

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 76 (3) S5–S17 (2011)

SUPPLEMENTARY MATERIAL TO Synthesis and biological activity of some triazole-bearing benzimidazole derivatives

K. F. ANSARI, C. LAL* and R. K. KHITOLIYA

Department of Chemistry, Harcourt Butler Technological Institute, Kanpur-208002, India J. Serb. Chem. Soc. 76 (3) (2011) 341–352

TABLE I-S. Physical and analytical properties of compounds 4a-k

N CH₃ N H CH₂CONHN=C

Х

		Yield	Mn		MW	Recrystalization	Calcd	.: Fou	nd. %
Compd	. X	%	°C	Formula	g mol ⁻¹	solvent	C	<u>н</u>	N
4a	_	78	170-72	$C_{17}H_{16}N_4O$	292.33	Methanol	69.85;	5.52;	19.17;
							69.83	5.50	19.15
4b	$4-CH_3$	75	188–90	$C_{18}H_{18}N_4O$	306.36	Methanol	70.57;	5.92;	18.29;
			105 05	a u v o			70.54	5.90	18.27
4c	$4-CH_2CH_3$	69	195–97	$C_{19}H_{20}N_4O$	320.38	Methanol	71.23;	6.29;	17.49;
4d	A-CH-CH-CH	72	106_08	C. H. N.O	33/ /1	Methanol	71.23	0.27 6.63	16.75
τu	4-CH2CH2CH2	3 12	170-70	$C_{20} I_{22} I_{4} O$	554.41	Wiethanoi	71.80	6.60	16.75,
4e	2-OH	82	182-84	$C_{17}H_{16}N_4O_2$	308.33	Methanol-water	66.22;	5.23;	18.17;
				17 10 4 2			66.20	5.21	18.15
4f	4-OH	74	185–87	$C_{17}H_{16}N_4O_2$	308.33	Methanol-water	66.22;	5.23;	18.17;
							66.21	5.20	18.15
4g	2-OCH_3	75	160–62	$C_{18}H_{18}N_4O_2$	322.36	Acetone	67.07;	5.63;	17.38;
41.	4 0.011	70	160 71	C II N O	222.20	A = = (= = =	67.05	5.60	17.36
4 n	4-0CH ₃	70	169-/1	$C_{18}H_{18}N_4O_2$	322.30	Acetone	67.07;	5.63;	17.38;
4 i	2-C1	81	196_98	C. H. N.OC	1326 78	Methanol	67 48	4 63	17.50
-11	2 61	01	170 70	01/11/51 4000	1520.70	Wiethanor	62.46	4.61	17.14
4j	4-Cl	80	178-80	$C_{17}H_{15}N_4OC$	1326.78	Methanol-water	62.48;	4.63;	17.15;
-							62.46	4.60	17.14
4 k	$4-NH_2$	73	150-52	$C_{17}H_{17}N_5O$	307.35	Acetone	66.43;	5.58;	22.79;
							66.41	5.56	22.77

