

J. Serb. Chem. Soc. 78 (12) S136-S164 (2013)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Quality parameters and pattern recognition methods as a tool in tracing the regional origin of multifloral honey

KRISTINA B. LAZAREVIĆ¹, JELENA Đ. TRIFKOVIĆ², FILIP Lj. ANDRIĆ², ŽIVOSLAV Lj. TEŠIĆ², IVAN B. ANĐELKOVIĆ^{3#}, DEJAN I. RADOVIĆ⁴, NEBOJŠA M. NEDIĆ⁵ and DUŠANKA M. MILOJKOVIĆ-OPSENICA^{2*}

¹Center for Food Analysis, Zmaja od Noćaja 11, 11000 Belgrade, Serbia, ²Faculty of Chemistry, University of Belgrade, P. O. Box 51, 11158 Belgrade, Serbia, ³Innovation Center, Faculty of Chemistry Ltd., Studentski trg 12–16, 11000 Belgrade, Serbia, ⁴Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia and ⁵Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia

J. Serb. Chem. Soc. 78 (12) (2013) 1875–1892

Doromotor		Kruska	al–Wallis test
raiallietei –	Chi square	Р	Multiple comparison
K	67.03	< 0.0001	Z(B,C,W,E,S,V), C(E)
Ca	34.15	< 0.0001	C(E,B,W,V,Z), S(E,V), E(S,V), Z(C,V)
Mg	67.29	< 0.0001	Z(B,C,W,E,S,V)
Na	8.94	0.1769	_
Zn	19.42	0.0035	B,C (Z,V,S,E,W)
Fe	26.14	0.0002	V(B,C,E,S), Z(B,C,E,S)
Cu	58.70	< 0.0001	Z(B,C,W,E,S,V), C(E), E(S)
Mn	35.54	< 0.0001	Z(V,C,E,S)
Co	12.18	0.0580	-
Cr	20.80	0.0020	E,V(C,W,S,Z)
Ni	49.96	< 0.0001	Z(B,W,V,E,C,S)
Cd	21.45	0.0015	Z(B,W,V,E,C,S)
Moisture	15.91	0.0143	Z,W(B,C,E)
EC	77.68	< 0.0001	Z(B,W,V,E,C,S)
pН	53.84	< 0.0001	Z(B,W,V,E,C,S)
FA	32.91	< 0.0001	C(S,E,V,Z), Z(C,W,S,E)
OR	57.43	< 0.0001	Z(B,C,W,E,S,V)
Trehalose	12.48	0.0521	_
Glucose	16.70	0.0104	W(Z,S,C,V)

TABLE S-I. Kruskal–Wallis test

* Corresponding author. E-mail: dusankam@chem.bg.ac.rs

S136

Parameter —	Kruskal–Wallis test						
	Chi square	Р	Multiple comparison				
Fructose	16.83	0.0076	C(W,E,Z), W(V,S,C)				
Sucrose	19.73	0.0031	Z(B,E,S,V)				
<i>i</i> -Maltose	20.01	0.0028	E(C,V,Z)				
Melezitose	15.87	0.0144	Z,C(S,E,V)				
Gentiobiose +turanose	10.72	0.0974	_				
<i>i</i> -Maltotriose	18.78	0.0045	S,E(V,C)				
Maltose	14.94	0.0207	C(B,Z,E,S,V)				

TABLE S-I. Continued

LINEAR DISCRIMINANT ANALYSIS

Discrimination of samples from the Zlatibor region compared to the other regions of Serbia

TABLE S-II.I. Canonical variate analysis

Function	Eigenvalue	Incl.	Total	R	R^2	F	d f 1	4 f 2	р	Wilk's
		%	%	canonical	canonical	Г	F 0.1.1	a.1.2	Р	λ
1	1.751538	100.0	100.0	0.8815	0.7770	14.3	26	107	< 0.0001	0.223

TABLE S-II.II. Classification count; Z – Zlatibor area, RS – The rest of Serbia; reduction in classification error due to Xs = 97.0 %

A atual		Predicted	
Actual	RS	Ζ	Total
RS	96	0	96
Z	2	36	38
Total	98	36	134

TABLE S-II.III. Standardized canonical coefficients

Variable	Canonical Variate 1
K	-0.750
Ca	-0.464
Mg	0.680
Na	-0.017
Zn	0.007
Fe	-0.024
Cu	-0.133
Mn	-0.181
Со	0.212
Cr	-0.216
Ni	0.482
Cd	-0.078

@096

LAZAREVIĆ et al.

