

J. Serb. Chem. Soc. 80 (11) S343-S348 (2015)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Solid—solid synthesis, characterization and thermal decomposition of a homodinuclear cobalt(II) complex

DI LI, GUO-QING ZHONG* and ZHI-XIAN WU

School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

J. Serb. Chem. Soc. 80 (11) (2015) 1391-1397

Empirical formula	$Co_2C_{14}H_{20}O_{15}N_2$	Temperature, K	293(2)
Formula weight	574.18	Wavelength, Å	0.71073
Crystal system	Monoclinic	θ range, °	2.57-25.02
Space group	P2(1)/c	Limiting indices	<i>−</i> 9≤ <i>h</i> ≤9, <i>−</i> 32≤ <i>k</i> ≤27, <i>−</i>
		-	11 <i>≤l</i> ≤8
<i>a</i> , Å	8.3680(5)	Reflections	8367/3807 [<i>R</i> (int) = 0.0649]
		collected/unique	
<i>b</i> , Å	27.2976(14)	Completeness to theta =	99.9 %
		25.02	
<i>c</i> , Å	9.5826(4)	Absorption correction	Semi-empirical from
			equivalents
$B, ^{\circ}$	98.276(5)	Max. and min. transmission	0.6105 and 0.5652
<i>V</i> , Å ³	2166.12(19)	Refinement method	Full-matrix least-squares on
			F^2
Ζ	4	Data / restraints /	3807 / 0 / 298
		parameters	
$D_{\rm c}, {\rm g \ cm^{-3}}$	1.761	Goodness-of-fit on F^2	1.031
μ (Cu K _{α}), mm ⁻¹	1.610	Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0519, wR_2 = 0.0867$
<i>F</i> (000)	1168	R indices (all data)	$R_1 = 0.0915, wR_2 = 0.1086$
Crystal size, mm	$0.40 \times 0.38 \times 0.34$	$\Delta ho_{ m max}$ and $\Delta ho_{ m min}$, e Å ⁻³	0.488 and -0.492

TABLE S-I. Crystal data and structure refinement parameters for the title complex

^{*}Corresponding author. E-mail: zgq316@163.com

LI, ZHONG and WU

TABLE S-II. Selected bond lengths and angles for the title complex

Bond	Distance, Å	Bond	Angle, °	Bond	Angle, °
Co1012	2.051(3)	O12-Co1-O13	96.40(16)	N2-Co2-N1	172.19(16)
Col-O13	2.051(4)	O12-Co1-O2	79.84(13)	N2-Co2-O5	76.77(16)
Co1–O2	2.075(3)	O13–Co1–O2	86.93(14)	N1-Co2-O5	105.03(15)
Co1O10	2.076(3)	O12-Co1-O10	169.57(14)	N2-Co2-O7	75.72(15)
Co1–O9	2.080(3)	O13-Co1-O10	88.33(15)	N1-Co2-O7	103.67(15)
Co1–O11	2.172(3)	O2-Co1-O10	91.18(14)	O5–Co2–O7	150.48(14)
Co2–N1	2.012(4)	O12-Co1-O9	91.00(13)	N2-Co2-O3	112.15(15)
Co2–N2	2.012(4)	O13-Co1-O9	91.79(14)	N1-Co2-O3	75.64(14)
Co2–O5	2.110(4)	O2–Co1–O9	170.53(13)	O5–Co2–O3	85.96(14)
Co2–O7	2.175(4)	O10-Co1-O9	98.17(14)	O7–Co2–O3	94.63(14)
Co2–O3	2.178(3)	O12-Co1-O11	86.32(15)	N2-Co2-O1	96.13(14)
Co2–O1	2.215(3)	O13-Co1-O11	176.65(14)	N1-Co2-O1	76.15(14)
O1–C1	1.263(5)	O2-Co1-O11	95.49(13)	O5-Co2-O1	96.80(14)
O2–C1	1.252(5)	O10-Co1-O11	89.31(13)	O7–Co2–O1	96.56(13)
		O9–Co1–O11	86.19(13)	O3–Co2–O1	151.39(13)

D–H	<i>d</i> (D–H), Å	<i>d</i> (H···A), Å	<i>d</i> (D…A), Å	∠DHA,°	A symmetry operation
O9–H9C	0.850	1.919	2.764	172.28	O3 (<i>x</i> –1, <i>y</i> , <i>z</i> –1)
O9–H9D	0.850	1.808	2.652	171.56	O15 ($x, y, z-1$)
O10-H10C	0.850	1.985	2.831	173.26	O1
O10-H10C	0.850	2.470	2.965	117.97	O2
O10-H10D	0.850	1.848	2.695	173.45	O8 (x -1, y , z -1)
O11-H11C	0.850	1.831	2.675	171.39	O4 (-x+1, -y+1, z+1)
O11-H11D	0.850	1.939	2.782	171.32	O7 (x -1, y , z)
O12–H12C	0.850	1.801	2.635	166.60	O4 (x $-1, y, z-1$)
O12-H12D	0.850	2.127	2.936	167.46	O14
O13-H13C	0.850	1.886	2.726	169.72	O6 ($x, y, z-1$)
O13-H13D	0.850	1.982	2.823	170.12	O14 (- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>)
O14–H14C	0.850	2.232	3.060	164.82	O5(-x+1, -y+1, -z+1)
O14–H14D	0.850	2.103	2.933	165.10	O11(-x, -y+1, -z)
O15-H10C	0.850	1.918	2.764	173.53	O6
O15-H10D	0.850	1.929	2.775	173.95	O8 (<i>x</i> -1, - <i>y</i> +3/2, <i>z</i> +1/2)

Fig. S-1. Weak spatial π - π stacking interactions of the title complex.

