

Journal of the Serbian Cresion Chemical Society

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 78 (1) S1-S8 (2013)

SUPPLEMENTARY MATERIAL TO Metal complexes of N'-[2-hydroxy-5-(phenyldiazenyl)benzylidene]isonicotinohydrazide. Synthesis, spectroscopic characterization and antimicrobial activity

ABDOU S. EL-TABL^{1*}, MOHAMAD M. E. SHAKDOFA^{2,3} and ADEL M. E. SHAKDOFA¹

¹Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt, ²Inorganic Chemistry Department, National Research Center, P. O. Box 12622, Dokki, Cairo, Egypt and ³Department of Chemistry, Faculty of Sciences and Arts, King Abdulaziz University, Khulais, Saudi Arabia

J. Serb. Chem. Soc. 78 (1) (2013) 39–55

PHYSICAL, ANALYTICAL AND SPECTRAL DATA FOR THE LIGAND AND ITS COMPLEXES

N'-[2-Hydroxy-5-(phenyldiazenyl)benzylidene]isonicotinohydrazide (H₂L) (1). Yellow color; yield: 95 %; Anal. Calcd. for C₁₉H₁₅N₅O₂ (FW: 345.35): C, 66.08; H, 4.38; N, 20.28 %. Found: C, 65.85; H, 4.37; N, 20.22 %. IR (KBr, cm⁻¹): 3300–3550, 2540–3000 (br) (H₂O/O–H), 3174 (N–H), 1658 (C=O), 1605 (C=N), 1468 (N=N), 1289 (C–O_{ph}), 1004 (N–N); ¹H-NMR (270 MHz, DMSO-*d*₆, δ / ppm): 12.41 (1H, *s*, OH), 11.65 (1H, *s*, NH), 8.76 (1H, *s*, H–C=N), 7.14–8.31 (12H, *m*, aromatic); MS (*m*/*z*): 345 (M⁺); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 270, 320, 350, 375, 420, 455.

[*VO*(*H*₂*L*)(*SO*₄)(*H*₂*O*)] (2). Light brown color; yield: 75 %; Anal. Calcd. for C₁₉H₁₇N₅O₈SV (FW: 526.37): C, 43.35; H, 3.26; N, 13.30; V, 12.72 %. Found: C, 43.29; H, 3.67; N, 13.51; V, 12.89 %. 3426 (br) (H₂O/O–H), 3239 (N–H), 1607 (C=O), 1553 (C=N), 1470 (N=N), 1290 (C–O_{ph}), 1041 (N–N), 575 (V–O), 509 (V–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 290, 345, 360, 395, 425, 450, 520, 575, 700; Magnetic moment (μ_{eff} / μ_B): 1.73; Molar conductivity (Ω^{-1} cm² mol⁻¹): 22.5.

 $[Cu(HL)_2] \cdot 5H_2O$ (3). Yellowish green color; yield: 55 %; Anal. Calcd. for $C_{38}H_{38}CuN_{10}O_9$ (FW: 842.33): C, 54.18; H, 4.55; N, 16.63; Cu, 7.54 %. Found: C, 54.00; H, 4.87; N, 16.32; Cu, 7.42 %; IR (KBr, cm⁻¹): 3391(br) (H₂O/O–H), 1601 (C=N), 1507 (N=C–O), 1464 (N=N), 1285 (C–O_{ph}), 1208 (C–O_{amide}),

Available online at shd.org.rs/JSCS/

^{*} Corresponding author. E-mail: asaeltabl@yahoo.com doi: 10.2298/JSC110307062E

S2

1026 (N–N), 593 (Cu–O), 538 (Cu–O), 466 (Cu–N); UV–Vis (DMSO, 10^{-3} M) (λ / nm): 265, 330, 350, 380, 420, 450, 630; magnetic moment (μ_{eff} / μ_{B}): 1.79; molar conductivity (Ω^{-1} cm² mol⁻¹): 6.9.