Variable	Canonical Variata 1
variable	
Moisture	0.011
EC	1.681
рН	0.094
FA	-0.497
SR	-0.192
Trehalose	-0.028
Glucose	0.186
Fructose	-0.092
Sucrose	-0.038
<i>i</i> -Maltose	0.025
Melezitose	-0.300
Gentiobiose+turanose	-0.046
<i>i</i> -Maltotriose	-0.053
Maltose	0.0054

TABLE S-II.III. Continued

S138

Discrimination of samples from all regions of Serbia

TABLE S-III.I. Canonical variate analysis

Function	Eigen	Incl.	Total	R	<i>R</i> ²	F	d.f.1	d.f.2	Р	Wilk's
	values	%	%	canonical	canonical					λ
1	3.78	58.6	58.6	0.8894	0.7911	3.3	156	606.4	< 0.0001	0.028
2	1.17	18.2	76.8	0.7349	0.5401	2.1	125	511.8	< 0.0001	0.135
3	0.63	9.8	86.6	0.6220	0.3869	1.6	96	414.5	0.0016	0.294
4	0.52	8.0	94.7	0.5843	0.3414	1.3	69	314.5	0.0898	0.480
5	0.22	3.5	98.1	0.4286	0.1838	0.8	44	212.0	0.7715	0.729
6	0.12	1.9	100.0	0.3277	0.1074	0.6	21	107.0	0.9011	0.893

TABLE S-III.II. Classification count; reduction in classification error due to Xs = 75.6 %

A atual	Predicted									
Actual	Belgrade	Central	Eastern	Southern	Vojvodina	Western ^a	Zlatibor	Total		
Belgrade	3	0	0	0	0	0	0	3		
Central	0	11	0	3	1	0	0	15		
East	0	1	14	6	3	3	0	27		
South	0	1	2	25	0	0	0	28		
Vojvodina	2	0	1	1	12	1	0	17		
Western ^a	0	0	0	1	0	5	0	6		
Zlatibor	0	0	1	0	1	0	36	38		
Total	5	13	18	36	17	9	36	134		

^aWestern region without Zlatibor area

SUPPLEMENTARY MATERIAL

TABLE S-III.III. Standardized canonical coefficients

Variable	Variate 1	Variate 2	Variate 3	Variate 4	Variate 5	Variate 6
K	-0.527	0.813	-0.425	0.476	-0.384	0.160
Ca	-0.693	-0.866	0.852	0.108	0.332	0.289
Mg	0.643	-0.184	0.171	-0.435	-0.018	-0.524
Na	-0.037	0.027	-0.023	-0.055	0.036	0.574
Zn	0.033	-0.055	-0.043	0.328	-0.146	-0.181
Fe	0.004	-0.016	-0.194	-0.222	0.119	-0.446
Cu	-0.194	-0.559	-0.034	0.445	-0.417	0.015
Mn	-0.160	0.266	0.169	0.318	0.297	0.186
Co	0.284	0.162	-0.476	-0.146	0.715	0.186
Cr	-0.302	-0.590	0.070	0.058	-0.489	-0.266
Ni	0.419	-0.081	0.308	-0.372	0.269	-0.076
Cd	-0.110	0.037	0.075	-0.310	0.073	0.134
Moisture	0.045	0.186	0.142	0.237	0.273	-0.367
EC	1.602	-0.548	0.037	0.234	0.210	-0.250
pН	0.029	-0.149	-0.013	-0.614	0.045	0.215
FA	-0.405	0.137	-0.714	-0.590	-0.125	0.362
SR	-0.237	0.086	0.343	0.213	0.208	0.258
Trehalose	0.066	0.206	-0.307	-0.011	-0.125	-0.285
Glucose	0.172	-0.216	-0.271	-0.512	0.084	-0.404
Fructose	-0.112	0.102	0.098	-0.228	-0.115	0.366
Sucrose	0.015	0.203	-0.031	-0.055	-0.237	-0.270
Isomaltose	-0.047	-0.456	-0.204	-0.337	-0.134	0.165
Melezitose	-0.392	0.058	0.741	0.025	-0.265	0.137
Gentiobiose +	-0.076	-0.071	0.087	-0.161	-0.450	0.092
turanose						
Isomaltotriose	0.079	0.404	-0.171	0.649	0.234	-0.097
Maltose	0.035	0.326	0.293	-0.093	-0.149	-0.423

S139

Available online at shd.org.rs/JSCS/

Fig. S1. GIS spatial distribution of multifloral honey mineral components - macro elements. A) K, B) Mg, C) Na and D) Ca.

SUPPLEMENTARY MATERIAL

Fig. S2. GIS spatial distribution of multifloral honey mineral components - micro elements. A) Fe, B) Zn, C) Cu and D) Co.

Fig. S3. GIS spatial distribution of multifloral honey mineral components – trace elements. A) Cd, B) Cr and C) Ni.


```
LAZAREVIĆ et al.
```


LAZAREVIĆ et al.

SUPPLEMENTARY MATERIAL

S155

Fig. S4. GIS spatial distribution of multifloral honey physicochemical parameters. A) pH, B) specific optical rotation, C) free acidity, D) electrical conductivity and E) moisture.

S157

Fig. S5. GIS spatial distribution of polyfloral honey sugar content, major components: A) glucose, B) fructose and C) sucrose.

Available online at shd.org.rs/JSCS/

S159

2013 Copyright (CC) SCS

Fig. S6. GIS spatial distribution of polyfloral honey sugar content, minor components disaccharides: A) maltose, B) isomaltose, C) trehalose and D) gentiobiose + turanose).

Fig. S7. GIS spatial distribution of polyfloral honey sugar content, minor components trisaccharides: A) melesitose and B) isomaltotriose.