SUPPLEMENTARY MATERIAL TO

Tetraoxanes as inhibitors of Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and anti-cancer molecules

DEJAN M. OPSENICA ${ }^{1 * \#}$, JELENA RADIVOJEVIĆ ${ }^{2}$, IVANA Z. MATIĆ3 ${ }^{3}$, TIJANA ŠTAJNER ${ }^{4}$, SLAVICA KNEŽEVIĆ-UŠAJ ${ }^{5}$, OLGICA DJURKOVIĆ-DJAKOVIĆ ${ }^{4}$ and BOGDAN A. ŠOLAJA ${ }^{6 \#}$

${ }^{1}$ Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Niegoševa 12, 11000 Belgrade, Serbia, ${ }^{2}$ Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P. O. Box 23, Belgrade, 11010, Serbia, ${ }^{3}$ Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, ${ }^{4}$ National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P. O. Box 102, 11129 Belgrade, Serbia, ${ }^{5}$ Institute for Pathology, Medical Faculty, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia and
${ }^{6}$ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P. O. Box 51, 11158, Belgrade, Serbia
J. Serb. Chem. Soc. 80 (11) (2015) 1339-1359

TABLE S-I. Calculated $\mathrm{p} K_{\mathrm{a}}$ and $\log P$ values for derivatives 21, 22 and 23; for the $\mathrm{p} K_{\mathrm{a}}$ calculations, Epik, version 2.9, Schrödinger, LLC, New York, NY, 2014 and for the $\log P$ calculations, QikProp, version 4.1, Schrödinger, LLC, New York, NY, 2014 were used

Compound	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$
$\mathrm{p} K_{\mathrm{a}}$	10.16	12.08	12.14
$\log P$	1.70	3.12	1.63

SYNTHESIS

4-Hydroxycyclohexanecarboxylic acid (13) ${ }^{1}$
A mixture of 4-hydroxybenzoic acid ($15.0 \mathrm{~g}, 108.6 \mathrm{mmol}$) and $5 \% \mathrm{Rh}-\mathrm{Al}_{2} \mathrm{O}_{3}(1 \mathrm{~g})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was shaken in a Parr-shaker under a hydrogen atmosphere (345 kPa) at r.t. After 24 h , the hydrogen was exchanged with Ar , the mixture filtered through celite and the solvent removed under reduce pressure. The product was obtained as a mixture of cis/trans isomers. Yield: 15.39 g (98 \%).
Benzyl 4-hydroxycyclohexanecarboxylate (14) ${ }^{2}$
A mixture of $\mathbf{1 3}(10.0 \mathrm{~g}, 69.4 \mathrm{mmol})$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(19.1 \mathrm{~g}, 138.2 \mathrm{mmol})$ in DMF (18 mL) was warmed to $55^{\circ} \mathrm{C}$, benzyl chloride ($10.48 \mathrm{~mL}, 90.8 \mathrm{mmol}$) was added in drops and stirring was continued at same temperature. After 12 h , the reaction mixture was

[^0]cooled to room temperature, water (25 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were washed once with sat. $\mathrm{NaHCO}_{3}(15$ mL), once with brine (15 mL) and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product (white powder, 49.28 g) was used without further purification in next reaction step. An analytical sample was obtained after column chromatography purification (flash, SP Biotage, SiO_{2}-column, flash $12+\mathrm{M}$, hexane $/ \mathrm{EtOAc}=6: 4$). The product was obtained as a cis/trans mixture with 2:1 ratio of axial:equatorial hydroxyl groups (${ }^{1} \mathrm{H}-\mathrm{NMR}$).
Benzyl 4-oxocyclohexanecarboxylate (15) 2,3
A mixture of alcohol $14(25.0 \mathrm{~g}, 106.7 \mathrm{mmol})$ and $\mathrm{PCC}(34.44 \mathrm{~g}, 160.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ was stirred at r.t for 2 h . The suspension was transferred onto a SiO_{2} column and the product was collected after eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$. The solvent was removed under reduce pressure and the product was obtained after purification by column chromatography (flash, SP Biotage, SiO_{2}-column, $40+\mathrm{M}$, eluent hexane / EtOAc gradient $85 / 15 \rightarrow 7 / 3$) as a pale green-yellow oil. Yield: 9.57 g (67%)

Cyclohexylidene bis[hydroperoxide] (17)