[*Cu*(*H*₂*L*)₂*Cl*₂]·2*H*₂*O* (4). Olive color; yield: 70 %; Anal. Calcd. for C₃₈H₃₄Cl₂CuN₁₀O₆ (FW: 861.19): C, 53.00; H, 3.98; N, 16.26; Cl, 8.23, Cu, 7.38 %. Found: C, 52.56; H, 4.01; N, 16.88; Cl, 7.98; Cu, 7.04 %; 3426 (br) (H₂O/O–H), 3198 (N–H), 1611 (C=O), 1570 (C=N), 1476 (N=N), 1278 (C–O_{ph}), 1047 (N–N), 551 (Cu–O), 464 (Cu–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 280, 345, 365, 390, 435, 470, 675; Magnetic moment (μ_{eff} / μ_B): 1.68; Molar conductivity (Ω^{-1} cm² mol⁻¹): 15.4.

[*Cu*(*H*₂*L*)₂(*NO*₃)₂]·*H*₂*O* (5). Olive color; yield: 65 %; Anal. Calcd. for C₃₈H₃₂CuN₁₂O₁₁ (FW: 896.28): C, 50.92; H, 3.60; N, 18.75; Cu, 7.09 %. Found: C, 50.81; H, 3.78; N, 18.46; Cu, 7.10 %; IR (KBr, cm⁻¹): 3428 (br) (H₂O/O–H), 3187 (N–H), 1606 (C=O), 1577 (C=N), 1465 (N=N), 1290 (C–O_{ph}), 1031 (N–N), 534 (Cu–O), 462 (Cu–N); UV-Vis (DMSO, 10⁻³ M) (λ / nm): 265, 330, 350, 390, 405, 440, 650; magnetic moment (μ_{eff} / μ_B): 1.75; molar conductivity (Ω^{-1} cm² mol⁻¹): 13.1.

[*Cu*(*H*₂*L*)₂(*SO*₄)(*H*₂*O*)]·2*H*₂*O* (**6**). Olive color; yield: 63 %; Anal. Calcd. for C₃₈H₃₆CuN₁₀O₁₁S (FW: 904.36): C, 50.47; H, 4.01; N, 15.49; Cu, 7.03 %. Found: C, 50.43; H, 4.04; N, 15.11; Cu, 6.89 %; IR (KBr, cm⁻¹): 3425 (br) (H₂O/O–H), 3174 (N–H), 1606 (C=O), 1546 (C=N), 1468 (N=N), 1292 (C–O_{ph}), 1031 (N–N), 533 (Cu–O), 457 (Cu–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 275, 325, 340, 355, 375, 420, 470, 660; magnetic moment (μ_{eff} / μ_B): 1.77; molar conductivity (Ω⁻¹ cm² mol⁻¹): 19.9.

[*Cu*(*HL*)(*OAc*)(*H*₂*O*)]·1/2*H*₂*O* (7). Green color; yield: 60 %; Anal. Calcd. for C₂₁H₂₀CuN₅O_{5.5} (FW: 493.96): C, 51.06; H, 4.08; N, 14.18; Cu, 12.86 %. Found: C, 51.08; H, 4.31; N, 14.01; Cu, 12.65 %. IR (KBr, cm⁻¹): 3367 (br) (H₂O/O–H), 1602 (C=N), 1507 (N=C–O), 1463 (N=N), 1281 (C–O_{ph}), 1218 (C–O_{amide}), 1026 (N–N), 592 (Cu–O), 538 (Cu–O), 467 (Cu–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 240, 266, 326, 344, 3598, 475, 650 and 740; magnetic moment (μ_{eff} / μ_B): 1.88; molar conductivity (Ω⁻¹ cm² mol⁻¹): 12.4.

[*Ni*(*HL*)]-5*H*₂*O* (8). Beige color; yield: 61 %; Anal. Calcd. for C₃₈H₃₈N₁₀NiO₉ (FW: 837.49): C, 54.50; H, 4.57; N, 16.73; Ni, 7.01 %. Found: C, 54.42; H, 5.01; N, 16.58; Ni, 6.91 %; IR (KBr, cm⁻¹): 3362(br) (H₂O/O–H), 1600 (C=N), 1525 (N=C–O), 1465 (N=N), 1299 (C–O_{ph}), 1207 (C–O_{amide}), 1059 (N–N), 573 (Ni–O), 506 (Ni←O), 476 (Ni←N); UV-Vis (DMSO, 10⁻³ M) (λ / nm): 265, 350, 390, 405, 430, 465, 580, 660, 850; magnetic moment (μ_{eff} / μ_B): 3.01; molar conductivity (Ω^{-1} cm² mol⁻¹): 5.3.

