

J. Serb. Chem. Soc. 80 (11) S322-S333 (2015)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Tetraoxanes as inhibitors of Apicomplexan parasites *Plasmodium falciparum* and *Toxoplasma gondii* and anti-cancer molecules

DEJAN M. OPSENICA^{1*#}, JELENA RADIVOJEVIĆ², IVANA Z. MATIĆ³, TIJANA ŠTAJNER⁴, SLAVICA KNEŽEVIĆ-UŠAJ⁵, OLGICA DJURKOVIĆ-DJAKOVIĆ⁴ and BOGDAN A. ŠOLAJA^{6#}

¹Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia, ²Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P. O. Box 23, Belgrade, 11010, Serbia, ³Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, ⁴National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P. O. Box 102, 11129 Belgrade, Serbia, ⁵Institute for Pathology, Medical Faculty, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia and ⁶Faculty of Chemistry, University of Belgrade, Serbia

J. Serb. Chem. Soc. 80 (11) (2015) 1339-1359

TABLE S-I. Calculated pK_a and log *P* values for derivatives **21**, **22** and **23**; for the pK_a calculations, Epik, version 2.9, Schrödinger, LLC, New York, NY, 2014 and for the log *P* calculations, QikProp, version 4.1, Schrödinger, LLC, New York, NY, 2014 were used

Compound	21	22	23
pK _a	10.16	12.08	12.14
log P	1.70	3.12	1.63

SYNTHESIS

4-Hydroxycyclohexanecarboxylic acid (13)¹

A mixture of 4-hydroxybenzoic acid (15.0 g, 108.6 mmol) and 5 % Rh–Al₂O₃ (1 g) in MeOH (100 mL) was shaken in a Parr-shaker under a hydrogen atmosphere (345 kPa) at r.t. After 24 h, the hydrogen was exchanged with Ar, the mixture filtered through celite and the solvent removed under reduce pressure. The product was obtained as a mixture of *cis/trans* isomers. Yield: 15.39 g (98 %).

Benzyl 4-hydroxycyclohexanecarboxylate (14)²

A mixture of **13** (10.0 g, 69.4 mmol) and anhydrous K_2CO_3 (19.1 g, 138.2 mmol) in DMF (18 mL) was warmed to 55 °C, benzyl chloride (10.48 mL, 90.8 mmol) was added in drops and stirring was continued at same temperature. After 12 h, the reaction mixture was

^{*}Corresponding author. E-mail: dopsen@chem.bg.ac.rs

cooled to room temperature, water (25 mL) was added and the mixture was extracted with CH_2Cl_2 (4×30 mL). The combined organic layers were washed once with sat. NaHCO₃ (15 mL), once with brine (15 mL) and dried over anh. Na₂SO₄. The crude product (white powder, 49.28 g) was used without further purification in next reaction step. An analytical sample was obtained after column chromatography purification (flash, SP Biotage, SiO₂-column, flash 12+M, hexane/EtOAc = 6:4). The product was obtained as a *cis/trans* mixture with 2:1 ratio of axial:equatorial hydroxyl groups (¹H-NMR).

Benzyl 4-oxocyclohexanecarboxylate (15)^{2,3}

A mixture of alcohol **14** (25.0 g, 106.7 mmol) and PCC (34.44 g, 160.0 mmol) in CH₂Cl₂ (150 mL) was stirred at r.t for 2 h. The suspension was transferred onto a SiO₂ column and the product was collected after eluting with CH₂Cl₂ (600 mL). The solvent was removed under reduce pressure and the product was obtained after purification by column chromatography (flash, SP Biotage, SiO₂-column, 40+M, eluent hexane / EtOAc gradient 85/15 \rightarrow 7/3) as a pale green–yellow oil. Yield: 9.57 g (67 %)

Cyclohexylidene bis[hydroperoxide] (17)

Into a mixture of cyclohexanone (980.0 mg, 10.0 mmol) and Re_2O_7 (242.2 mg, 0.5 mmol, 5 mol %) in CH₃CN (25 mL), a 50 % solution of H₂O₂ (1.12 mL, 40.0 mmol) was added and stirring was continued at r.t. for 1 h. The reaction mixture was transferred onto a SiO₂ column and eluted with EtOAc. Fractions containing the crude product were combined, washed once with brine and dried over anh. Na₂SO₄ at 0 °C. Solvent was removed under reduced pressure and product was isolated after column chromatography (Lobar, SiO₂-column C, eluent hexane/EtOAc = 7/3). Yield: 890.2 mg (60 %).

