

J. Serb. Chem. Soc. 76 (6) 841–845 (2011) JSCS–4164 JSCS-info@shd.org.rs • www.shd.org.rs/JSCS UDC 582.998.1+543.422.25:547.562:547.458.3 Short communication

SHORT COMMUNICATION A new trisaccharide derivative from *Prenanthes purpurea*

MICHAELA POSCH¹, KARIN JÖHRER², SERHAT SEZAI CICEK¹, RICHARD GREIL^{2,3}, ERNST P. ELLMERER⁴ and CHRISTIAN ZIDORN^{1*}

¹Institut für Pharmazie der Universität Innsbruck, Abteilung Pharmakognosie, Josef-Moeller-Haus, Innrain 52, A-6020 Innsbruck, ²Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, ³Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Medical University Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg and ⁴Institut für Organische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

(Received 10 December 2010, revised 26 January 2011)

Abstract: A methanolic extract of *Prenanthes purpurea* L. leaves yielded 1,6"--di-*O*-cinnamoyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -*O*- α -L-rhamnopyranosyl- $(1\rightarrow 6)$ --*O*- β -D-glucopyranoside. The NMR and physical data of this new natural compound are reported.

Keywords: Asteraceae; Cichorieae; Hypochaeridinae; phenolic acids; *Prenanthes purpurea* L.; trisaccharides.

INTRODUCTION

Prenanthes purpurea L. is distributed over Central and Southern Europe and the Caucasus.¹ Recent molecular results revealed that the genus *Prenanthes* is monotypic and a member of the Hypochaeridinae subtribe within the Cichorieae tribe of the Asteraceae family.² The present communication deals with the isolation and structure elucidation of 1,6"-di-*O*-cinnamoyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -*O*- α -L-rhamnopyranosyl- $(1\rightarrow 6)$ -*O*- β -D-glucopyranoside, a new di-*O*-cinnamoyl-trisaccharide derivative from a methanolic extract of leaves of *P. purpurea* of Austrian origin. The structure elucidation was based on extensive NMR studies as well as HR-MS data.

RESULTS AND DISCUSSION

Compound **1** was isolated from the ethyl acetate layer of the methanolic extract of *P. purpurea* leaves employing silica gel column chromatography (CC), repeated Sephadex LH-20 CC and semi-preparative RP-18 HPLC.

Available online at www.shd.org.rs/JSCS/

^{*}Corresponding author. E-mail: Christian.H.Zidorn@uibk.ac.at doi: 10.2298/JSC101210072P

POSCH et al.

Physical data. Amorphous white compound, glass transition above 141 °C; FTIR (ZnSe, cm⁻¹): 3420 (br), 2920, 1710, 1636, 1578, 1529, 1496, 1450, 1332, 1312, 1283, 1204, 1174, 1074, 914, 865, 840, 807, 769, 713, 685. HRMS (*m*/*z*): 771.2520 [M+Na]⁺, calculated for C₃₆H₄₄O₁₇Na⁺: 771.2471. UV (MeOH) (λ_{max} / / nm (log ε)) 278 (4.22); [*a*]_D²⁰ -10° (MeOH; *c* 0.0267 g ml⁻¹).

The ESI mass spectrum of compound 1 displayed signals at m/z = 771 [M+Na]⁺, 641 [M–cinnamoyl+Na]⁺, and 511 [M–2-cinnamoyl+Na]⁺ in the positive mode. Together with the ¹H-NMR and ¹³C-NMR data, which showed signals of three sugar moieties and two cinnamoyl moieties, these major mass signals were indicative of a molecular formula of C₃₆H₄₄O₁₇. Based on one- and two-dimensional NMR experiments (Table I), the three sugar moieties were identified as two glucose and one rhamnose moiety. Linkage from the anomeric carbon of the rhamnose moiety to *O*-6 of the first glucose moiety was revealed by an HMBC crosspeak from H-1' to C-6. Likewise, an HMBC crosspeak from the anomeric proton of the second glucose moiety to the rhamnose moiety in this position. Based on their ¹H-NMR coupling constants, the anomeric protons were identified as β -configured for the two glucose moieties and α -configured for the rhamnose moiety. Thus, the sugar backbone of the structure was identified as a β -D-glucopyranosyl-(1 \rightarrow 3)-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside.