Into a mixture of cyclohexanone $(980.0 \mathrm{mg}, 10.0 \mathrm{mmol})$ and $\mathrm{Re}_{2} \mathrm{O}_{7}(242.2 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$, a 50% solution of $\mathrm{H}_{2} \mathrm{O}_{2}(1.12 \mathrm{~mL}, 40.0 \mathrm{mmol})$ was added and stirring was continued at r.t. for 1 h . The reaction mixture was transferred onto a SiO_{2} column and eluted with EtOAc. Fractions containing the crude product were combined, washed once with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$. Solvent was removed under reduced pressure and product was isolated after column chromatography ($\mathrm{Lobar}, \mathrm{SiO}_{2}$-column C, eluent hexane $/ E t O A c=7 / 3$). Yield: $890.2 \mathrm{mg}(60 \%)$.

7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethanol (19) ${ }^{4}$

A flame-dried, two-neck round bottom flask was charged, under Ar atmosphere, with $\mathrm{LiAlH}_{4}(280.0 \mathrm{mg}, 7.3 \mathrm{mmol})$ and dry THF $(20 \mathrm{~mL})$, and a solution of ester $\mathbf{1 8}(2.4 \mathrm{~g}, 4.55$ mmol) in dry THF (20 mL) was added dropwise under intensive stirring, at r.t. After 2 h , the reaction was quenched with EtOAc, water was added and emulsion was transferred into a separatory funnel. Water layer was acidified $(\mathrm{pH} 2)$ with dilute $\mathrm{HCl}(1: 1, V / V)$, the layers were separated and the water layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduce pressure and the product was isolated after column chromatography purification (dry-flash, SiO_{2}-column, eluent heptane/EtOAc $=8 / 2$). Yield: $1.4 \mathrm{~g}(82 \%)$.

3-(Azidomethyl)-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane (20) ${ }^{4}$

Into a solution of $\mathbf{1 9}(1.38 \mathrm{~g}, 5.34 \mathrm{mmol})$ in dry Py (11 mL), methanesulphonyl chloride $(495 \mu \mathrm{~L}, 6.4 \mathrm{mmol})$ was added at r.t. under intensive stirring. After 2 h , the reaction was quenched with water/EtOAc mixture, transferred into separatory funnel. The aqueous layer was acidified $(\mathrm{pH} 5)$ with dilute $\mathrm{HCl}(1: 1, V / V)$, the layers were separated and the aqueous layer was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The combined organic layers were dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered off and the solvent was removed under reduced pressure. The obtained crude product was used in next reaction step without further purification. A mixture of mesylate and $\mathrm{NaN}_{3}(3.47 \mathrm{~g}, 53.4 \mathrm{mmol})$ in DMF (20 mL) was stirred at $50^{\circ} \mathrm{C}$ over 12 h , cooled to r.t. and poured into an $\mathrm{EtOAc} /$ water mixture. The layers were separated and the aqueous layer was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 25 \mathrm{~mL})$, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered off and the solvent was removed under reduced
pressure. The product was isolated after column chromatography purification (dry-flash, SiO_{2}-column, eluent heptane $\left./ \mathrm{EtOAc}=9 / 1\right)$. Yield: $1.45 \mathrm{~g}(97 \%)$.

PHYSICAL, ANALYTICAL AND SPECTRAL DATA FOR THE ISOLATED COMPOUNDS

4-Hydroxycyclohexanecarboxylic acid (13). ${ }^{I}$ Yield: 98%; m.p.: $120-123{ }^{\circ} \mathrm{C}$ (lit. m.p.: 126-128 ${ }^{\circ} \mathrm{C}$); IR (ATR, cm^{-1}): $3437 s, 2934 s, 2857 m, 2601 w, 1702 s$, $1443 w, 1368 w, 1312 m, 1242 w, 1203 w, 1058 m, 1026 w, 949 w, 913 w, 736 w, 587 w ;$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 4.52(2 \mathrm{H}, b s, \mathrm{OH}), 3.98-3.84(1 \mathrm{H}, m, \mathrm{He}-$ $-\mathrm{COH}), 3.72-3.54(1 \mathrm{H}, m, \mathbf{H a - C O H}), 2.54-2.16\left(2 \mathrm{H}, m, \mathbf{H a}-\mathrm{CCO}_{2} \mathrm{H}\right), 2.14-$ $-1.86(4 \mathrm{H}, m), 1.84-1.16(12, m)$.