7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethanol (19)⁴

A flame-dried, two-neck round bottom flask was charged, under Ar atmosphere, with LiAlH₄ (280.0 mg, 7.3 mmol) and dry THF (20 mL), and a solution of ester **18** (2.4 g, 4.55 mmol) in dry THF (20 mL) was added dropwise under intensive stirring, at r.t. After 2 h, the reaction was quenched with EtOAc, water was added and emulsion was transferred into a separatory funnel. Water layer was acidified (pH 2) with dilute HCl (1:1, V/V), the layers were separated and the water layer was extracted with EtOAc (3×20 mL). The combined organic layers were dried over anh. Na₂SO₄, the solvent was removed under reduce pressure and the product was isolated after column chromatography purification (dry-flash, SiO₂-column, eluent heptane/EtOAc = 8/2). Yield: 1.4 g (82 %).

3-(Azidomethyl)-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane (20)⁴

Into a solution of **19** (1.38 g, 5.34 mmol) in dry Py (11 mL), methanesulphonyl chloride (495 μ L, 6.4 mmol) was added at r.t. under intensive stirring. After 2 h, the reaction was quenched with water/EtOAc mixture, transferred into separatory funnel. The aqueous layer was acidified (pH 5) with dilute HCl (1:1, V/V), the layers were separated and the aqueous layer was extracted with EtOAc (4×25 mL). The combined organic layers were dried over anh. Na₂SO₄, filtered off and the solvent was removed under reduced pressure. The obtained crude product was used in next reaction step without further purification. A mixture of mesylate and NaN₃ (3.47 g, 53.4 mmol) in DMF (20 mL) was stirred at 50 °C over 12 h, cooled to r.t. and poured into an EtOAc/water mixture. The layers were separated and the aqueous layer was extracted with EtOAc (4×25 mL). The combined organic layers were washed with brine (2×25 mL), dried over anh. Na₂SO₄, filtered off and the solvent off and the solvent was removed under reduced pressure.

pressure. The product was isolated after column chromatography purification (dry-flash, SiO_2 -column, eluent heptane/EtOAc = 9/1). Yield: 1.45 g (97 %).

PHYSICAL, ANALYTICAL AND SPECTRAL DATA FOR THE ISOLATED COMPOUNDS

4-Hydroxycyclohexanecarboxylic acid (13).¹ Yield: 98 %; m.p.: 120–123 °C (lit. m.p.: 126–128 °C); IR (ATR, cm⁻¹): 3437*s*, 2934*s*, 2857*m*, 2601*w*, 1702*s*, 1443*w*, 1368*w*, 1312*m*, 1242*w*, 1203*w*, 1058*m*, 1026*w*, 949*w*, 913*w*, 736*w*, 587*w*; ¹H-NMR (200 MHz, CDCl₃, δ / ppm): 4.52 (2H, *bs*, OH), 3.98–3.84 (1H, *m*, **H**e–COH), 3.72–3.54 (1H, *m*, **H**a–COH), 2.54–2.16 (2H, *m*, **H**a–CCO₂H), 2.14–1.86 (4H, *m*), 1.84–1.16 (12, *m*).

*Benzyl 4-hydroxycyclohexanecarboxylate (14).*² IR (ATR, cm⁻¹): 3405*m*, 3033*w*, 2938*s*, 2863*w*, 1732*s*, 1496*w*, 1454*w*, 1385*m*, 1311*w*, 1236*m*, 1169*s*, 1136*w*, 1070*m*, 1033*m*, 967*m*, 907*w*, 749*m*, 699*m*; ¹H-NMR (200 MHz, CDCl₃, δ / ppm): 7.40–7.30 (5H, *m*, Ar-H), 5.12 (*s*, Ar-CH₂), 3.95–3.85 (*m*, H_e–COH), 2.52–2.36 (*m*, H_a–CO₂Bn), 2.12–1.86 (3H, *m*), 1.80–1.52 (5H, *m*); ¹³C-NMR (50 MHz, CDCl₃, δ / ppm): 175.10, 136.14, 128.51, 128.11, 127.98, 66.77, 66.04, 41.26, 31.94, 23.58.