TABLE I. NMR data, δ/ppm , of 1,6"-di-O-cinnamoyl- β -glucopyranosyl-(1 \rightarrow 3)-O- α -rhamnopyranosyl-(1 \rightarrow 6)-O- β -D-glucopyranoside (1) isolated from *P. purpurea* (measured in DMSO- d_6 at 600 and 150 MHz for ¹H and ¹³C, respectively; referenced to solvent residual signals and solvent signals of DMSO- d_6 , ¹H-NMR: 2.50 ppm and ¹³C-NMR: 39.50 ppm, respectively; coupling constants in Hz)

Position	¹ H-NMR	¹³ C-NMR	Position	¹ H-NMR	¹³ C-NMR		
	Glucose 1			Glucose 2			
1	5.48 1H, d (7.5)	94.1	1"	4.46 1H, d (7.5)	104.2		
2	3.24 1H, <i>m</i> ^a	72.1	2"	3.10 1H, br t (8.0)	73.5		
3	3.30 1H, <i>m</i> ^a	75.9	3"	3.24 1H, <i>m</i> ^a	75.6		
4	3.06 1H, br t (9.0)	69.6	4"	3.19 1H, <i>m</i> ^a	69.5		
5	3.13 1H, <i>m</i> ^a	76.5	5"	3.47 1H, <i>m</i> ^a	76.1		
6	3.80 1H, <i>m</i> ^a	66.9	6"	4.33 1H, dd (12.0, 2.0)	63.4		
	3.40 1H, <i>m</i> ^a			4.25 1H, dd (12.0, 6.0)			
Cinnamoyl 1			Cinnamoyl 2				
1""	_	133.8	1""	-	133.9		
2""/6""	7.41 2H, AA'BB'C	128.9	2"""/6""	7.41 2H, AA'BB'C	128.9		
3""/5""	7.70 2H, AA'BB'C	128.4	3""/5""	7.70 2H, AA'BB'C	128.4		
4"" ^b	7.43 1H, AA'BB'C	130.4	4"" ^b	7.43 1H, AA'BB'C	130.6		
7""	7.70 1H, d (16.0)	145.6	7''''	7.62 1H, d (16.0)	144.6		
8""	6.57 1H, d (16.0)	117.5	8''''	6.61 1H, d (16.0)	117.9		
9""	_	164.8	9''''	_	166.2		

Available online at www.shd.org.rs/JSCS/

842

843

Position	¹ H-NMR	¹³ C-NMR
	Rhamnose	
1'	4.49 1H, <i>d</i> (1.5)	100.3
2'	3.83 1H, <i>m</i> ^a	69.3
3'	3.54 1H, <i>m</i> ^a	81.6
4'	3.40 1H, <i>m</i> ^a	70.5
5'	3.51 1H, <i>m</i> ^a	67.7
6'	1.14 3H, <i>d</i> (6.0)	17.8

TABLE I.	Continue	d
----------	----------	---

^aOverlapping signals; ^bsignals might be exchangeable

This trisaccharide is known as a constituent of other natural products, *e.g.*, flavonoids found in tea (*Camellia sinensis* (L.) Kuntze).^{3,4} Esterification of the anomeric C of the first glucose moiety was also proven by an HMBC experiment, which revealed a crosspeak from H-1 to the carbonyl moiety (C-9''') of one of the two cinnamoyl moieties of the molecule. HMBC crosspeaks from the two protons in position 6' of the second glucose moiety to the carbonyl (C-9''') of the second cinnamoyl moiety revealed that the second cinnamoyl moiety was attached *via* an ester linkage in this position. Conclusively, compound **1** was identified as 1,6''-di-*O*-cinnamoyl- β -glucopyranosyl-(1 \rightarrow 3)-*O*- α -rhamnopyranosyl-(1 \rightarrow 6)-*O*- β -glucopyranoside (Fig. 1). This compound represents a new natural product.

Fig. 1. 1,6"-Di-O-cinnamoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-O- α -L-rhamnopyranosyl-(1 \rightarrow 6)-O- β -D-glucopyranoside (1) isolated from the leaves of *Prenanthes purpurea* L.

Additionally, extracts of flowering heads and leaves were analyzed separately for the occurrence of known phenolic acids using established protocols.^{5,6} In the course of these investigations, in extracts of both leaves and flowering heads, the following caffeic acid derivatives were detected by HPLC/DAD and HPLC/ /MS: caffeoyltartaric acid, cichoric acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid.

Induction of apoptosis was measured by flow cytometry in human CCRF--CEM and in human NCI-H929 cells.⁷ Both after 24 h and after 48 h, compound 1 showed no cytotoxicity up to the highest concentration tested (100 μ M).

POSCH et al.

EXPERIMENTAL

Plant material

Leaves of *Prenanthes purpurea* L. were collected in August 1996 NW Wieserberg, Zell/Salzburg/Austria at 1200 m above mean sea level (coordinates (WGS84): N 47°27'; E 12°46'). Voucher specimens were deposited in the herbarium of the Institut für Pharmazie (CZ-960930i) and the private herbarium of CZ.

