

J. Serb. Chem. Soc. 80 (12) S385–S388 (2015)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO

X-Ray, Hirshfeld surface analysis, spectroscopic and DFT studies of polycyclic aromatic hydrocarbons: fluoranthene and acenaphthene

WIOLETA ŚMISZEK-LINDERT¹*, ANNA MICHTA², ALEKSANDRA TYL², GRZEGORZ MAŁECKI², ELŻBIETA CHEŁMECKA³ and SŁAWOMIR MAŚLANKA²

¹Institute of Mechanized Construction & Rock Mining, W. Korfantego 193A Street, 40-157 Katowice, Poland, ²Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland and ³School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Statistics, 30 Ostrogórska Street, 41-200 Sosnowiec, Poland

J. Serb. Chem. Soc. 80 (12) (2015) 1489-1504

Experimental (VBD)				Theoretical					
	Exper	intental (AKD)	6-31+G (d, p)	6-311++G(3df,2pd)					
Bond length, Å									
C1–C2	1.396	C17–C18	1.365	1.381	1.374				
C2–C3	1.406	C18-C19	1.401	1.425	1.419				
C3–C4	1.358	C19-C20	1.361	1.386	1.379				
C4–C5	1.410	C20-C21	1.410	1.426	1.420				
C5–C6	1.416	C21–C22	1.410	1.419	1.416				
C6–C7	1.356	C22–C23	1.357	1.386	1.379				
C7–C8	1.399	C23–C24	1.401	1.425	1.418				
C8–C9	1.368	C24–C25	1.356	1.381	1.374				
C9–C10	1.403	C25-C26	1.405	1.404	1.398				
C10-C5	1.396	C26-C21	1.396	1.419	1.413				
C10-C1	1.407	C26-C17	1.405	1.393	1.386				
C9–C11	1.477	C25–C27	1.472	1.477	1.473				
C11–C12	1.381	C27–C28	1.376	1.402	1.395				
C12-C13	1.394	C28–C29	1.362	1.400	1.392				
C13-C14	1.370	C29–C30	1.372	1.380	1.379				
C14-C15	1.383	C30–C31	1.393	1.402	1.395				
C15-C16	1.380	C31–C32	1.383	1.393	1.386				
C16-C11	1.410	C32–C27	1.416	1.428	1.422				
C16-C1	1.473	C32–C17	1.475	1.477	1.472				

TABLE S-I. Comparison of selected calculated geometric parameters of fluoranthene with experiment values

* Corresponding author. E-mail: w.lindert@imbigs.pl

S385

Available on line at www.shd.org.rs/JSCS/

ŚMISZEK-LINDERT et al.

TABLE S-I. Continued

	Experimental (VBD)				Theoretical					
-	Experimenta	$I(\Lambda KD)$		6-31+G (d, p)	6-311++G(3df,2pd)					
Angle, °										
C10C1C2	118.00	C26-C17-C18	117.16	118.34	118.31					
C1C2C3	119.00	C17-C18-C19	119.00	118.71	118.74					
C2-C3-C4	122.60	C18-C19-C20	122.50	122.48	122.48					
C3–C4–C5	120.50	C19-C20-C21	120.40	120.07	120.08					
C4-C5-C10	115.60	C20-C21-C26	115.70	116.13	116.12					
C5-C10-C1	124.20	C21-C26-C17	124.40	124.27	124.26					
C10-C5-C6	115.50	C26-C21-C22	115.40	116.13	116.12					
C5-C6-C7	120.70	C21-C22-C23	120.50	120.07	120.08					
C6-C7-C8	122.40	C22-C23-C24	122.90	122.48	122.48					
C7–C8–C9	119.30	C23-C24-C25	118.70	118.71	118.75					
C8-C9-C10	118.00	C24-C25-C26	118.50	118.34	118.31					
C9-C10-C5	124.10	C25-C26-C21	124.00	124.27	124.26					
C9-C10-C1	111.60	C25-C26-C17	111.60	111.45	111.48					
C10-C9-C11	106.20	C26-C25-C27	106.30	106.20	106.18					
C9-C11-C16	107.90	C25-C27-C32	107.90	108.08	108.07					
C11-C16-C1	108.30	C27-C32-C17	108.00	108.08	108.08					
C16-C1-C10	106.00	C32-C17-C26	106.20	106.20	106.19					
C9-C11-C12	131.90	C25-C27-C28	131.80	131.66	131.71					
C11-C12-C13	118.10	C27–C28–C29	119.50	119.02	119.04					
C12-C13-C14	121.30	C28-C29-C30	120.90	120.72	120.73					
C13-C14-C15	121.20	C29-C30-C31	121.50	120.72	120.73					
C14-C15-C16	118.30	C30-C31-C32	118.10	119.02	119.03					
C15-C16-C11	120.80	C31-C32-C27	119.80	120.26	120.26					
Dihedral angle, °										
C15-C16-C1-C2	-0.006	C31–C32–C–	-4.1(6)	0.002	0.023					
		-17-C18	, í							
C15-C16-C1-	179.4(3)	C31–C32–	179.0(3)	179.99	-179.99					
-C10		-C17-C26								
С12-С11-С9-С8	-2.4(6)	C28–C27–	-0.3(6)	0.01	-0.01					
		-C25-C24								
C12-C11-C9-	179.3(3)	C28–C27–	179.5(3)	179.98	179.98					
-C10		-C25-C26								
C8-C9-C1-C1	-178.5(3)	C24–C25–	-179.3(3)	179.99	179.99					
		-C26-C17								
C2-C1-C10-C9	-179.5(2)	C18-C17-	-178.1(3)	179.99	179.99					
		-C26-C25								
C16-C1-C10-C5	-177.6(2)	C32–C17–	179.1(3)	-179.99	179.98					
		-C26-C21								
C11-C9-C10-C5	178.7(2)	C27–C25–	-178.7(3)	180.00	-180.00					
		-C26-C21								

Available on line at www.shd.org.rs/JSCS/

(CC) 2015 SCS. All rights reserved.