Benzyl 4-hydroxycyclohexanecarboxylate (14). ${ }^{2}$ IR (ATR, cm^{-1}): 3405 m , $3033 w, 2938 s, 2863 w, 1732 s, 1496 w, 1454 w, 1385 m, 1311 w, 1236 m, 1169 s$, $1136 w, 1070 m, 1033 m, 967 m, 907 w, 749 m, 699 m ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta / \mathrm{ppm}): 7.40-7.30(5 \mathrm{H}, m, \mathrm{Ar}-\mathrm{H}), 5.12\left(s, \mathrm{Ar}^{2} \mathrm{CH}_{2}\right), 3.95-3.85\left(m, \mathbf{H}_{\mathrm{e}}-\mathrm{COH}\right)$, $2.52-2.36\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{CO}_{2} \mathrm{Bn}\right), 2.12-1.86(3 \mathrm{H}, m), 1.80-1.52(5 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 175.10,136.14,128.51,128.11,127.98,66.77,66.04$, 41.26, 31.94, 23.58.

Benzyl-4-oxocyclohexanecarboxylate (15).2,3 Yield: 67 \%; pale green--yellow oil; IR (ATR, cm^{-1}): $3033 w, 2954 m, 1710 s, 1453 m, 1384 m, 1303 m$, $1210 s, 1158 s, 1028 w, 1004 m, 965 w, 746 s, 698 s, 495 w, 421 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 7.36(5 \mathrm{H}, s, \mathrm{Ph}), 5.16\left(2 \mathrm{H}, s, \mathrm{Ar}^{2} \mathrm{CH}_{2}\right), 2.90-2.70(1 \mathrm{H}, m, \mathrm{Ha}-$ $-\mathrm{CO}_{2} \mathrm{Bn}$), 2.56-1.92 ($8 \mathrm{H}, m$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right.$): 210.02, 173.94, 135.72, 128.62, 128.36, 128.13, 66.49, 40.62, 39.62, 28.42.

Cyclohexylidene bis[hydroperoxide] (17). Yield: 60%; colourless oil; IR (film, cm^{-1}): $3419 s, 2946 s, 2863 s, 1712 m, 1634 w, 1454 s, 1391 s, 1278 m, 1161 m$, $1098 m, 1064 s, 947 m, 927 m, 849 m$. IR $\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right): 3424 s, 2948 s, 2865 s$, $1746 m, 1722 m, 1452 s, 1393 s, 1349 m, 1162 s, 951 s, 922 m$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 9.60(b s, 2 \times \mathrm{HOO}), 2.0-1.8(4 \mathrm{H}, m), 1.6-1.4(6 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}$): 110.94, 29.41, 25.18, 22.31.

Benzyl 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane-3-carboxylate (18). Yield: 26 \%; amorphous powder; m.p.: $70-73{ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 66.28; H, 7.23 \%. Found: C, 65.82; H, 6.96 \%; IR (ATR, cm^{-1}): $3033 w, 2939 s$, $2863 m, 1734 s, 1496 w, 1449 s, 1357 m, 1274 m, 1254 m, 1169 m, 1066 s, 947 w$, $925 w, 750 w, 699 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta . \mathrm{ppm}\right): 7.31(5 \mathrm{H}, b s, \mathrm{Ph})$, $5.12\left(2 \mathrm{H}, s, \mathrm{Ar}-\mathrm{CH}_{2}\right), 2.89(1 \mathrm{H}, b s), 2.60-2.10(3 \mathrm{H}, m), 2.10-1.30(15 \mathrm{H}, m)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 174.37,135.96,128.56,128.20,128.04$, $108.39,107.22,66.20,41.57,31.76 .30 .35,28.02,25.27,24.54,23.80,22.62$, 21.92; (+)ESI-HRMS (m / z): Calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}: 385.16216$. Found: 385.16216; HPLC purity: Method A: RT 3.141 min , area 96.25%; Method B: $R T 1.372 \mathrm{~min}$, area 96.82%.