Extraction and isolation

Air-dried, ground leaves (468 g) of *P. purpurea* were exhaustively macerated with MeOH to yield 64.1 g of crude extract after evaporation of the solvent *in vacuo*. The crude extract was re-dissolved in a mixture of MeOH and H₂O (1/2, v/v) and successively partitioned with petroleum ether 40–60 °C , EtOAc, and *n*-BuOH. The EtOAc layer was brought to dryness *in vacuo* to yield 7.95 g of residue. This residue was first fractionated by silica gel column (150 cm×2.0 cm) chromategraphy using a gradient of CH₂Cl₂ and MeOH. Fractions containing **1** were successively (three times) fractionated on Sephadex LH-20 using a mixture of methanol, acetone and water (3/1/1, v/v/v) as the mobile phase. Impure compound **1** (98.5 mg) was finally purified using semi-preparative RP-18 HPLC (Dionex-P580 pump, ASI-100 autosampler, UVD170U UV-detector, and Gilson-206 fraction collector; Waters (7.8 mm×100 mm) XTerra-Prep-MS-C18 column (5 µm)) using a gradient of H₂O and CH₃CN to yield 44.5 mg of **1**.

Characterization

Melting point/glass transition: Kofler hot-stage microscope, uncorrected. FTIR: Bruker IFS 25; samples were applied to a ZnSe disk and measured in the transmission mode. UV: Shimadzu U-2000 UV–Vis photometer. Optical rotation: Perkin Elmer Polarimeter 341. ESIMS and HRMS: Daltronics-Esquire-3000 (ion trap) and Finnigan-SSQ-7000 (quadrupole) mass spectrometers, respectively. NMR: Bruker Ultrashield 600 Plus.

Bioactivity

Induction of apoptosis was measured in human CCRF-CEM (T-acute lymphocytic leukemia cell line) and in human NCI-H929 (multiple myeloma cell line) cells by flow cytometry using established protocols.⁷ Briefly, 0.5×10^6 cells ml⁻¹ were incubated for 24 and 48 h with or without compound (1, 10, 50 or 100 μ M) dissolved in DMSO. Analyses were performed in quadruplicate and appropriate solvent controls were included. The extent of apoptosis was calculated as percentage of AnnexinV/PI negative cells compared to the controls.

Acknowledgements. The authors wish to thank R. Spitaler (Innsbruck/Austria) for proofreading and three anonymous reviewers for valuable suggestions to amend the manuscript.

Available online at www.shd.org.rs/JSCS/

ИЗВОД

НОВИ ТРИСАХАРИДИ ИЗОЛОВАНИ ИЗ Prenanthes purpurea

MICHAELA POSCH¹, KARIN JÖHRER², SERHAT SEZAI CICEK¹, RICHARD GREIL^{2,3}, ERNST P. ELLMERER⁴ и CHRISTIAN ZIDORN¹

¹Institut für Pharmazie der Universität Innsbruck, Abteilung Pharmakognosie, Josef-Moeller-Haus, Innrain 52, A-6020 Innsbruck, ²Tyrolean Cancer Research Institute, Innrain 66, A 6020 Innsbruck, ³Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Medical University Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg u⁴Institut für Organische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Из метанолног екстракта лишћа биљке *Prenanthes purpurea* L. Изоловани су 1,6"-дицинамоил- β -D-глукопиранозил-(1 \rightarrow 3)-O- α -L-рамнопиранозил-(1 \rightarrow 6)-O- β -D-глукопиранозиди. Приказани су HMP спектри и аналитички подаци нових природних једињења.

(Примљено 10. децембра 2010, ревидирано 26. јануара 2011)

REFERENCES

- 1. H. Meusel, E. J. Jäger, *Vergleichende Chorologie der zentraleuropäischen Flora*, Vol. 3, Gustav Fischer Verlag, Jena, Germany, 1992, p. 540
- N. Kilian, B. Gemeinholzer, H. W. Lack, in Systematics, Evolution, and Biogeography of Compositae, V. A. Funk, A. Susanna, T. F. Stuessy, R. J. Bayer, Eds., IAPT, Vienna, Austria, 2009, pp. 343–383
- 3. A. Finger, U. H. Engelhardt, V. Wray, J. Sci. Food Agric. 55 (1991) 313
- 4. S. Scharbert, N. Holzmann, T. Hofmann, J. Agric. Food Chem. 52 (2004) 3498
- 5. P. Fusani, C. Zidorn, J. Food Comp. Anal. 23 (2010) 658
- 6. C. Zidorn, B. Schubert, H. Stuppner, Biochem. Syst. Ecol. 33 (2005) 855
- G. Koopman, C. P. Reutelingsperger, G. A. M. Kuijten, R. M. J. Keehnen, S. T. Pals, M. H. J. van Oers, *Blood* 84 (1994) 1415.