

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS J. Serb. Chem. Soc. 80 (4) S138–S147 (2015) Supplementary material

SUPPLEMENTARY MATERIAL TO Preliminary organic geochemical study of lignite from the Smederevsko Pomoravlje field (Kostolac Basin, Serbia) – reconstruction of geological evolution and potential for rational utilization

NATAŠA ĐOKOVIĆ¹, DANICA MITROVIĆ¹, DRAGANA ŽIVOTIĆ², DARKO ŠPANIĆ³, TAMARA TROSKOT-ČORBIĆ³, OLGA CVETKOVIĆ⁴ and KSENIJA STOJANOVIĆ⁵**

¹University of Belgrade, Innovation Center of the Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia, ²University of Belgrade, Faculty of Mining and Geology, Đušina 7, 11000 Belgrade, Serbia, ³INA-Industrija nafte d.d., Exploration & Production BD, Exploration Sector, E&P Laboratory Department, Lovinčićeva 4, 10002 Zagreb, Croatia, ⁴University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia and and ⁵University of Belgrade, Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia

J. Serb. Chem. Soc. 80 (4) (2015) 575-588

GEOLOGICAL SETTINGS

The Kostolac Coal Basin, covering an area of 145 km², is located about 90 km east of Belgrade. It is divided into three coal fields: the Drmno field in the eastern, the Ćirikovac field in the central and the Smederevsko Podunavlje field in the western part of the Basin (Fig. S-1). The Drmno field is exploited, while the Smederevsko Podunavlje field is still under preliminary exploration. Exploitation in the Ćirikovac field was ceased a few years ago.

The basement of the Kostolac Basin is formed of Devonian crystalline rocks overlain by Neogene sediments. The total thickness of the Neogene sediments ranges from 300 to 5000 m in the central part of the depression.¹ The complete Neogene generally dips towards the north–west at a low angle of $5-15^{\circ}$ with the coal seams following the same dip. The Neogene complex consists of several units, which were explained in detail in a previous paper.²

The Upper Pontian coal-bearing series in the Smederevsko Pomoravlje field were studied in detail by Životić³ and were found to consist of sand, clayey sand, siltstone, clay, sandy clay, carbonaceous clay and five coal seams, named from bottom to top III, II-a, II, I-a, and I, respectively. Coal seams III, II and I are considered to be important for rational exploitation, whereas coal seams II-a and

S138

^{*} Corresponding author. E-mail: ksenija@chem.bg.ac.rs and xenasyu@yahoo.com

I-a are only locally developed. About 100 exploration boreholes were drilled in the Smederevsko Pomoravlje field.

Fig. S-1. Location and coal fields of the Kostolac Basin.

The thickness of coal seam III varies over a wide range due to interbedding, from 18.50 m to 76.00 m (average 38.47 m). Coal seam III splits into three coal layers, the thicknesses of which, from bottom to top, are 0.15–9.00 m (average 2.81 m), 1.00–15.70 m (average 6.93 m) and 0.80–12.40 m (average 4.35 m), respectively. The interbedded waste rocks consist of sand, clay, carbonaceous clay, marly clay, silt and thin coal layers. Their thicknesses between the third and second, and, second and first coal layers vary from a few to 32 m and 36 m, respectively. The coal seam II-a was formed locally in the southern part of the field. The seam thickness varies from 0.15 to 1.00 m. The coal seam II occurs across the entire Smederevsko Pomoravlje field. Typical features of this coal seam are stratification followed by a high content of clayey–sandy sediments. The seam thickness varies from 0.20 to 16.20 m (average 5.69 m). The coal seam I-a is developed in the central, north, north–east, north–west and west parts of the field. The seam thickness varies from 0.10 to 6.00 m (average 2.11 m). The coal seam I

ĐOKOVIĆ et al.

occurs in the central, north, north–east and north–west parts of the field, and it is stratified across the entire area. The thickness of coal seam I varies from 1.40 to 47.50 m (average 28.30 m). Coal seam I splits into two coal layers with thickness from bottom to top of 0.20–12.70 m (average 5.74 m) and 5.65–20.90 m (average 15.70 m), respectively. The interbedded waste sediments between the second and first coal layers comprise sand, carbonaceous-, sandy- and marly-clays, and silt. The thickness of this package varies from 1.72 to 24.50 m (average 8.95 m).

