

J. Serb. Chem. Soc. 80 (10) S318–S321 (2015)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Secondary-school chemistry textbooks in the 19th century

VESNA D. MILANOVIC^{1#}, DRAGICA D. TRIVIC^{2*} and BILJANA I. TOMASEVIC^{2#}

¹Innovation Centre of the Faculty of Chemistry, Studentski trg 12–16, Belgrade, Serbia and ²University of Belgrade, Faculty of Chemistry, Studentski trg 12–16, Belgrade, Serbia

J. Serb. Chem. Soc. 80 (10) (2015) 1321-1338

TABLE	S-I.	The	structural	and	organisational	components	monitored	in	the	textbooks
analysed					-	-				

Structural components	Organisational components
The basic text	Overview of the contents
Terms, concepts, principles, theories and laws	An introductory explanation of the textbook
Chemical symbols, formulas and chemical	structure
equations	Index of the terms used
Contents related to everyday life and health-	Various kinds of supplementary tables
related contents	Literature used
Contents related to the history of chemistry	Note on the author
Precautions to be taken when dealing with	
certain substances	
Pointing out new terms	
Photographs, pictures, illustrations	
Experiment descriptions	
Questions, instructions, tasks	
Referring to other parts of the book	

TABLE S-II. The quantitative data on the textbooks analysed

Quantitative data	Sima Lozanić Chemistry for Secondary Schools	Mita Petrović Chemistry for Secondary Schools, Based on Prokop Prohaszka and Others
Number of pages	163	110
Number of titles and subtitles	259	118
Number of highlighted terms	420	482
Number of terms in the index	490	439
Number of elements whose symbols,	68	36
names and atomic mass are given		
Number of formulas of compounds	383	202

*Corresponding author. E-mail: dtrivic@chem.bg.ac.rs

S318

Available on line at www.shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

TABLE S-II. C	ontinued
---------------	----------

Quantitative data	Sima Lozanić Chemistry for Secondary Schools	Mita Petrović Chemistry for Secondary Schools, Based on Prokop Prohaszka and Others
Number of equations of chemical reactions	119	25
Number of experiments presented	13	29
Number of examples connecting knowledge from the sphere of chemistry with its practical application in everyday life	158	174
Number of warnings concerning the toxicity of certain substances and precautions to be taken when handling them	14	34
Number of illustrations	43	10
Number of episodes from the history of chemistry	27	2
Number of questions and instructions	5	12

TABLE S-III. The experiments described in the analysed textbooks

	-
The experiments featured in Sima Lozanić's textbook	The experiments featured in Mita Petrović's textbook
Making a mixture of iron and	Dehydrating copper sulphate and then hydrating it anew Making a mixture of iron and sulphur and conserting its
Heating a mixture of iron and	constituent from each other
sulphur	Heating a mixture of iron and sulphur
Electrolysis of water, gases	Heating tin (lead, zinc, mercury) and measuring the mass
collected together	of the substance before and after the reaction
Dissolving salt in water and	Heating tin and paraffin, and measuring the mass of the
subsequent evaporation of the	substances before and after heating
water	Burning phosphorus inside a bell jar, investigating the
A reaction between sodium	characteristics of the gas left in the bell jar
and water	Obtaining oxygen from red HgO, investigating the
Analysis of "red dust" (HgO)	characteristics of oxygen
Electrolysis of water, gases	Making a mixture of nitrogen and oxygen
collected separately	Burning sulphur in oxygen
Synthesis of water	Burning pieces of coal on a spiral wire in oxygen
Obtaining hydrogen from zinc	Electrolysis of water and investigating the characteristics
and sulphuric acid	of the gases obtained
Obtaining chlorine from HCl	Obtaining hydrogen from zinc and sulphuric acid
and MnO ₂	(prescribing the exact masses of the reactants)
Obtaining oxygen from KClO ₃	Burning hydrogen, covering the flame and obtaining water
	(chemical harmonica)
	Creating explosive gas in soap suds

Available on line at www.shd.org.rs/JSCS/

MILANOVIC, TRIVIC and TOMASEVIC

The experiments featured in Sima Lozanić's textbook	The experiments featured in Mita Petrović's textbook
Retention of nitrogen after burning phosphorus in the air inside a bell jar Obtaining NH ₃ from NH ₄ Cl and Ca(OH) ₂	Obtaining NH ₃ from NH ₄ Cl and Ca(OH) ₂ (prescribing the exact masses of the reactants) Obtaining hydrogen from KOH (prescribing the exact masses of the reactants) and nitrogen from KNO ₃ and iron (prescribing the masses of the reactants) and their reaction The neutralisation reaction of ammonia and sulphuric acid Obtaining chlorine from HCl and MnO ₂ , and investigating its characteristics Obtaining HCl from table salt, water and sulphuric acid Obtaining HCl from table salt, water and sulphuric acid Obtaining HFl from CaFl ₂ and H ₂ SO ₄ Obtaining H ₂ S from FeS and HCl in a Woulff bottle Sedimentation of Ag ₂ S, PbS, As ₂ S ₃ Obtaining NO from copper and nitric acid Obtaining CO ₂ from CaCO ₃ and HCl, and investigating its characteristics Decomposition of CaCO ₃ and the reaction of its product with water Obtaining KOH by boiling K ₂ CO ₃ with Ca(OH) ₂ Reactions of various sugars with NaOH in CuSO ₄ Making colour from indigo, FeSO ₄ and NaOH (prescribing the exact masses)

TABLE S-IV. Questions and instructions found in Sima Lozanić's and Mita Petrović's textbooks

Sima Lozanić's textbook	Mita Petrović's textbook
1) Does the matter of water change when it	1) In what order shall we arrange the
freezes and when it evaporates?	halogen elements based on the strength of
2) Is it possible to decompose mercury,	their affinity?
hydrogen and oxygen into even simpler components?	2) What are the molecular weights of H_2O and NH_3 ?
3) Do these elements of ours make up other cosmic bodies as well?	3) What are the molecular weights of oxygen and hydrogen?
4) Is the composition of compounds	4) Thus the volume weight of steam equals
permanent, which is to say, do they always	9, as we have seen before. Why?
contain the same elements, joined in the same	5) What are the volume weights of HCl and
ratio?	NH ₃ ?
	6) Thus all chlorides, iodides, bromides,
	fluorides and sulphides are salts. What acids
	are they created from? How shall we
	explain this process? Which of these salts
	are already familiar to us? Write their
	chemical formulas, along with the formulas
	of their acids.

Available on line at www.shd.org.rs/JSCS/

S320

SUPPLEMENTARY MATERIAL

TABLE S-IV. Continued

Sima Lozanić's textbook	Mita Petrović's textbook
5) What keeps molecules and atoms bound together?	Mita Petrović's textbook 7) Sulphuric carbon burns with a bluish flame. What are the products of its burning? 8) According to this, in how many ways could we put out a fire? 9) Sodium occurs in compounds only, and is
	obtained artificially in the same way as potassium is obtained from its carbonate. What is the chemical equation of this process? 10) BaCl ₂ and Ba(NO ₃) ₂ are important as reagents to H ₂ SO ₄ and sulphates, with
	which they produce a heavy white sediment. What is the composition of the sediment? 11) When aluminium sulphate is mixed with sodium sulphate or ammonia sulphate, what is created sodium or ammonia alum. Write their formulas.
	12) Galenite is melted with iron particles, which extract sulphur from it through the greater intensity of its affinity. What is the Equation of this reaction?