SUPPLEMENTARY MATERIAL

	Evenoving	Theoretical							
	Experime	6-31G (d, p)	6-31G* (d, p)						
Bond length, Å									
C1 ⁱ –C6 ⁱ	1.358	C8 ⁱⁱ –C9 ⁱⁱ	1.358	1.370	1.377				
C6–C5	1.403	C9 ⁱⁱ –C10 ⁱⁱ	1.397	1.426	1.423				
C5–C4	1.359	C10 ⁱⁱ –C11 ⁱⁱ	1.354	1.384	1.383				
C4 ⁱ –C3	1.410	C11 ⁱⁱ –C12	1.414	1.425	1.422				
C3–C4	1.410	C12–C11 1.4		1.425	1.422				
C4–C5	1.359	C11-C10	1.354	1.384	1.383				
C5–C6	1.403	C10–C9	1.397	1.426	1.423				
C6-C1	1.358	C9–C8 1.358		1.378	1.377				
C1–C2	1.400	C8–C13 1.400		1.414	1.412				
C2–C3	1.398	C13-C12	1.393	1.414	1.414				
C2–C1 ⁱ	1.400	C13–C8 ⁱⁱ 1.400		1.414	1.412				
C1–C7	1.506	C8-C14	1.503	1.523	1.520				
C7–C7 ⁱ	1.547	C14C14 ⁱⁱ	1.534	1.575	1.570				
C7 ⁱ –C1 ⁱ	1.506	C14 ⁱⁱ –C8 ⁱⁱ	1.503	1.523	1.520				
Angle, °									
C7 ⁱ -C1 ⁱ -C6 ⁱ	132.93	C14 ⁱⁱ –C8 ⁱⁱ –C9 ⁱⁱ	133.14	132.40	132.40				
C7 ⁱ -C1 ⁱ -C2	108.41	C14 ⁱⁱ –C8 ⁱⁱ –C13	108.21	108.70	108.70				
C1 ⁱ -C6 ⁱ -C5 ⁱ	119.14	C8 ⁱⁱ –C9 ⁱⁱ –C10 ⁱⁱ	118.90	118.80	118.80				
$C6^{i}-C5^{i}-C4^{i}$	122.20	C9 ⁱⁱ –C10 ⁱⁱ –C11 ⁱⁱ	122.80	122.30	122.30				
C5 ⁱ –C4 ⁱ –C3	120.60	C10 ⁱⁱ –C11 ⁱⁱ –12	120.20	120.30	120.20				
C4 ⁱ -C3-C2	115.87	C11 ⁱⁱ –C12–C13	115.86	116.30	116.30				
C4 ⁱ -C3-C4	128.30	C11 ⁱⁱ -C12-C11	128.30	127.40	127.40				
C3–C4–C5	120.60	C12-C11-C10	120.20	120.20	120.20				
C4–C5–C6	122.20	C11-C10-C9	122.80	122.30	122.30				
C5-C6-C1	119.14	C10–C9–C8	118.30	118.90	118.80				
C6-C1-C2	118.66	C9–C8–C13	118.60	118.90	118.90				
C6-C1-C7	132.93	C9-C8-C14	133.14	132.40	132.40				
C1-C7-C7 ⁱ	105.13	C8-C14-C14 ⁱⁱ	105.40	104.80	104.80				
C7–C7 ⁱ –C1 ⁱ	105.13	C14-C14 ⁱⁱ -C8 ⁱⁱ	105.40	104.80	104.80				
C1C2C1 ⁱ	112.90	C8-C13-C8 ⁱⁱ	112.80	112.80	112.80				
Dihedral angle, °									
C7 ⁱ -C1 ⁱ -C6 ⁱ -C5 ⁱ	179.3(2)	C14 ⁱⁱ –C8 ⁱⁱ –C9 ⁱⁱ – C10 ⁱⁱ	179.4(2)	180.00	180.00				
C7-C1-C6-C5	-179.3(2)	C14-C8-C9-C10	-179.4(2)	-180.00	-180.00				
C1-C2-C1 ⁱ -C6 ⁱ	179.2(2)	C8-C13-C8 ⁱⁱ -C9 ⁱⁱ	179.9(2)	180.00	180.00				
C4 ⁱ -C3-C4-C5	-179.6(3)	C11 ⁱⁱ –C12–C11– C10	-179.6(3)	-180.00	-180.00				

TABLE S-II. Comparison of selected calculated geometric parameters of acenaphthene with experiment values

Available on line at www.shd.org.rs/JSCS/

ŚMISZEK-LINDERT et al.

Fig. S-1. Comparison of B3LYP calculated IR spectra of: a) fluoranthene and b) acenaphthene with the corresponding experimental spectra.

Available on line at www.shd.org.rs/JSCS/

(CC) 2015 SCS. All rights reserved.

S388