The youngest Upper Pontian sediments, overlying coal seam I, include sand, clayey sand and clays with thin layers of carbonaceous clays, coal and limestone. The thickness of this package varies from 0.80 m to 76.50 m (average 26.92 m).

Quaternary series of Pleistocene age is made of gravel and sand, occasionally with clay and loess. The thickness of the Quaternary sediments varies from 16.70 to 42.40 m (average 22.59 m).

ORGANIC AND OTHER GEOCHEMICAL PARAMETERS

TT 1 (•	•	1 1 1	
Values of	aroun	organic	appendimical	noromotore
v alues of	. EIOUD	Ul game	ecochennea	Darameters
	<i>G</i>		(3 · · · · · · · · · · · · · · · · · · ·	

Bore- hole	Coal seam	Sam- ple	c_{Ash}^{a} %, db ^b	C _{org} ^c %, db	S %, db	N %, db	C/N^d	$Q_{ m g}^{ m e}$ MJ kg ⁻¹ , db	$Q_{\rm d}^{ m f}$ MJ kg ⁻¹ , db	Bitu- men, ppm, db	c_{Asp}^{g} %	C _{Sat HC} h %	C _{Arom HC} ⁱ %	c _{NSO} ^j %
A-339	Ι	1	9.7	55.3	1.5	0.8	80.6	21.5	21.1	29228	53.2	5.2	4.9	36.7
	Ι	2	12.1	53.2	1.0	0.7	88.7	20.2	19.3	32872	49.1	5.9	4.8	40.3
	Ι	3	18.3	50.9	1.0	0.6	99.0	18.4	17.6	27302	43.4	5.7	5.6	45.2
	Ι	4	25.5	44.1	1.4	0.8	64.3	17.1	16.4	34673	40.4	6.0	6.5	47.1
	Ι	5	28.1	47.3	1.3	0.6	92.0	14.6	14.0	24641	42.8	6.0	5.3	45.9
	II	6	36.2	40.0	1.0	0.7	66.7	13.2	12.6	31312	47.0	5.6	5.4	42.0
A2I-	Ι	7	11.2	55.2	1.3	0.9	71.6	21.0	20.1	31034	52.8	5.3	4.3	37.6
414	Ι	8	34.8	44.1	1.2	0.7	73.5	14.2	13.5	27608	48.3	4.7	5.0	42.0
	Ι	9	16.8	51.0	1.3	0.7	85.0	19.1	18.4	34698	42.6	5.6	5.8	46.0
	Ι	10	43.5	36.0	0.7	0.6	70.0	9.9	9.4	15662	50.3	4.7	3.8	41.2
	Ι	11	46.7	29.9	0.8	0.5	69.8	10.0	9.5	20828	47.1	5.4	5.0	42.5
	Ι	12	31.5	44.3	1.3	0.7	73.8	13.4	12.7	33387	46.2	5.0	5.4	43.3
	Π	13	26.8	45.2	1.7	0.6	87.9	15.2	14.4	21443	42.1	5.4	6.2	46.3
A1J-	Ι	14	11.3	54.5	0.9	0.9	70.6	25.3	24.5	23841	41.9	5.4	6.6	46.1
369	Ι	15	47.4	30.0	0.6	0.3	116.7	11.6	11.4	29638	47.9	5.4	4.3	42.4
	Ι	16	15.2	51.5	2.2	0.6	100.1	23.1	22.3	36409	49.3	4.7	4.3	41.8
	Ι	17	11.1	53.8	1.0	0.8	78.5	22.9	22.1	27510	52.4	3.4	3.7	40.5
	Ι	18	41.8	40.5	1.0	0.6	78.8	15.1	14.6	19315	52.5	4.0	3.9	39.7
	Ι	19	30.8	43.5	0.9	0.6	84.6	16.9	16.4	24335	48.5	4.4	4.7	42.4
	II	20	45.7	29.7	1.0	0.5	69.3	9.0	8.5	16870	40.1	6.6	6.3	47.0
	II	21	45.3	33.4	1.4	0.6	64.9	10.2	9.7	12754	43.4	5.3	5.0	46.3
Drmno	пш	Dance	8.7–	30.7-	0.6-	N.D.	ND	ND	ND	6642–	41.4-	2.2-	22 5 5	13.7–
field ²	п, ш	Kange	47.0	58.1	3.4	k	N.D.	N.D.	N.D.	79400	70.9	13.2	2.2-3.3	50.3
"A"	тп	Dange	12.6-	8.9–	0.2-	0.3-	55.2-	N.D.	N.D.	3326-	N.D.	1.2-5.2	22.0-2.8	N.D.
field ⁴	1, 11	Range	82.6	60.9	1.7	1.2	97.1			28145				