 $[Co(HL)(OAc)(H_2O)] \cdot 1/2H_2O$ (9). Reddish brown color; yield: 58 %, Anal. Calcd. for C₂₁H₂₀CoN₅O_{5.5} (FW: 489.35): C, 51.54; H, 4.12; N, 14.31; Co, 12.04 %. Found: C, 51.71; H, 4.03; N, 14.18; Co, 12.59 %; IR (KBr, cm⁻¹): 3383

Available online at shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

(br) (H₂O/O–H), 1603 (C=N), 1512 (N=C–O), 1464 (N=N), 1293 (C–O_{ph}), 1215 (C–O_{amide}), 1026 (N–N), 595 (Co–O), 563 (Co–O), 480 (Co–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 270, 330, 360, 395, 435, 450, 505, 590, 650; magnetic moment (μ_{eff} / μ_B): 4.42; molar conductivity (Ω^{-1} cm² mol⁻¹): 13.3.

[*Mn*(*HL*)₂]·*H*₂*O* (*10*). Dark yellow color; yield: 55 %, Anal. Calcd. for C₃₈H₃₀MnN₁₀O₅ (FW: 761.66): C, 59.92; H, 3.97; N, 18.39; Mn, 7.21 %. Found: C, 60.08; H, 4.04; N, 18.27; Mn, 7.16 %; IR (KBr, cm⁻¹): 3446 (br) (H₂O/O–H), 1603 (C=N), 1546 (N=C–O), 1467 (N=N), 1312 (C–O_{ph}), 1258 (C–O_{amide}), 1019 (N–N), 594 (Mn–O), 561 (Mn–O), 473 (Mn–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 280, 325, 350, 380, 405, 450, 465, 540, 600, 650; magnetic moment (μ_{eff} / μ_B): 4.87; molar conductivity (Ω⁻¹ cm² mol⁻¹): 6.8.

[*Fe*(*HL*)₂*Cl*]·4*H*₂*O* (*11*). Dark brown color; yield: 66 %; Anal. Calcd. for $C_{38}H_{36}CIFeN_{10}O_8$ (FW: 852.05): C, 53.57; H, 4.26; N, 16.44; Cl, 4.16, Fe, 6.55 %. Found: C, 53.44; H, 4.20; N, 16.45; Cl, 3.99; Fe, 6.30 %; IR (KBr, cm⁻¹): 3385 (br) (H₂O/O–H), 3211 (N–H), 1607 (C=O), 1538 (C=N), 1458 (N=N), 1244 (C–O_{ph}), 1020 (N–N), 610 (Fe–O), 566 (Fe←O), 502 (Fe←N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 280, 330, 350, 385, 415, 460, 580, 640; magnetic moment 5.34; molar conductivity: 80.5 Ω⁻¹ cm² mol⁻¹.

[*Ru*(*L*)*Cl*(*H*₂*O*)₂]·*H*₂*O* (*1*2). Dark brown color; yield: 72 %; Anal. Calcd. for C₁₉H₁₉ClN₅O₅Ru (FW: 533.91): C, 42.74; H, 3.59; N, 13.12; Cl, 6.64, Ru, 18.93 %. Found: C, 42.84; H, 3.96; N, 13.28; Cl, 6.54; Ru, 18.72 %; IR (KBr, cm⁻¹): 3433 (br) (H₂O/O–H), 1602 (C=N), 1489 (N=N), 1272 (C–O_{ph}), 1019 (N–N), 593 (Ru–O), 525 (Ru–O), 482 (Ru–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 260, 320, 345, 375, 430, 460, 560, 650; magnetic moment (μ_{eff} / μ_B): 65; molar conductivity: 21.5 Ω^{-1} cm² mol⁻¹.