Fig. S-2. XRD patterns for the title complex (a) generated from the experimental data and (b) simulated from the single crystal X-ray data.

TABLE S-IV. Experimental data and calculated results for powder X-ray diffraction pattern of the title complex (monoclinic: a = 8.397 Å, b = 27.409 Å, c = 9.609 Å and $\beta = 98.22^{\circ}$)

		1		· · · · · · · · · · · · · · · · · · ·						·			,		/
No.	2θ, °	h	k	l	d _{exp} , Å	$d_{\rm cal}, {\rm \AA}$	I/I_0	No.	2θ, °	h	k	l	$d_{\rm exp}$, Å	$d_{\rm cal}, {\rm \AA}$	I/I_0
1	6.44	0	2	0	13.710	13.705	37.7	9	18.43	1	4	-1	4.811	4.810	34.0
2	9.84	0	1	1	8.980	8.985	13.2	10	18.65	0	0	-2	4.755	4.755	19.1
3	11.12	1	1	0	7.950	7.953	18.6	11	19.44	0	6	0	4.563	4.568	9.5
4	12.92	0	4	0	6.845	6.852	38.3	12	20.88	1	5	-1	4.250	4.256	9.6
5	13.48	1	1	-1	6.565	6.559	8.5	13	21.39	2	0	0	4.151	4.155	6.3

LI, ZHONG and WU

TABLE S-IV. Continued

No.	2θ, °	h	k	l	d _{exp} , Å	$d_{\rm cal},$ Å	I/I_0	No.	2θ, °	h	k	l	$d_{\rm exp}$, Å	$d_{\rm cal},$ Å	I/I_0
6	14.60	1	2	-1	6.061	6.059	100	14	23.04	1	1	2	3.857	3.856	22.0
7	16.45	1	2	1	5.386	5.386	97.4	15	23.51	2	3	0	3.782	3.783	14.6
8	17.97	1	3	1	4.933	4.931	7.2	16	24.17	2	3	-1	3.680	3.683	6.3
17	24.74	0	5	2	3.596	3.592	17.4	26	40.14	1	4	-4	2.245	2.246	9.8
18	26.38	2	0	-2	3.376	3.377	56.0	27	41.83	3	8	0	2.158	2.154	6.2
19	27.17	2	2	-2	3.279	3.279	37.6	28	42.45	2	8	-3	2.128	2.128	13.1
20	30.52	1	7	-2	2.927	2.927	16.0	29	47.06	3	2	-4	1.929	1.928	6.3
21	32.23	1	9	-1	2.775	2.776	6.1	30	50.39	4	6	1	1.809	1.810	7.1
22	32.67	0	5	3	2.739	2.744	8.3	31	57.94	4	4	3	1.590	1.589	6.0
23	33.12	1	3	3	2.703	2.703	8.6	32	65.18	5	4	-4	1.430	1.432	6.4
24	38.36	2	7	2	2.345	2.345	7.4	33	76.94	2	1	7	1.238	1.239	7.5
25	38 87	3	5	_2	2 3 1 5	2 3 1 8	67								

Fig. S-3. FT-IR spectrum of the title complex.

S346

SUPPLEMENTARY MATERIAL

Fig. S-4. UV spectra of (a) the ligand and (b) the title complex.

Fig. S-5. TG–DSC curves of the title complex obtained under a air atmosphere.

LI, ZHONG and WU

TABLE S-V. Thermal decomposition data of the title complex

Departien		Mass loss, %			
Keaction	$T_{\rm DSC}, C$	$m_{\rm exp}$	m _{theor}		
$[Co_2(C_7H_3O_4N)_2(H_2O)_5] \cdot 2H_2O$					
$\downarrow -2H_2O$	102 (endo.)	6.37	6.28		
$[Co_2(C_7H_3O_4N)_2(H_2O)_5]$					
$\downarrow -5H_2O$	150 (endo.)	14.61	15.69		
$[Co_2(C_7H_3O_4N)_2]$					
$\downarrow -2C_5H_3N, -2CO_2$	469 (exo.)	40.46	42.17		
$CoC_2O_4 + Co$					
$\downarrow -2CO_2$	576 (exo.)	16.37	15.33		
2Co					
$\downarrow +O_2$	764 (exo.)	5.28 ^a	5.57 ^a		
2CoO		27.47 ^b	26.10 ^c		

^aThe increased mass percentage; ^bthe experimental mass percentage of the residue in the sample, ^cthe calculated mass percentage of the residue in the sample

S348