m/z, and relative abundance of the organotin(IV) complexes 1–8; n.o. – not observed

Compd.	Mass fragmentation: m/z (intensity, %)
HL	101 (100) [C ₂ H ₃ N ₃ S] ⁺ , 74 (87.4) [CH ₂ N ₂ S] ⁺ , 60 (27.4) [CH ₂ NS] ⁺ ,
	47 (10.8) [NHS] ⁺ , 42 (70.5) [CH ₂ N ₂] ⁺
1	285 (1.2) $[(CH_3)_2Sn(-SN_3C_2H_2)Cl]^+$, 270 (4.2) $[(CH_3)Sn(-SN_3C_2H_2)Cl]^+$,
	255 (2.0) [Sn(-SN ₃ C ₂ H ₂)Cl] ⁺ , 155 (38.8) [SnCl] ⁺ , 100 (100) [(SN ₃ C ₂ H ₂)] ⁺ ,
	$250 (3.0) [(CH_3)_2Sn(-SN_3C_2H_2)]^+, 220 (5.0) [Sn(-SN_3C_2H_2)]^+,$
	120 (8.1) [Sn] ⁺ , 185 (19.2) [(CH ₃) ₂ SnCl] ⁺ ,
	150 (2.2) [(CH ₃) ₂ Sn] ⁺ , 135 (6.1) [CH ₃ –Sn] ⁺
2	$369 (11.1) [(Bu)_2Sn(-SN_3C_2H_2)Cl]^+, 334 (97.6) [(Bu)_2Sn(-SN_3C_2H_2)]^+,$
	312 (5.8) $[(Bu)Sn(-SN_3C_2H_2)Cl]^+$, 220 (68.0) $[Sn(-SN_3C_2H_2)]^+$,
	100 (11.8) $[(SN_3C_2H_2)]^+$, 120 (9.5) $[Sn]^+$, 269 (20.9) $[Sn-Bu_2Cl]^+$,
	212 (13) [SnBu-Cl] ⁺ , 155 (16.2) [SnCl] ⁺ , 57 (92.5) [Bu] ⁺
3	391 (0.5) $[(Bu)_3Sn(-SN_3C_2H_2)]^+$, 277 (12.3) $[(Bu)Sn(-SN_3C_2H_2)]^+$,
	220 (35.6) $[Sn(-SN_3C_2H_2)]^+$, 100 (100) $[(SN_3C_2H_2)]^+$, 120 (8.0) $[Sn]^+$,
	291 (15.6) $[(Bu)_3 Sn]^+$, 234 (20.9) $[(Bu)_2 Sn]^+$, 177 (21.68) $[Bu(Sn)]^+$

Available on line at www.shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

Compd.	Mass fragmentation: m/z (intensity, %)
4	$451 (3.9) [(Ph)_2Sn(-SN_2C_2H_2)]^+, 100 (100) [(SN_2C_2H_2)]^+.$
	$374 (36.8) [(Ph)_2Sn(-SN_3C_2H_2)]^+, 297 (3.5) [(Ph)Sn(-SN_3C_2H_2)]^+,$
	220 (4.2) $[C_2H_3N_3SSn]^+$, 100 (9.5) $[C_2H_3N_3S]^+$, 351 (48.3) $[(Ph)_3Sn]^+$,
	274 (2.6) [(Ph) ₂ Sn] ⁺ , 197 (45.6) [Ph–Sn] ⁺ , 77 (20.9) [Ph] ⁺ ,
	51 (16.3) $[C_4H_3]^+$, 120 (12.7) $[Sn]^+$
5	545 (<0.5) [(CH ₃) ₂ ClSn(–S–CS)–NC ₂ HN ₂ S(–Sn(CH ₃) ₂ Cl],
	469 (1.2) [(CH ₃) ₂ ClSn(-NC ₂ HN ₂ S)(-Sn(CH ₃) ₂ Cl] ⁺ ,
	285 (4.1) $[(CH_3)_2Sn(-SN_3C_2H_2)Cl]^+$, 185 (6.5) $[(CH_3)_2SnCl]^+$,
	100 (100) [(SN ₃ C ₂ H ₂)] ⁺ , 76 (7.1) [S–CS] ⁺ , 196 (2.4) [Sn–(S–CS)] ⁺ ,
	143 (2.8) [CS–NC ₂ HN ₂ S] ⁺
6	713 (n.o) $[(Bu)_2ClSn(-S-CS)-NC_2HN_2S(-Sn(Bu)_2Cl]]$,
	637 (<0.5) [(Bu) ₂ ClSn($-NC_2HN_2S$)($-Sn(Bu)_2Cl]^+$,
	369 (4.6) [(Bu) ₂ Sn(-SN ₃ C ₂ H ₂)Cl] ⁺ , 269 (100) [(Bu) ₂ SnCl] ⁺ ,
	$100 (16) [(SN_3C_2H_2)]^+, 76 (7.1) [S-CS]^+, 196 (6.4) [Sn-(S-CS)]^+$
7	757 (n.o.) $[(Bu)_3Sn(-S-CS)-NC_2HN_2S(-Sn(Bu)_3)]^+$,
	681 (2.4) $[(Bu)_3Sn-NC_2HN_2S(-Sn(Bu)_3)]^+$, 291 (2.1) $[(Bu)_3Sn]^+$,
	196 (6.4) [Sn–(S–CS)] ⁺ , 76 (10.3) [S–CS] ⁺ , 120 (2.0) [Sn] ⁺ , 57 (3.3) [Bu] ⁺
8	877 (n.o.) $[(Ph)_3Sn(-S-CS)-NC_2HN_2S(-Sn(Ph)_3)]^+$,
	801 (<0.5) [(Ph) ₃ Sn–NC ₂ HN ₂ S(–Sn(Ph) ₃)] ⁺ , 350 (4.8) [Ph ₂ SnC ₆ H ₄] ⁺ ,
	723 (1.1) [(Ph)Sn(-S-CS)-NC ₂ HN ₂ S(-Sn(Ph) ₃)] ⁺ , 196 (16.9) [Sn-C ₆ H ₄] ⁺ ,
	154 (83.1) [Ph–Ph] ⁺ , 76 (12.3) [S–CS] ⁺ , 451 (1.9) [(Ph) ₃ Sn(–SN ₃ C ₂ H ₂)] ⁺

S211