Benzyl-4-oxocyclohexanecarboxylate (15).^{2,3} Yield: 67 %; pale green--yellow oil; IR (ATR, cm⁻¹): 3033w, 2954m, 1710s, 1453m, 1384m, 1303m, 1210s, 1158s, 1028w, 1004m, 965w, 746s, 698s, 495w, 421w; ¹H-NMR (200 MHz, CDCl₃, δ / ppm): 7.36 (5H, s, Ph), 5.16 (2H, s, Ar-CH₂), 2.90–2.70 (1H, m, Ha– -CO₂Bn), 2.56–1.92 (8H, m); ¹³C-NMR (50 MHz, CDCl₃, δ ppm): 210.02, 173.94, 135.72, 128.62, 128.36, 128.13, 66.49, 40.62, 39.62, 28.42.

Cyclohexylidene bis[hydroperoxide] (17). Yield: 60 %; colourless oil; IR (film, cm⁻¹): 3419s, 2946s, 2863s, 1712m, 1634w, 1454s, 1391s, 1278m, 1161m, 1098m, 1064s, 947m, 927m, 849m. IR (CCl₄, cm⁻¹): 3424s, 2948s, 2865s, 1746m, 1722m, 1452s, 1393s, 1349m, 1162s, 951s, 922m; ¹H-NMR (200 MHz, CDCl₃, δ / ppm): 9.60 (*bs*, 2×HOO), 2.0–1.8 (4H, *m*), 1.6–1.4 (6H, *m*); ¹³C-NMR (50 MHz, CDCl₃, δ / ppm): 110.94, 29.41, 25.18, 22.31.

Benzyl 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane-3-carboxylate (18). Yield: 26 %; amorphous powder; m.p.: 70–73 °C; Anal. Calcd. for C₂₀H₂₆O₆: C, 66.28; H, 7.23 %. Found: C, 65.82; H, 6.96 %; IR (ATR, cm⁻¹): 3033w, 2939s, 2863m, 1734s, 1496w, 1449s, 1357m, 1274m, 1254m, 1169m, 1066s, 947w, 925w, 750w, 699w; ¹H-NMR (200 MHz, CDCl₃, δ . ppm): 7.31 (5H, *bs*, Ph), 5.12 (2H, *s*, Ar-CH₂), 2.89 (1H, *bs*), 2.60–2.10 (3H, *m*), 2.10–1.30 (15H, *m*); ¹³C-NMR (50 MHz, CDCl₃, δ / ppm): 174.37, 135.96, 128.56, 128.20, 128.04, 108.39, 107.22, 66.20, 41.57, 31.76. 30.35, 28.02, 25.27, 24.54, 23.80, 22.62, 21.92; (+)ESI-HRMS (*m/z*): Calcd. for [M+Na]⁺: 385.16216. Found: 385.16216; HPLC purity: Method A: *RT* 3.141 min, area 96.25 %; Method B: *RT* 1.372 min, area 96.82 %. SUPPLEMENTARY MATERIAL

7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethanol (19).⁴ Yield: 82 %; colourless foam; m.p.: 116–118 °C; Anal. Calcd. for C₁₃H₂₂O₅: C, 60.45; H, 8.58 %. Found: C, 60.47; H, 8.18 %; IR (KBr, cm⁻¹): 3320*m*, 3009*w*, 2940*s*, 2861*s*, 1443*m*, 1360*w*, 1339*w*, 1310*w*, 1273*w*, 1250*w*, 1159*w*, 1094*w*, 1068*m*, 1045*m*, 984*w*, 941*w*, 918*m*, 897*w*, 881*w*, 850*w*; ¹H-NMR (500 MHz, CDCl₃, δ / ppm): 3.5 (*d*, *J* = 6.2 Hz, CH₂–OH), 3.12 (1H, *bs*), 2.45–2.15 (2H, *m*), 1.85–1.70 (3H, *m*), 1.70–1.35 (12H, *m*), 1.35–1.20 (2H, *m*); ¹³C-NMR (125 MHz, CDCl₃, δ / ppm): 108.29, 108.16, 67.41, 39.44, 31.80, 30.90, 29.52, 28.53, 25.35, 24.95, 24.45, 22.17, 21.88; (+)ESI-HRMS (*m*/*z*): Calcd. for [M+NH₄]⁺: 276.18055. Found: 276.18041.

3-(Azidomethyl)-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane (**20**).⁴ Yield: 97%; colourless foam; m.p.: 86–87 °C; IR (KBr, cm⁻¹): 2993w, 2946m, 2868w, 2096s, 1714w, 1445m, 1358w, 1338w, 1292m, 1258m, 1213w, 1183w, 1183w, 1155w, 1137w, 1091w, 1067w, 1047m, 1016w, 952w, 915m, 883w, 850w, 817w; ¹H-NMR (200 MHz, CDCl₃, δ / ppm): 3.18 (2H, d, J = 6.2 Hz, CH₂), 3.14 (1H, *bs*), 2.27 (2H, *bs*), 1.80–1.26 (16H, *m*); ¹³C-NMR (50 MHz, CDCl₃, δ / ppm): 108.39, 107.73, 56.74, 37.04, 31.65, 30.81, 29.48, 28.46, 25.29, 22.05. HPLC purity: Method A: *RT* 3.140 min, area 96.998 %; Method B: *RT* 1.371 min, area 96.81 %.