Available on line at www.shd.org.rs/JSCS/

S140

(Table S-I footnote) ${}^{a}c_{Ash}$ – ash content; ${}^{b}db$ – dry basis; ${}^{c}C_{org}$ – organic carbon content; ${}^{d}C/N$ – carbon to nitrogen ratio is given as the molar ratio; ${}^{e}Q_{g}$ – gross calorific value; ${}^{f}Q_{d}$ – net calorific value; ${}^{g}c_{Asp}$ – asphaltene content; ${}^{h}c_{Sat}$ HC – content of saturated hydrocarbons; ${}^{i}c_{Arom}$ HC – content of aromatic hydrocarbons; ${}^{j}c_{NSO}$ – content of NSO fraction (polar fraction, which contains nitrogen-, sulphur- and oxygen-containing compounds); ${}^{k}N.D.$ – not determined

TABLE S-II. Results of the Rock Eval pyrolysis

D	Ceel	C	TOCA	S_1^{b}	S_2^d	s ₃ ^e	тf			<i>HI</i> h	Ol ⁱ
Bore-	Coal	Sam-	100-	mg HC (g	mg HC (g	mg CO ₂ (g	¹ max ⁻	PI ^g	S_2/S_3	mg HC (g	mg CO ₂ (g
noie	seam	pie	%0	sample) ⁻¹	sample) ⁻¹	sample) ⁻¹	C			TOC) ⁻¹	TOC) ⁻¹
A-339	Ι	1	51.06	4.66	86.89	32.44	349	0.05	2.68	170	64
	Ι	2	49.51	5.62	93.86	28.79	348	0.06	3.26	190	58
	Ι	3	43.81	4.86	85.93	27.89	349	0.05	3.08	196	64
	Ι	4	39.94	4.11	79.57	31.53	350	0.05	2.52	162	64
	Ι	5	37.42	4.41	67.59	26.21	366	0.06	2.58	169	66
	II	6	33.41	4.65	68.22	23.19	352	0.06	2.94	182	62
A2I-414	Ι	7	49.15	5.21	83.17	31.72	347	0.06	2.62	169	65
	Ι	8	35.85	3.59	70.33	21.89	347	0.05	3.21	196	61
	Ι	9	46.54	6.60	91.97	27.15	347	0.07	3.39	198	58
	Ι	10	26.55	1.07	43.20	19.86	350	0.02	2.18	163	75
	Ι	11	26.72	1.88	44.12	17.15	347	0.04	2.57	165	64
	Ι	12	36.83	4.91	72.59	23.26	371	0.06	3.12	197	63
	II	13	38.11	3.46	76.33	22.89	346	0.04	3.33	200	60
A1J-369	Ι	14	52.31	5.27	90.73	33.02	346	0.05	2.75	173	63
	Ι	15	24.12	1.61	44.77	15.05	346	0.03	2.97	186	62
	Ι	16	47.48	6.66	89.16	27.45	346	0.07	3.25	188	58
	Ι	17	50.66	4.27	84.75	30.94	346	0.05	2.74	167	61
	Ι	18	32.61	2.34	53.24	21.17	349	0.04	2.51	163	65
	Ι	19	37.85	3.23	70.21	22.72	349	0.04	3.09	185	60
	II	20	25.35	1.10	44.69	13.96	354	0.02	3.20	176	55
	II	21	26.93	1.20	42.37	20.34	387	0.03	2.08	157	76