7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethanol (19). ${ }^{4}$ Yield: 82%; colourless foam; m.p.: $116-118{ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 60.45 ; H, 8.58 \%. Found: C, 60.47 ; H, 8.18 \%; IR (KBr, cm^{-1}): $3320 \mathrm{~m}, 3009 w, 2940 \mathrm{~s}$, $2861 s, 1443 m, 1360 w, 1339 w, 1310 w, 1273 w, 1250 w, 1159 w, 1094 w, 1068 m$, $1045 m, 984 w, 941 w, 918 m, 897 w, 881 w, 850 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta /\right.$ $/ \mathrm{ppm}): 3.5\left(d, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{OH}\right), 3.12(1 \mathrm{H}, b s), 2.45-2.15(2 \mathrm{H}, m), 1.85-$ $-1.70(3 \mathrm{H}, m), 1.70-1.35(12 \mathrm{H}, m), 1.35-1.20(2 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 108.29,108.16,67.41,39.44,31.80,30.90,29.52,28.53,25.35$, $24.95,24.45,22.17,21.88 ;(+) E S I-H R M S ~(m / z)$: Calcd. for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 276.18055. Found: 276.18041.

3-(Azidomethyl)-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane (20). ${ }^{4}$ Yield: 97%; colourless foam; m.p.: $86-87{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2993 w, 2946 m, 2868 w$, $2096 s, 1714 w, 1445 m, 1358 w, 1338 w, 1292 m, 1258 m, 1213 w, 1183 w, 1183 w$, $1155 w, 1137 w, 1091 w, 1067 w, 1047 m, 1016 w, 952 w, 915 m, 883 w, 850 w, 817 w ;$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 3.18\left(2 \mathrm{H}, d, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.14(1 \mathrm{H}$, $b s), 2.27(2 \mathrm{H}, b s), 1.80-1.26(16 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right)$: $108.39,107.73,56.74,37.04,31.65,30.81,29.48,28.46,25.29,22.05$. HPLC purity: Method A: RT 3.140 min , area 96.998%; Method B: $R T 1.371 \mathrm{~min}$, area 96.81 \%.

1-(7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-yl)methanamine (21). ${ }^{4}$ Yield: 69 \%; pale yellow amorphous powder; m.p.: $75-77^{\circ} \mathrm{C}$;. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3378 m$, $3340 m, 3010 w, 2941 s, 2862 s, 1720 w, 1443 m, 1362 w, 1341 w, 1275 w, 1253 w$, $1160 w, 1096 w, 1069 m, 1049 m, 984 w, 942 w, 919 m, 896 w, 851 w, 824 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}$): $3.11(1 \mathrm{H}, b s) 2.58\left(2 \mathrm{H}, d, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{NH}_{2}\right)$, $2.26(2 \mathrm{H}, b s), 1.90-1.11(18 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 108.26$, $47.58,40.20,31.68,31.0,29.52,28.73,25.78,25.31,21.96 ;$ HPLC purity: Method A: RT 3.139, area 97.24%; method B: $R T 1.369 \mathrm{~min}$, area 96.93%.

N-(7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)-4,5-dihydro-1H--imidazol-2-amine (22). Yield: 72 \%; amorphous powder; m.p.: $153-156{ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 59.06; H, 8.36; N, 12.91 \%. Found: C, 59.43; H, 8.71; N, 12.61%; IR (ATR, cm^{-1}): 2939s, 2862m, 1693s, $1636 \mathrm{~m}, 1551 \mathrm{~m}$, $1446 m, 1366 m, 1252 m, 1157 w, 1068 m, 952 w, 844 w, 804 w, 714 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, T=340.2 \mathrm{~K}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right): 3.38\left(4 \mathrm{H}, s, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{N}\right), 2.98(2 \mathrm{H}$, $\left.d, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 1.86(3 \mathrm{H}, b s), 1.70-1.40(9 \mathrm{H}, m), 1.28-1.23(1 \mathrm{H}, m)$, 1.18-1.06 (2H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}, \delta / \mathrm{ppm}): 160.38,107.09,46.83,45.81$, 35.91, 28.67, 28.29, 24.87, 24.10, 21.06; (+)ESI-HRMS (m/z): Calcd. for $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 325.20016$. Found: 326.20896 ; HPLC purity: Method A: RT 3.139 min , area 95.88%; Method B: RT 1.367 min , area 96.77%.