*Corresponding author. E-mail: c_lal12@rediffmail.com

S5

Available online at www.shd.org.rs/JSCS

2011 Copyright (CC) SCS

TABLE II-S. Physical and analytical properties of compounds **4**I–v

IN	
CH ₃	
Ν	CH ₃
CH ₂ CONHN	I=C

Х

Х

Comrd	v	Yield	M.p.	Eamoula	MW	Recrystalization	Calcd	.; Fou	nd, %
Compa	. А	%	°Ĉ	Formula	g mol ⁻¹	solvent	С	Η	Ν
41	_	80	160-62	$C_{18}H_{18}N_4O$	306.36	Glacial acetic	70.57;	5.92;	18.29;
						acid	70.55	5.90	18.27
4m	$4-CH_3$	79	180-82	$C_{19}H_{20}N_4O$	320.38	Ethanol	71.23;	6.29;	17.49;
							71.20	6.27	17.46
4n	$4-CH_2CH_3$	78	188–90	$C_{20}H_{22}N_4O$	334.41	Ethanol	71.83;	6.63;	16.75;
							71.81	6.60	16.73
4 0	4-CH ₂ CH ₂ CH ₂	3 75	195–97	$C_{21}H_{24}N_4O$	348.44	Ethanol	72.39;	6.94;	16.08;
							72.36	6.92	16.06
4p	2-OH	82	178-80	$C_{18}H_{18}N_4O_2$	322.36	Glacial acetic	67.07;	5.63;	17.38;
						acid	60.05	5.61	17.33
4q	4-OH	74	184–86	$C_{18}H_{18}N_4O_2$	322.36	Glacial acetic	67.07;	5.63;	17.38;
						acid	60.05	5.60	17.38
4r	$2-OCH_3$	75	145–47	$C_{19}H_{20}N_4O_2$	336.38	Chloroform-	67.84;	5.99;	16.66;
						water	67.82	5.97	16.64
4 s	$4-OCH_3$	72	153–55	$C_{19}H_{20}N_4O_2$	336.38	Chloroform-	67.84;	5.99;	16.66;
						water	67.82	5.97	16.63
4t	2-Cl	81	178-80	$C_{18}H_{17}N_4OC$	1340.80	Chloroform-	63.44;	5.03;	16.44;
						water	63.41	5.01	16.42
4u	4-Cl	80	171-73	$C_{18}H_{17}N_4OC$	1340.80	Chloroform-	63.44;	5.03;	16.44;
						water	63.42	5.01	16.41
4 v	$4-NH_2$	73	180-82	$C_{18}H_{19}N_5O$	321.34	Acetic acid	67.27;	5.96;	21.79;
							67.25	5.94	21.76

TABLE III-S. Physical and analytical properties of compounds 5a-k

Ν

Ν

CH₃

CH₂CONHNHCSHN

Compd.	Х	Yield %	M.p. °C	Formula	MW g mol ⁻¹	Recrystalization solvent	Calcd C	.; Fou H	nd, % N
5a	_	76	170–72	C ₁₇ H ₁₇ N ₅ OS	339.4g1	Methanol	60.16; 60.14	5.05;	20.63;
5b	4-CH ₃	79	189–91	$C_{18}H_{19}N_5OS$	353.44	Methanol	61.17;	5.42; 5.40	19.81;
5c	4-CH ₂ CH ₃	76	200-02	$C_{19}H_{21}N_5OS$	367.46	Methanol	62.10; 62.08	5.76; 5.74	19.06; 19.03

SUPPLEMENTARY MATERIAL

TABLE III-S. Continued

C	V	Yield	M.p.	F 1-	MW	Recrystalization	Calcd	.; Fou	nd, %
Compd	. X	%	°Ĉ	Formula	g mol ⁻¹	solvent	С	Н	Ν
5d	4-CH ₂ CH ₂ CH ₃	3 71	197–99	$C_{20}H_{23}N_5OS$	381.49	Methanol	62.97;	6.08;	18.36;
							62.95	6.06	18.33
5e	2-OH	71	182–84	$C_{17}H_{17}N_5O_2S$	355.41	Methanol-	57.45;	4.82;	19.70;
						water	57.42	4.80	19.68
5f	4-OH	80	185–87	$C_{17}H_{17}N_5O_2S$	355.41	Methanol-	57.45;	4.82;	19.70;
						water	57.43	4.80	19.65
5g	$2-OCH_3$	78	160–62	$C_{18}H_{19}N_5O_2S$	369.44	Acetone	58.52;	5.18;	18.96;
							58.50	5.16	18.94
5h	$4-OCH_3$	82	169–71	$C_{18}H_{19}N_5O_2S$	369.44	Acetone	58.52;	5.18;	18.96;
							58.50	5.15	18.93
5i	2-Cl	85	196–98	C ₁₇ H ₁₆ N ₅ OSCI	373.85	Methanol	54.61;	4.31;	18.73;
							54.59	4.29	18.70
5ј	4-Cl	74	178 - 80	C ₁₇ H ₁₆ N ₅ OSCI	373.85	Methanol-	54.61;	4.31;	18.73;
						water	54.60	4.28	18.70
5k	$4-NH_2$	82	150–52	$C_{17}H_{18}N_6OS$	354.42	Acetone	57.61;	5.12;	23.71;
							57.59	5.10	23.70

TABLE IV-S. Physical and analytical properties of compounds $\bf 6a{-}k$ $_{\rm N}$