 ${}^{a}TOC$ – total organic carbon obtained from Rock–Eval pyrolysis; ${}^{b}S_{1}$ – free hydrocarbons; ${}^{c}HC$ – hydrocarbons; ${}^{d}S_{2}$ – pyrolysate hydrocarbons; ${}^{e}S_{3}$ – amount of CO₂ generated from oxygenated functional groups; ${}^{f}T_{max}$ – temperature corresponding to the S_{2} peak maximum; ${}^{g}PI$ – production Index = $S_{1}/(S_{1}+S_{2})$; ${}^{h}HI$ – hydrogen index = $(S_{2}\times100/TOC)$; ${}^{i}OI$ – oxygen index = $(S_{3}\times100/TOC)$; note: Rock–Eval pyrolysis was not performed on samples from the Drmno and "A" fields; therefore, data could not be compared

TABLE S-III. Values of parameters calculated from distributions and abundances of *n*-alkanes and isoprenoids

Borehole	Coal seam	Sample	<i>n</i> -Al- kane C range	<i>n</i> -Alkane maximum	<i>CPI</i> ₁₆₋₃₄ ^a	<i>CPI</i> ₁₆₋₂₀ ^b	OEP 1°	OEP 2 ^d	Pristane/ phytane
A-339	Ι	1	16-35	<i>n</i> -C ₂₉	4.30	1.09	1.24	3.34	0.75
	Ι	2	16-35	n-C ₂₉	5.12	0.98	1.74	3.65	0.95
	Ι	3	15-35	<i>n</i> -C ₂₉	4.37	1.33	1.68	3.20	1.14
	Ι	4	15-35	$n-C_{29}$	6.14	2.11	2.53	4.08	1.42
	Ι	5	15-35	n-C ₂₉	4.31	1.71	2.17	3.19	1.50
	II	6	15-35	<i>n</i> -C ₂₉	4.95	1.60	2.33	3.75	1.27

ĐOKOVIĆ et al.

Borehole	Coal seam	Sample	<i>n</i> -Al- kane C range	<i>n</i> -Alkane maximum	<i>CPI</i> ₁₆₋₃₄ ^a	<i>CPI</i> ₁₆₋₂₀ ^b	OEP 1 ^c	OEP 2 ^d	Pristane/ phytane
A2I-414	Ι	7	16-35	<i>n</i> -C ₂₉	3.67	0.91	1.46	2.99	1.07
	Ι	8	16-35	<i>n</i> -C ₂₉	4.90	0.75	2.01	3.64	0.72
	Ι	9	15-35	<i>n</i> -C ₂₉	7.91	2.53	1.80	3.12	1.15
	Ι	10	16–35	<i>n</i> -C ₂₉	4.00	1.41	1.58	2.83	1.09
	Ι	11	16–35	<i>n</i> -C ₂₉	3.35	1.71	1.42	3.42	0.67
	Ι	12	16–35	<i>n</i> -C ₂₉	4.15	2.58	1.94	2.77	1.05
	II	13	15-35	<i>n</i> -C ₂₉	3.46	2.14	3.25	3.78	1.65
A1J-369	Ι	14	15-35	<i>n</i> -C ₂₉	4.59	0.41	2.80	3.67	1.13
	Ι	15	15-35	<i>n</i> -C ₂₉	4.07	0.81	1.26	3.13	1.06
	Ι	16	16-35	<i>n</i> -C ₂₉	3.85	0.45	1.66	3.39	1.12
	Ι	17	15-35	<i>n</i> -C ₂₉	3.62	0.59	1.33	3.42	1.05
	Ι	18	15-35	<i>n</i> -C ₂₉	3.80	0.63	1.27	3.35	1.40
	Ι	19	16-35	$n-C_{29}$	3.01	1.01	1.65	2.96	0.66
	II	20	15-35	<i>n</i> -C ₂₉	3.82	1.56	2.00	3.08	1.07
	II	21	15-35	n-C ₂₉	3.78	0.64	1.77	3.19	0.97
Drmno	тт ттт	Donce	16 22	- C	2 97 5 20	0 50 2 24	0.92-	3.24-	0.08 -
field ²	11, 111	Range	10-33	$n-C_{29}$	2.87-3.30	0.30-2.34	5.50	5.13	1.26
"A" field ⁴	тп	Dongo	15 22	<i>n</i> -C ₂₇ or <i>n</i> -	1 22 5 04	0.65 1.61	1.14-	1.68-	0.74–
	1, 11	Kange	15-55	C ₂₉	1.25-5.94	0.05-1.01	1.80	5.14	1.16