[*Zn*(*L*)(*H*₂*O*)] (*13*). Dark yellow color; yield: 63 %; Anal. Calcd. for C₁₉H₁₅N₅O₃Zn (FW: 426.73): C, 53.48; H, 3.54; N, 16.41; M, 15.32 %. Found: C, 53.90; H, 3.70; N, 16.42; M, 15.20 %; IR (KBr, cm⁻¹): 3447 (br) (H₂O/O–H), 1606 (C=N), 1515 (N=C–O), 1479 (N=N), 1228 (C–O_{ph}), 1207 (C–O_{amide}), 1035 (N–N), 586 (Zn–O), 510 (Zn–O), 469 (Zn–N); ¹H-NMR (270 MHz, DMSO-*d*₆, δ / ppm): 8.76 (1H, *s*, H–C=N), 6.70–7.96 (12H, *m*, aromatic); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 280, 320, 360, 400, 430, 475; magnetic moment (μ_{eff} / μ_{B}): diamagnetic; molar conductivity (Ω^{-1} cm² mol⁻¹): 6.4.

[*Cd*(*H*₂*L*)₂(*OAc*)₂]·*TH*₂*O* (*14*). Deep yellow color; yield: 51 %; Anal. Calcd. for C₄₂H₅₀CdN₁₀O₁₅ (FW: 1047.32): C, 48.17; H, 4.81; N, 13.37; Cd, 10.73 %. Found: C, 48.29; H, 4.65; N, 13.55; Cd, 11.21 %; IR (KBr, cm⁻¹): 3369 (br) (H₂O/O–H), 3176 (N–H), 1607 (C=O), 1546 (C=N), 1464 (N=N), 1292 (C–O_{ph}), 1020 (N–N), 592 (Cd–O), 533 (Cd←O), 492 (Cd←N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 280, 330, 365, 405, 425, 465; magnetic moment (μ_{eff} / μ_{B}): diamagnetic; molar conductivity (Ω⁻¹ cm² mol⁻¹): 8.5.

El-TABL, SHAKDOFA and SHAKDOFA

[(UO₂)(L)(H₂O)₂]·H₂O (15). Orange color; yield: 77 %; Anal. Calcd. for C₁₉H₁₉N₅O₇U (FW: 667.41): C, 34.19; H, 2,87; N10.49; UO₂, 40.48 %. Found: C, 34.77; H, 3.39; N, 8.54; U, 37.05 %; IR (KBr, cm⁻¹): 3401(br) (H₂O/O–H), 1603 (C=N), 1522 (C=N–O), 1472 (N=N), 1257 (C–O_{ph}), 1017 (N–N), 590 (U–O), 549 (U–O), 505 (U–N); ¹H-NMR (270 MHz, DMSO- d_6 , δ / ppm): 7.17–8.25 (12H, *m*, aromatic), 9.01 (1H, *s*, H–C=N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 270, 325, 360, 395, 440, 480, 530; magnetic moments (μ_{eff} / μ_{B}): diamagnetic; molar conductivity (Ω^{-1} cm² mol⁻¹): 9.5.

[*Hg*(*HL*)₂]·4*H*₂*O* (*16*). Reddish brown color; yield: 72 %; Anal. Calcd. for C₃₈H₃₆HgN₁₀O₈ (FW: 962.27): C, 47.48; H, 3.77; N, 14.57; Hg, 20.87 %. Found: C, 47.47; H, 3.69; N, 14.68; Hg, 20.25 %; IR (KBr, cm⁻¹): 3432 (br) (H₂O/O–H), 3207 (N–H), 1615 (C=O), 1549 (C=N), 1455 (N=N), 1227 (C–O_{ph}), 1039 (N–N), 601 (Hg–O), 536 (Hg–O), 496 (Hg–N); UV–Vis (DMSO, 10⁻³ M) (λ / nm): 270, 330, 355, 380, 420, 460; magnetic moment (μ_{eff} / μ_B): diamagnetic; molar conductivity (Ω^{-1} cm² mol⁻¹): 10.5.

SOME SPECTRA OF THE LIGAND AND SELECTED COMPLEXES

Fig. S-1. The IR spectrum of the ligand $[H_2L]$ (1).

Available online at shd.org.rs/JSCS/

 $\Theta \Theta \Theta$

SUPPLEMENTARY MATERIAL

S5

Available online at shd.org.rs/JSCS/

2013 Copyright (CC) SCS

Available online at shd.org.rs/JSCS/

S6

SUPPLEMENTARY MATERIAL

S7

Fig. S-7. The ESR spectrum of the vanadyl(II) complex 2.

Available online at shd.org.rs/JSCS/

2013 Copyright (CC) SCS

Fig. S-9. The ESR spectrum of copper(II) complex $\mathbf{6}$.

Available online at shd.org.rs/JSCS/