1-(7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)guanidine (23). Yield: 93 \%: pale yellow oil, becomes solid with time; m.p.: $36^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $56.17 ; \mathrm{H}, 8.42 ; \mathrm{N}, 14.04 \%$. Found: C, $55.87 ; \mathrm{H}, 8.02 ; \mathrm{N}$,
13.74 \%; IR (ATR, cm^{-1}): $3360 s, 2943 m, 2865 w, 1674 s, 1579 s, 1415 m, 1254 m$, $1061 w, 1010 m, 766 w, 651 w, 618 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right):$ $5.29\left(b s, 2 \times \mathrm{NH}_{2}\right), 2.95\left(2 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 1.75-1.39(13 \mathrm{H}, m), 1.33-$ $-1.10(6 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, 340.1 \mathrm{~K}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right): 157.76$, 107.44, 107.38, 45.02, 35.62, 30.16, 28.56, 24.86, 24.38, 21.31; (+)ESI-HRMS $(\mathrm{m} / \mathrm{z})$: Calc. for $[\mathrm{M}+\mathrm{H}]^{+}: 299.18451$. Found: 300.19232; HPLC purity: Method A: RT, 3.133 min , area 78.69%; Method B: $R T, 1.071 \mathrm{~min}$, area 80.69%.

1-Phenyl-3-(7,8,15,16-tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)urea
(24). Yield: 21598%; colourless foam; softening temp.: $188-191{ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \times 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.32 ; \mathrm{H}, 7.58 ; \mathrm{N}, 7.27 \%$. Found: C, 62.63 ; H, 7.71; N, 7.56%; IR (ATR, cm^{-1}): $3389 m, 3304 m, 3182 w, 3150 w, 3042 w$, $2934 m, 2861 m, 2363 m, 1647 s, 1601 s, 1559 s, 1499 m, 1442 m, 1357 w, 1314 m$, $1248 s, 1156 w, 1055 w, 952 w, 927 w, 757 m, 728 w, 698 m ;{ }^{1} H-N M R(500 \mathrm{MHz}$, DMSO- $\left.d_{6}, \delta / \mathrm{ppm}\right): 8.37$ ($1 \mathrm{H}, s$, NH-Ph), $7.50-7.42$ ($2 \mathrm{H}, m, \mathrm{Ar}-\mathrm{H}$), 7.25-7.15 $(2 \mathrm{H}, m, \mathrm{Ar}-\mathrm{H}), 6.90-6.85(1 \mathrm{H}, m, \mathrm{Ar}-\mathrm{H}), 6.10(1 \mathrm{H}, b s, \mathrm{HN}), 3.17(d, J=5.25 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}-\mathrm{NH}\right), 3.05-2.95(2 \mathrm{H}, m), 2.30-2.10(1 \mathrm{H}, m), 1.75-1.0(16 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}$): $155.23,140.53,128.61,120.90,117.51,107.81$, 107.71, 43.93, 36.73, 31.11, 30.29, 28.99, 28.06, 27.93, 25.68, 25.11, 24.66, 21.83, 21.42; (+)ESI-HRMS (m/z): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}$: 376.19982. Found: 377.20742 ; HPLC purity: Method A: RT 3.141 min , area 96.56 \%; Method B: $R T$ 1.368 min , area 96.97 \%.

1-Phenyl-3-(7,8,15,16-tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)thiourea (25). Yield: 73%; colourless foam; m.p.: $143-147^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 61.20 ; \mathrm{H}, 7.19 ; \mathrm{N}, 7.14 ; \mathrm{S}, 8.17$ \%. Found: C, 60.88; H, 7.27; $\mathrm{N}, 7.02 ; \mathrm{S}, 8.39 \%$; IR (KBr, cm^{-1}): 3326m, 3240m, 2948m, 2920m, 2885w, $2858 w, 1736 w, 1593 m, 1550 s, 1513 s, 1447 m, 1390 w, 1345 m, 1313 m, 1256 m$, $1233 m, 1190 m, 1069 s, 983 w, 947 w, 917 w, 886 w, 750 w, 695 w ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 7.81(1 \mathrm{H}, s, \mathrm{Ph}-\mathrm{NH}), 7.49-7.43$ (2H, $\left.m, \mathrm{Ar}-\mathrm{H}\right), 7.38-$ $-7.30(2 \mathrm{H}, m, \mathrm{Ar}-\mathrm{H}), 7.25-7.19(1 \mathrm{H}, m, \mathrm{Ar}-\mathrm{H}), 6.13-6.06(1 \mathrm{H}, m, \mathrm{NH}-\mathrm{C}=\mathrm{S})$, $3.54\left(2 \mathrm{H}, b s, \mathrm{CH}_{2}-\mathrm{NH}\right), 3.08(1 \mathrm{H}, b s), 2.26(2 \mathrm{H}, b s), 1.89-1.40(14 \mathrm{H}, m), 1.32-$ $1.18(2 \mathrm{H}, m) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 180.99,135.92,130.34$, $127.54,125.35,108.31,107.80,50.43,36.25,31.68,30.81,29.53,28.41,26.21$, 25.54, 25.32, 22.09. (+)ESI-HRMS (m / z): Calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}: 415.16620$. Found: 415.16570 ; HPLC purity: Method A: $R T 3.138 \mathrm{~min}$, area 96.34%; Method B: RT, 1.374 min, area 96.40 \%.