TABLE S-III. Continued

^a*CPI*₁₆₋₃₄ – Carbon Preference Index determined for the full distribution of *n*-alkanes C₁₆–C₃₄ (mass chromatogram *m*/*z* 71), *CPI*₁₆₋₃₄ = 1/2 [Σ odd(*n*-C₁₇ – *n*-C₃₃)/ Σ even(*n*-C₁₆ – *n*-C₃₂) + Σ odd(*n*-C₁₇ – *n*-C₃₃)/ Σ even(*n*-C₁₈ – *n*-C₃₄)]; ^b*CPI*₁₆₋₂₀ – Carbon Preference Index determined for the distribution of *n*-alkanes C₁₆–C₂₀ (mass chromatogram *m*/*z* 71), *CPI*₁₆₋₂₀ = 1/2 [Σ odd(*n*-C₁₇ – *n*-C₁₉)/ Σ even(*n*-C₁₆ – *n*-C₁₈) + Σ odd(*n*-C₁₇ – *n*-C₁₉)/ Σ even(*n*-C₁₈ – *n*-C₂₀)]; ^c*OEP* 1 = 1/4 [(*n*-C₂₁ + 6 *n*-C₂₃ + *n*-C₂₅)/(*n*-C₂₂ + *n*-C₂₄)], *OEP* – odd–even predominance; ^d*OEP* 2 = 1/4 [(*n*-C₂₅ + 6 *n*-C₂₇ + *n*-C₂₉)/(*n*-C₂₆ + *n*-C₂₈)]

TABLE S-IV. Values of parameters calculated from the distributions and abundances of diterpenoids and non-hopanoid triterpenoids

Borehole	Coal seam	Sample	Bicyclic diterpe- noids ^a %	Tricyclic diterpe- noids ^b %	Tetracyc- lic diter- penoids ^c %	Tricyclic diterpenoids/ tetracyclic diterpenoids	Pimarane/ 16 <i>a</i> (<i>H</i>)- -phyllo- cladane	$ \begin{split} & \Sigma Diterpen \\ & oids/(\Sigma Di-terpe-noids \\ & + \Sigma Triter-penoids)^d \end{split} $
A-339	Ι	1	0.07	36.01	63.93	0.56	0.52	0.9983
	Ι	2	0.04	36.05	63.90	0.56	0.48	0.9990
	Ι	3	0.39	33.44	66.17	0.51	0.47	0.9958
	Ι	4	0.29	8.20	91.51	0.09	0.07	0.9765
	Ι	5	0.47	24.38	75.16	0.32	0.27	0.9879
	II	6	0.90	27.47	71.64	0.38	0.32	0.9746
A2I-414	Ι	7	0.07	42.74	57.19	0.75	0.65	0.9975
	Ι	8	0.10	46.94	52.96	0.89	0.84	0.9899
	Ι	9	0.05	30.50	69.45	0.44	0.25	0.9896
	Ι	10	0.19	31.58	68.23	0.46	0.44	0.9936
	Ι	11	0.03	46.87	53.10	0.88	0.89	0.9945