*1-(7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-yl)methanamine (21).*⁴ Yield: 69 %; pale yellow amorphous powder; m.p.: 75–77 °C;. IR (KBr, cm⁻¹): 3378*m*, 3340*m*, 3010*w*, 2941*s*, 2862*s*, 1720*w*, 1443*m*, 1362*w*, 1341*w*, 1275*w*, 1253*w*, 1160*w*, 1096*w*, 1069*m*, 1049*m*, 984*w*, 942*w*, 919*m*, 896*w*, 851*w*, 824*w*; ¹H-NMR (200 MHz, CDCl₃, δ / ppm): 3.11 (1H, *bs*) 2.58 (2H, *d*, *J* = 6.0 Hz, CH₂–NH₂), 2.26 (2H, *bs*), 1.90–1.11 (18H, *m*); ¹³C-NMR (50 MHz, CDCl₃, δ / ppm): 108.26, 47.58, 40.20, 31.68, 31.0, 29.52, 28.73, 25.78, 25.31, 21.96; HPLC purity: Method A: *RT* 3.139, area 97.24 %; method B: *RT* 1.369 min, area 96.93 %.

N-(7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)-4,5-dihydro-1H--imidazol-2-amine (22). Yield: 72 %; amorphous powder; m.p.: 153–156 °C; Anal. Calcd. for C₁₆H₂₇N₃O₄: C, 59.06; H, 8.36; N, 12.91 %. Found: C, 59.43; H, 8.71; N, 12.61 %; IR (ATR, cm⁻¹): 2939s, 2862*m*, 1693s, 1636*m*, 1551*m*, 1446*m*, 1366*m*, 1252*m*, 1157*w*, 1068*m*, 952*w*, 844*w*, 804*w*, 714*w*; ¹H-NMR (500 MHz, *T* = 340.2 K, DMSO-*d*₆, δ / ppm): 3.38 (4H, *s*, N–CH₂CH₂–N), 2.98 (2H, *d*, *J* = 6.6 Hz, CH₂–N), 1.86 (3H, *bs*), 1.70–1.40 (9H, *m*), 1.28–1.23 (1H, *m*), 1.18–1.06 (2H, *m*); ¹³C-NMR (125 MHz, δ / ppm): 160.38, 107.09, 46.83, 45.81, 35.91, 28.67, 28.29, 24.87, 24.10, 21.06; (+)ESI-HRMS (*m*/*z*): Calcd. for [M+H⁺]: 325.20016. Found: 326.20896; HPLC purity: Method A: *RT* 3.139 min, area 95.88 %; Method B: *RT* 1.367 min, area 96.77 %.

1-(7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)guanidine (23). Yield: 93 %: pale yellow oil, becomes solid with time; m.p.: 36 °C; Anal. Calcd. for $C_{14}H_{25}N_{3}O_{4}$: C, 56.17; H, 8.42; N, 14.04 %. Found: C, 55.87; H, 8.02; N,

OPSENICA et al

13.74 %; IR (ATR, cm⁻¹): 3360*s*, 2943*m*, 2865*w*, 1674*s*, 1579*s*, 1415*m*, 1254*m*, 1061*w*, 1010*m*, 766*w*, 651*w*, 618*w*; ¹H-NMR (500 MHz, DMSO-*d*₆, δ / ppm): 5.29 (*bs*, 2×NH₂), 2.95 (2H, *d*, *J* = 6.9 Hz, CH₂–N), 1.75–1.39 (13H, *m*), 1.33–1.10 (6H, *m*); ¹³C-NMR (125 MHz, 340.1 K, DMSO-*d*₆, δ / ppm): 157.76, 107.44, 107.38, 45.02, 35.62, 30.16, 28.56, 24.86, 24.38, 21.31; (+)ESI-HRMS (*m*/*z*): Calc. for [M+H]⁺: 299.18451. Found: 300.19232; HPLC purity: Method A: RT, 3.133 min, area 78.69 %; Method B: *RT*, 1.071 min, area 80.69 %.

