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Estimating the total m-electron energy
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Abstract: The paper gives a short survey of the most important lower and upper
bounds for the total n-electron energy, i.e., the graph energy (F). In addition, a
new lower and a new upper bound for £ are deduced, valid for general mole-
cular graphs. The strengthened versions of these estimates, valid for alternant
conjugated hydrocarbons, are also reported.
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INTRODUCTION

The total m-electron energy (E;), as calculated within the simple tight-
binding Hiickel molecular orbital (HMO) approximation, is one of the most
precious pieces of information that can be directly related with molecular
structure, by means of spectral graph theory.!=# In the case of the chemically
most relevant conjugated m-electron systems (in particular, benzenoids,’
phenylenes,® fluoranthenes,’ etc), E; can be expressed as:

E.=an+pE

where a and f are the standard HMO parameters (constants), » is the number of
carbon atoms (number of vertices of the underlying molecular graph G), whereas:

n
E=EG)= | %| (D

i=1
is the structure-sensitive term, depending on the eigenvalues 4;,45,...,4, of the
molecular graph G. The non-trivial part of the theory of total n-electron energy is
just the study of the structure-dependency of the quantity £, which nowadays is
referred to8 as the energy of the (molecular) graph G. The energy of chemically
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1 926 GUTMAN and DAS

relevant molecular graphs was shown to be quantitatively related with the experi-
mentally determined heats of formation and other measures of thermodynamic
stability of the underlying conjugated compounds.2->-9

In the last 1015 years, graph energy became a popular topic of mathe-
matical research, resulting in hundreds of published papers. Details on graph
energy can be found in a book,8 the references cited therein, and recent papers.10-15

One of the earliest results in the theory of total m-electron energy are the
estimates obtained by McClelland,!6 namely:

J2m+n(n—1)|det 4 P'n < E(G) <[2mn )

where #n is the number of vertices of the molecular graph G (equal to the number
of carbon atoms of the underlying conjugated hydrocarbon), m is the number of
edges of G (equal to the number of carbon—carbon bonds), and 4= A(G) is the
adjacency matrix of the graph G.

McClelland’s upper bound «2mn played a significant role in the theory of
the total m-electron energy, because it was demonstrated!® that a«/2mn, for
a~0.9, provides an excellent approximation for E. Comparative testings>:17-19
of the numerous existing (n,m) -type approximate formulas for £ revealed that
not one was better than that of McClelland. This somewhat puzzling result found
an explanation after the discovery of McClelland-type lower bounds for
energy.20-23 It was first shown20 that for g =/16/27 =0.77, the expression
g~2mn is a lower bound for the energy of benzenoid hydrocarbons. Tiirker
obtained g =0.5 for all alternant conjugated hydrocarbons,?! which was further
improved?2:23 as g =+/32/81=0.63.

Eventually, several other estimates of £ were obtained, of which here only
those depending solely on the number of edges of the molecular graph are
mentioned:24

2Jm <E(G)<2m 3)

and those depending solely on the number of its vertices:24.25
2Wn—1 SE(G)sg(JZH) (4)

At this point, also an (n,m) -type improvement of McClelland's upper bound
should be mentioned:

2
E(G)£27m+ (n—1){2m—[27’"j } (5)

discovered 30 years later25:26 than the estimates (2).
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By means of the bounds (2)—(5) and McClelland’s approximate expression
for E, the two most important structural parameters, determining the gross part of
total m-electron energy were established: these are n and m. The evident next step
was to find estimates and approximate expressions for £ possessing more than
two structural parameters.

Although there is no general agreement about which the third-important
structural parameter should be, most attention was paid to the number of Kekulé
structures, K = K(G), and to the closely related determinant of the adjacency
matrix.2’ In particular:
if B is the molecular graph of a benzenoid hydrocarbon, then:28.29

det A(B) = (-1)"2K(B)?;
if Fis the molecular graph of a fluoranthene, then:30-31
det A(F) = (=1)"2[K () K(F2)]?;

where F| and F5 are the ,,male” and ,,female fragments of F; if P is the mole-
cular graph of a phenylene, then:32

det A(P) = (—1)"/2 K(HS)?

where HS stands for the hexagonal squeeze of P.