Borehole	Coal seam	Sample	Bicyclic diterpe- noids ^a %	Tricyclic diterpe- noids ^b %	Tetracyc- lic diter- penoids ^c %	Tricyclic diterpenoids/ tetracyclic diterpenoids	Pimarane/ 16 <i>a</i> (<i>H</i>)- -phyllo- cladane	$ \begin{array}{l} \Sigma Diterpen \\ oids/(\Sigma Di- \\ terpe-noids \\ + \Sigma Triter- \\ penoids)^d \end{array} $
A2I-414	Ι	12	0.13	5.61	94.27	0.06	0.05	0.9915
	II	13	0.25	35.31	64.44	0.55	0.51	0.9933
A1J-369	Ι	14	0.29	44.75	54.96	0.81	0.79	0.9975
	Ι	15	0.05	42.25	57.69	0.73	0.69	0.9980
	Ι	16	0.04	48.90	51.06	0.96	0.90	0.9996
	Ι	17	0.09	31.66	68.25	0.46	0.43	0.9958
	Ι	18	0.15	52.92	46.94	1.13	1.11	0.9972
	Ι	19	0.20	48.28	51.52	0.94	0.93	0.9938
	II	20	0.58	25.89	73.54	0.35	0.31	0.9923
	II	21	0.47	36.09	63.44	0.57	0.41	0.9331
Drmno	II, III	Range	N.D. ^e	4.39–	24.81-	0.05-3.03	0.03-3.22	0.8096-
field ²				75.19	25.60			1.0000
"A" field ⁴	I, II	Range	N.D.	12.97-	42.63-	0.15-1.35	0.06-0.69	0.9441-
				57.37	87.03			1.0000

TABLE S-IV. Continued

^aBicyclic diterpenoids = (α -labdane + β -labdane)×100 / Σ Diterpenoids, Σ Diterpenoids = α -labdane + β -labdane + isopimaradienes + norisopimarane + pimaradiene + atisene + norpimarane + beyerane + isophyllocladene + isopimarane + fichtelite + pimarane + $16\beta(H)$ -phyllocladane + $16\alpha(H)$ -phyllocladane + $16\alpha(H)$ -kaurane, calculated from the *TIC* of the saturated fraction; ^btricyclic diterpenoids = (isopimaradienes + norisopimarane + pimaradiene + norpimarane + fichtelite + pimarane)×100 / Σ Diterpenoids, calculated from the *TIC* of the saturated fraction; ^ctetracyclic diterpenoids = (atisene + beyerane + isophyllocladene + $16\beta(H)$ -phyllocladane + $16\alpha(H)$ -phyllocladane + $16\alpha(H)$ -phyllocladane + $16\alpha(H)$ -phyllocladane + $16\alpha(H)$ -kaurane)×100 / Σ Diterpenoids, calculated from the *TIC* of the saturated fraction; ^dDDiterpenoids = α -labdane + β -labdane + isopimarane + pimaradienes + norisopimarane + pimaradiene + atisene + norpimarane + beyerane + isophyllocladene + $16\alpha(H)$ -phyllocladane + $16\alpha(H)$ -kaurane, Σ Triterpenoids = (des-A-olean-13(18)-ene + des-A-olean-12-ene + des-A-olean-13(18)-ene + des-A-olean-13(18)-ene +

TABLE S-V. Values of parameters calculated from the distributions and abundances of steroids and hopanoids