1-Phenyl-3-(7,8,15,16-tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)urea (24). Yield: 215 98 %; colourless foam; softening temp.: 188–191 °C; Anal. Calcd. for C₂₀H₂₈N₂O₅×0.5H₂O: C, 62.32; H, 7.58; N, 7.27 %. Found: C, 62.63; H, 7.71; N, 7.56 %; IR (ATR, cm⁻¹): 3389*m*, 3304*m*, 3182*w*, 3150*w*, 3042*w*, 2934*m*, 2861*m*, 2363*m*, 1647*s*, 1601*s*, 1559*s*, 1499*m*, 1442*m*, 1357*w*, 1314*m*, 1248*s*, 1156*w*, 1055*w*, 952*w*, 927*w*, 757*m*, 728*w*, 698*m*; ¹H-NMR (500 MHz, DMSO-*d*₆, δ / ppm): 8.37 (1H, *s*, NH-Ph), 7.50–7.42 (2H, *m*, Ar-H), 7.25–7.15 (2H, *m*, Ar-H), 6.90–6.85 (1H, *m*, Ar-H), 6.10 (1H, *bs*, HN), 3.17 (*d*, *J* = 5.25 Hz, C**H**₂–NH), 3.05–2.95 (2H, *m*), 2.30–2.10 (1H, *m*), 1.75–1.0 (16H, *m*); ¹³C-NMR (125 MHz, DMSO-*d*₆, δ / ppm): 155.23, 140.53, 128.61, 120.90, 117.51, 107.81, 107.71, 43.93, 36.73, 31.11, 30.29, 28.99, 28.06, 27.93, 25.68, 25.11, 24.66, 21.83, 21.42; (+)ESI-HRMS (*m*/*z*): Calcd. for [M+H]⁺: 376.19982. Found: 377.20742; HPLC purity: Method A: *RT* 3.141 min, area 96.56 %; Method B: *RT* 1.368 min, area 96.97 %.

1-Phenyl-3-(7,8,15,16-tetraoxadispiro[5.2.5.2]hexadec-3-ylmethyl)thiourea (25). Yield: 73 %; colourless foam; m.p.: 143–147°C; Anal. Calcd. for $C_{20}H_{28}N_2O_4S$: C, 61.20; H, 7.19; N, 7.14; S, 8.17 %. Found: C, 60.88; H, 7.27; N, 7.02; S, 8.39 %; IR (KBr, cm⁻¹): 3326*m*, 3240*m*, 2948*m*, 2920*m*, 2885*w*, 2858*w*, 1736*w*, 1593*m*, 1550*s*, 1513*s*, 1447*m*, 1390*w*, 1345*m*, 1313*m*, 1256*m*, 1233*m*, 1190*m*, 1069*s*, 983*w*, 947*w*, 917*w*, 886*w*, 750*w*, 695*w*; ¹H-NMR (500 MHz, CDCl₃, δ / ppm): 7.81 (1H, *s*, Ph-NH), 7.49–7.43 (2H, *m*, Ar-H), 7.38–7.30 (2H, *m*, Ar-H), 7.25–7.19 (1H, *m*, Ar-H), 6.13–6.06 (1H, *m*, NH–C=S), 3.54 (2H, *bs*, C**H**₂–NH), 3.08 (1H, *bs*), 2.26 (2H, *bs*), 1.89–1.40 (14H, *m*), 1.32–1.18 (2H, *m*). ¹³C-NMR (125 MHz, CDCl₃, δ / ppm): 180.99, 135.92, 130.34, 127.54, 125.35, 108.31, 107.80, 50.43, 36.25, 31.68, 30.81, 29.53, 28.41, 26.21, 50.54, 25.32, 22.09. (+)ESI-HRMS (*m/z*): Calcd. for [M+Na]⁺: 415.16620. Found: 415.16570; HPLC purity: Method A: *RT* 3.138 min, area 96.34 %; Method B: RT, 1.374 min, area 96.40 %.

SUPPLEMENTARY MATERIAL

Fig. S-2. HPLC chromatogram for 18 obtained using method B.

OPSENICA et al.

Fig. S-4. HPLC chromatogram for 20 obtained using method B.

SUPPLEMENTARY MATERIAL

Fig. S-6. HPLC chromatogram for 21 obtained using method B.

OPSENICA et al.

Fig. S-8. HPLC chromatogram for 22 obtained using method B.

SUPPLEMENTARY MATERIAL

Fig. S-10. HPLC chromatogram for 23 obtained using method B.

OPSENICA et al.

Fig. S-12. HPLC chromatogram for 24 obtained using method B.

4.