The dependence of the total m-electron energy on the number of Kekulé
structures was much investigated, especially for benzenoids,33-40 fluoran-
thenes,*! and phenylenes.® In view of the above stated relations between the
determinant of the adjacency matrix and the number of Kekulé structures, every
lower and upper bound for E contains information on the K-dependence of the
total m-electron energy. Hitherto, the best such estimates were:42

\/2m +n(n—1)|det 4> <E(G)< \/2m(n ~1D+n|detA]2n, (6)
valid for general molecular graphs, and

J4m+n(n—2) |det A2/ < E(G) <\[2m(n—2)+2n|det 42/, (7)

valid for alternant conjugated hydrocarbons. Recently a further upper bound for
E was established:43

®)

E(G)Zz—m+n—l+ln(wj,
n

2m

valid under the condition that det A =0, i.e., that no eigenvalue of the molecular
graph is equal to zero, i.e., that the respective conjugated molecule has no non-
bonding molecular orbitals.!

In what follows, two novel (n,m,det A)-type estimates of graph energy
were obtained. To realize this, some preparations were required.
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PRELIMINARIES

In this section, some previously known results that will be needed in the next
two sections are listed.
Lemma 1.4* Let x1,x,,...,xy be non-negative numbers, and let:

| N N /N
a:—Zx,- and y = Hxi
N i—1

i=1

be their arithmetic and geometric means. Then:

N(N 1) (\/> \/7) sa- 7/<_ (“/_ \/7>

Moreover, equality holds if and only if x; =xp =---=xp.
Lemma 245 For a graph G with n vertices and m edges, eigenvalues
N> 2240 Ay, and for 1< j<n:

am(G-1) _ 2m(n 2m(n—J)
n(n j+1)

Lemma 3.46 Let G be a connected graph of order n. Then 4 >2m/n, with
equality if and only if G is regular.

LOWER BOUND FOR GRAPH ENERGY

Theorem 1. The lower bound in (6) can be improved as:

2
B om .4 ﬁ_(z_mjlu
E(G)= [2m+n(n—1)|det A| +(n+1)(n—2){ n n )

Proof. From Lemma 1, one obtains:

%xiZN{ﬁxi]I/N+_ (V=7 ) (10)

i<j

Substituting in (10) N=n(n—1)/2 and x; =[A; |-| 4 | fori=12,...,n(n-1)/2,
j=L2,....n—1and k=j+1,j+2,...,n, one arrives at:

2/n
S|4 |Mk|>”(”2 D(Hw] +

j<k

2 2
el M 1 A PN PAPN)
= =n=z i k<r<s

which is the same as:
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2
2314 1 24 e nn =) det AP+ S (2212 1 1)

J<k n _n_2j<k<r<s
By Lemma 2:

f2m
Ani2 S4|—

n

whereas by Lemma 3:
2
A >
n

If, in addition, one takes into account that:** A, <-1 , ie., |4, [>1, one
obtains:

> (VG T NE A1) 2(a T~z 1) =

j<k<r<s

1/4)? (11)
ZW(M—W)ZZU?‘(@} ]

n

which combined with:

n

ZZ|/1j|M~k|+i|/1j |2=Zi|ijllikl=[ilﬂj Iliilik IJ=E2

<k j=lk=1
and bearing in mind that:
DA [2=2m
results in a (n,m,det A) -type lower bound (9).
For alternant conjugated hydrocarbons!-2 (i.e., for bipartite molecular
graphs#6), 1; =—4,_;,1 holds for all j=1,2,...,n. In particular, 4 =—4, and
Anj2 =—Ay/241 - Bearing this in mind, the inequalities in (11) can be strengthened as:

> (T A1) 2 (AT |~ [z 1) =

j<k<r<s

2
=(4 —ﬂw/z)2 2(27’"— 2—m}

n

resulting in the following (n,m,det A)-type lower bound for total m-electron
energy of alternant conjugated hydrocarbons:
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2
_ 2/n ; 2_m_ 2_m
E(G)Z\/2m+n(n 1)|det 4] +(n+1)(n—2)( . . ] (12)

Recall that benzenoids and phenylenes are alternant conjugated hydro-
carbons, whereas fluoranthenes are not. It is easy to show that the estimate (12) is
better than (9).