Bore- hole	Coal seam	Sample	C ₂₇ Stere- nes ^a %	C ₂₈ Stere- nes ^b %	C ₂₉ Sterenes %	ΣSte- roids/ ^c ΣHop- ano- ids ^d	Hopane maximum ^e	C ₂₇ β- Hop- ane ^f %	C ₂₉ ββ- Hop- ane ^f %	C ₃₀ ββ- Hop- ane ^f %	C ₃₁ ββ- Hop- ane ^f %	C ₃₀ $\beta\beta$ - Hopane to C ₃₀ ($\beta\beta$ + $\alpha\beta$) -Hop- anes
A-339	Ι	1	2.02	8.74	89.24	0.15	C ₂₇ β	39.81	27.91	20.52	11.76	0.80
	Ι	2	1.82	6.18	92.01	0.18	C ₂₇ β	38.79	28.43	20.28	12.50	0.80
	Ι	3	1.35	7.47	91.17	0.09	$\mathrm{C}_{31}\alpha\!\beta(R)$	36.15	25.41	20.46	17.98	0.78
	Ι	4	1.73	6.41	91.86	0.08	C ₂₇ β	40.55	26.25	20.83	12.37	0.78
	Ι	5	1.79	4.89	93.31	0.09	C ₂₇ β	44.06	28.39	17.73	9.82	0.77
	II	6	3.54	7.96	88.50	0.06	C ₂₇ β	42.87	25.73	20.19	11.21	0.78

ĐOKOVIĆ et al.

TABLE S-V. Co	ontinued
---------------	----------

Bore- hole	Coal seam	Sample	C ₂₇ Stere- nes ^a %	C ₂₈ Stere- nes ^b %	C ₂₉ Sterenes ⁶ %	ΣSte- roids/ ΣHop- ano- ids ^d	Hopane maximum ^e	C ₂₇ β- Hop- ane ^f %	C ₂₉ ββ- Hop- ane ^f %	C ₃₀ ββ- Hop- ane ^f %	C ₃₁ ββ- Hop- ane ^f %	C ₃₀ $\beta\beta$ - Hopane to C ₃₀ ($\beta\beta$ + $\alpha\beta$) -Hop- anes
A2I-414	Ι	7	2.26	8.49	89.24	0.02	$C_{31} \alpha \beta(R)$	43.20	31.79	9.30	15.71	0.62
	Ι	8	4.22	10.91	84.86	0.03	$C_{31}\alpha\beta(R)$	48.43	23.34	15.59	12.65	0.57
	Ι	9	2.17	9.82	88.01	0.04	$\mathrm{C}_{31}\alpha\!\beta(R)$	41.25	27.69	17.15	13.91	0.71
	Ι	10	3.46	6.57	89.97	0.11	$C_{27}\beta$	43.35	27.12	19.35	10.18	0.74
	Ι	11	4.02	4.49	91.50	0.24	$\mathrm{C}_{31} \alpha \beta(R)$	56.97	24.18	11.64	7.21	0.52
	Ι	12	3.06	7.11	89.83	0.08	C ₂₇ β	51.36	25.33	14.49	8.81	0.65
	II	13	1.11	5.75	93.14	0.26	$C_{27}\beta$	43.85	25.36	19.69	11.10	0.63
A1J-369	Ι	14	2.53	8.65	88.82	0.12	$C_{27}\beta$	45.47	25.46	18.15	10.93	0.64
	Ι	15	3.96	10.85	85.20	0.09	C ₂₇ β	53.88	24.25	13.99	7.88	0.57
	Ι	16	1.02	7.25	91.73	0.02	$\mathrm{C}_{31} \alpha \beta(R)$	45.54	23.59	18.21	12.67	0.59
	Ι	17	1.62	9.07	89.31	0.06	$\mathrm{C}_{31} \alpha \beta(R)$	45.12	26.19	18.06	10.64	0.67
	Ι	18	2.13	10.04	87.83	0.03	C ₂₇ β	43.59	26.20	18.47	11.74	0.59
	Ι	19	3.10	7.46	89.43	0.17	$C_{27}\beta$	58.56	25.91	10.44	5.10	0.61
	II	20	3.07	6.14	90.78	0.02	$C_{27}\beta$	51.90	24.04	15.57	8.48	0.58
	II	21	4.45	7.88	87.67	0.04	$C_{27}\beta$	43.57	25.31	19.68	11.44	0.68
Drmno	II, III	Range	0.00-	0.00-	84.06-	0.07-	$C_{27}\beta$ or	26.93-	23.98-	11.52 -	8.38-	0.53-
field ⁴			4.55	15.94	100.00	0.25	$\mathrm{C}_{31}\alpha\!\beta(R)$	50.24	36.78	31.17	13.93	0.90
"A"	I, II	Range	1.20-	2.88-	86.95-	0.04-	$C_{27}\beta$ or	24.93-	23.38-	15.16-	8.91-	0.52-
field ⁵			4.16	10.64	95.40	0.20	$C_{31}\alpha\beta(R)$	46.13	39.11	23.93	25.35	0.82