PURITY CONTROL HPLC CHROMATOGRAMS FOR 18, 20-25

Signal 1: RID1 A, Refractive Index Signal

Peak \#	RetTime Type [min]	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{nRIU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [nRIU] } \end{aligned}$	Area \%
1	3.141 V	0.1078	3.64574 e 5	5.19321 e 4	96.2479
2	4.709 MM	0.2499	1.42123 e 4	947.80316	3.7521

Fig. S-1. HPLC chromatogram for $\mathbf{1 8}$ obtained using method A.

Fig. S-2. HPLC chromatogram for $\mathbf{1 8}$ obtained using method B.

Signal 1: RID1 A, Refractive Index Signal

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{nRIU} \mathrm{~s}]} \end{gathered}$	Height [nRIU]	Area \%
1	3.140		0.1062	3.67083 e 5	5.19393 e 4	96.9984
2	4.706	VV	0.1931	1.13594 e 4	847.26184	3.0016
Total				3.78442 e 5	5.27866 e 4	

Fig. S-3. HPLC chromatogram for $\mathbf{2 0}$ obtained using method A.

Signal 1: RID1 A, Refractive Index Signal

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{nRIU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [nRIU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	1.372	W	0.1386	6.39344 e 5	6.88326 e 4	96.8263
2	1.913	VB	0.1874	2.09562 e 4	1577.40857	3.1737

Fig. S-4. HPLC chromatogram for $\mathbf{2 0}$ obtained using method B.

Fig. S-5. HPLC chromatogram for 21 obtained using method A.

Fig. S-6. HPLC chromatogram for 21 obtained using method B.

Fig. S-7. HPLC chromatogram for $\mathbf{2 2}$ obtained using method A.

Fig. S-8. HPLC chromatogram for $\mathbf{2 2}$ obtained using method B.

	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[n R I U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [nRIU] } \end{aligned}$	Area \%
1	2.985	MM N	0.1179	6.21185e4	8780.76953	16.2744
2	3.133	MM	0.1040	3.00360e5	4.81253 e 4	78.6912
3	4.698	MM	0.2645	1.92163 e 4	1210.69263	5.0345
Totals				3.81695e5	5.81167 e 4	

Fig. S-9. HPLC chromatogram for $\mathbf{2 3}$ obtained using method A.

Fig. S-10. HPLC chromatogram for $\mathbf{2 3}$ obtained using method B.

Fig. S-11. HPLC chromatogram for $\mathbf{2 4}$ obtained using method A.

Signal 1: RID1 A, Refractive Index Signal

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{nRIU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [nRIU]	Area \%
1	1.368	BV	0.1368	6.50110e5	6.97456e4	96.9697
2	1.907	VB	0.1872	2.03159 e 4	1509.72192	3.0303
Total				6.70426 e 5	7.12553 e 4	

Fig. S-12. HPLC chromatogram for $\mathbf{2 4}$ obtained using method B.

 Fraction Information

 No Fractions found.
\qquad

Area Percent Report
$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Dilution : 1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: RID1 A, Refractive Index Signal

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{nRIU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [nRIU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	1.374	V	0.1390	6.78876 e 5	7.14253 e 4	96.4019
2	1.912	VB	0.2010	$2.53385 e 4$	1731.30737	3.5981
Tota	s :			7.04215 e 5	7.31566 e 4	

2.
*** End of Report ***
3.

[^0]: *Corresponding author. E-mail: dopsen@chem.bg.ac.rs