UPPER BOUND FOR GRAPH ENERGY
Theorem 2. Under the condition that det 4 # 0, the upper bound in (3) can

be improved as:
E(G)SZm—z—m(z—m—lj—ln(MJ (13)
n\ n m

One should compare this result with the lower bound (8).
Proof. Consider the function f(x)=x2—x—Inx, which is increasing for
x 21 and decreasing for 0 <x <1. Thus, for x>1,

f(x)= f(1)=0, i.e., x<x2—Inx

with equality holding if and only if x=1. Using this result and the definition of
graph energy, Eq. (1), one obtains:

E=X4+ iMj <A+ i(/ljz —In[2;)=4 +2m—ﬂ12 —lnﬁMJ- |+1In 4
j=2 j=2 =
that is:
E<A Jer—Aq2 —In|detA|+In 4 =2m—1In|det 4| —f(4) (14)

Inequality (13) is now obtained by replacing in (14) 4; by:

2m

n
This is legitimate since by Lemma 3:

N2 2—m
n

and since:

2m

n

is the average vertex degree, which in molecular graphs is necessarily greater
than unity.
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By means of arguments analogous to those used for deducing the lower
bound (12), in particular, using 4 =—4,, for alternant conjugated hydrocarbons
without zero graph eigenvalues, the estimate (13) can also be improved as:

E(G)£2m—4—m[2—m—1j—ln(mj (15)
n n

4m?2

DISCUSSION AND CONCLUDING REMARKS

In this paper, our attention was focused on bounds for the HMO total
n-electron energy (£;) of conjugated hydrocarbons, which depend on the number
of carbon atoms (#), the number of carbon—carbon bonds (m), and the Kekulé
structure count (K). For algebraic reasons, instead of dependence on K, expres-
sions were found in which the determinant of the adjacency matrix (det 4) is one
of the parameters. As explained in the Introduction, for the most important poly-
cyclic conjugated m-electron systems, there are simple relations between det A
and the Kekulé structure count. Thus, the new estimates reported in this paper,
namely (9), (12), (13) and (15), may be viewed as contributions towards a better
understanding of the structure-dependency of Ej, in particular of its (n,m, K)-
-dependence.

If E;and Epis a pair of lower and upper bounds for £, then an approximate
expression for £ could be obtained by taking their arithmetic mean:
1/2(EL + Ep) . However, in view of the algebraic forms of the estimates dis-

c is paper, it is better to construct these approximate expressions as
1/2(E? + E) . If so, then from the estimates (6), one obtains:
1 b) A2/
E= \/—(Zmn +n2|detA |2/”) ~ £«/Zmn +M
2 2 \/gm
which, recalling that J2/2=0.707, is evidently a modification of the original
McClelland’s formula a«/2mn . It is interesting that exactly the same expression
was obtained from the improved estimates (7). Equally interesting (and some-
what surprising) is the approximate formula obtained from the estimates (8) and

(13):

\/ n—1 2m 2m?
E~,m+——+—-—
2 n n2

which is of the (n,m)-type, not containing the logarithm of the determinant of
the adjacency matrix, and thus — in contrast to the estimates (8) and (13) —
applicable to all molecular graphs.
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U3BOJ
I'PAHUIE 3A YKYIIHY EHEPI'UJY n-EJIEKTPOHA

HUBAH I'YTMAH"? 1 KINKAR CH. DAS®

UMpupogno—matmemamuuxy paxyniaein Ynusepsutieina y Kpaiyjesuy, 2Department of Chemistry, Faculty of

Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia u 3Sungkyunkwan University,
Suwon, Republic of Korea

Iat je xparak mperjief HajBXKHHjUX NOMBUX U TOPHUX TPAHUIA 3a YKYIHY EHEprHjy

T-eNIeKTPOHA, Tj. eHeprujy rpada (E). Y HactaBky cy nodujeHe IO jefHa HOBa [0HA U ropma
rpaHuna 3a E, koje Baxe 3a cBe MoneKkyicke rpadose. Taxohe cy HaBefeHe nodosblIaHe Bep-
3Wje TUX rPaHuIa, KOje BaXKe 3a aITEPHAHTHE KOHjYyrOBaHe YTJbOBOLOHUKE.
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