 $\frac{1}{4} \frac{1}{4} \frac{1}$

SUPPLEMENTARY MATERIAL

CHROMATOGRAPHIC AND SPECTROMETRY DATA

04 C29.88 Abundance, arb. units 10⁷ DU TIC $|\alpha\beta(\mathbf{R})|^{\text{Fern-9(11)-ene}}$)-en-2(D8 Saturated fraction 29 βα C 30 Hop-17(21)-ene -Sterene $]30+C29A^2$. $_{77Hop-17(21)}$ -ene $C_{27} \alpha$ Sample 5 D 30 Hop-17(21 32 D6 C27Hop-13(18)-ene 25 30,88 <u>D5</u> T6 <u>D4</u> T2 24 D3 T3 79**∆**2 <u>D2</u> T8DI <u>18 ph</u> 16 30 40 100 50 60 70 80 ⁹⁰C₃₀αβ D10 D12 Retention time, min. $C_{29}\Delta^5$ - Sterene $C_{31}\alpha\beta(S)$

Fig. S-2. Total ion current (*TIC*) of the saturated fraction typical for the investigated samples. Peak assignments: *n*-alkanes are labelled according to their carbon number; Pr – pristane;
Ph – phytane; D1 – isopimaradiene; D2 – 8β(H)-Labdane; D3 – isopimaradiene; D4 – norisopimarane; D5 – 8α(H) – labdane; D6 – atisene; D7 – norpimarane; D8 – beyerane;

D9 – isophyllocladene; D10 – fichtelite; D11 – pimarane; D12 – $16\beta(H)$ -phyllocladane; D13 – $16\alpha(H)$ -phyllocladane; D14 – $16\alpha(H)$ -kaurane; T1 – des-A-olean-13(18)-ene; T2 – des-A-olean-12-ene; T3 – des-A-olean-18-ene + Des-A-urs-13(18)-ene; T4 – des-A-oleanadiene; T5 – des-A-urs-12-ene; T6 – des-A-lupane; T7 – des-A-triterpene; T8 – des-A-oleanane; $^{6}\beta\beta$, $\beta\alpha$ and $\alpha\beta$ designate configurations at C₁₇ and C₂₁ in hopanes; (*S*) and (*R*) designate

configuration at C_{22} in hopanes.

Fig. S-3. GC–MS mass chromatograms of: a) *n*-alkanes, m/z 71, b) sterenes, m/z 215 and c) hopanoids, m/z 191, typical for the investigated samples. For peak assignments, see the legend to Fig. S-2.

REFERENCES

- 1. A. Kostić, *M.Sc. Thesis*, Faculty of Mining and Geology, University of Belgrade, 1995, p. 160 (in Serbian)
- K. Stojanović, D. Životić, A. Šajnović, O. Cvetković, H. P. Nytoft, G. Scheeder, J. Serb. Chem. Soc. 77 (2012) 1109
- 3. D. Životić, *M.Sc. Thesis*, Faculty of Mining and Geology, University of Belgrade, 2001, p. 29 (in Serbian)
- 4. K. Stojanović, D. Životić, Int. J. Coal Geol. 107 (2013) 3
- 5. Y. Huang, M. J. Lockheart, J. W. Collister, G. Eglinton, Org. Geochem. 23 (1995) 785
- J. Jacob, J.-R. Disnar, M. Boussafir, A.-L. Spadano Albuquerque, A. Sifeddine, B. Turcq, Org. Geochem. 38 (2007) 180.

Available on line at www.shd.org.rs/JSCS/

S146