Comnd	v	Yield	M.p.	Eormula	MW	Recrystalization	Calcd	.; Fou	nd, %
Compu.	- Λ	%	°C	Formula	g mol ⁻¹	solvent	С	Η	Ν
6a	_	78	184–86	$C_{17}H_{15}N_5S$	321.39	Ethanol	63.53;	4.70;	21.79;
							63.51	4.68	21.76
6b	$4-CH_3$	74	192–94	$C_{18}H_{17}N_5S$	335.42	Ethanol	64.45;	5.11;	20.88;
							64.43	5.10	20.86
6c	$4-CH_2CH_3$	72	198–00	$C_{19}H_{19}N_5S$	349.45	Ethanol	65.30;	5.48;	20.04;
							65.27	4.47	20.02
6d	4-CH ₂ CH ₂ CH ₃	, 70	196–98	$C_{20}H_{21}N_5S$	363.46	Ethanol	66.09;	5.82;	19.27;
							66.06	5.79	19.25
6e	2-OH	79	197–99	$C_{17}H_{15}N_5OS$	337.39	Ethanol	60.52;	4.48;	20.76;
							60.50	4.46	20.74
6f	4-OH	70	181–83	$C_{17}H_{15}N_5OS$	337.39	Ethanol	60.52;	4.48;	20.76;
							60.50	4.45	20.73
6g	$2-OCH_3$	65	165–67	$C_{18}H_{17}N_5OS$	351.42	Ethanol-water	61.52;	4.88;	19.93;
							61.51	4.85	19.90

2011 Copyright (CC) SCS

ANSARI, LAL and KHITOLIYA

TABLE IV-S. Continued

Compd	v	Yield	M.p.	Earmanla	MW	Recrystalization	ion Calcd.; Found, %			
Compa.	Λ	%	°Ċ	Formula	g mol ⁻¹	solvent	С	Η	Ν	
6h	4-OCH ₃	67	178-80	C ₁₈ H ₁₇ N ₅ OS	351.42	Ethanol-water	61.52;	4.88;	19.93;	
							61.50	4.85	19.90	
6i	2-Cl	77	181-83	$C_{17}H_{14}N_5SCl$	355.84	Acetone-water	57.38;	3.97;	19.68;	
							57.36	3.95	19.65	
6j	4-Cl	82	177–79	$C_{17}H_{14}N_5SCl$	355.84	Acetone-water	57.38;	3.97;	19.68;	
							57.36	3.95	19.65	
6k	$4-NH_2$	75	148–50	$C_{17}H_{18}N_6S$	336.41	Ethanol	60.69;	4.79;	24.98;	
							60.67	4.77	24.96	

SPECTRAL DATA OF THE SYNTHESIZED COMPOUNDS

2-(2-Methyl-1H-benzimidazol-1-yl)-N'-(phenylmethylidene)acetohydrazide (4a). IR (KBr, cm⁻¹): 1659 (-C=O amide). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.60 (*s*, 3H, -CH₃ at C-2 of Bz), 3.77 (*s*, 2H, -N-CH₂), 6.39-7.61 (*m*, 9H, *J* = 4.2 Hz, 5.5 Hz, Ar-H), 9.08 (*s*, 1H, -CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.35 (-CH₃ at C-2 of benzimidazole), 50.80 (-CH₂), 175.42 (amide carbon), 145.50 (-N=CH), 135.19, 130.52, 111.31, 107.79, 122.24, 122.10, 137.43, 130.46, 114.35, 146.52, 125.47 (aromatic carbons). MS (*m*/*z*): 292 (M⁺), 277, 266, 264, 250.

2-(2-Methyl-1H-benzimidazol-1-yl)-N'-[(E)-(2-methylphenyl)methylidene]acetohydrazide (**4b**). IR (KBr, cm⁻¹): (-C=O amide). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.32 (*s*, 3H, -CH₃), 2.51 (*s*, 3H, -CH₃ at C-2 of Bz), 4.62 (*s*, 2H, -N-CH₂), 7.0 (*s*, 1H, -CONH), 7.22-7.79 (*m*, 8H, *J* = 4.5, 5.1, 3.9 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (-CH₃ at C-2 of benzimidazole), 39.7 (-CH₂), 171.0 (amide carbon), 147.7 (-N=CH), 16.7 (-CH₃), 149.3, 142.2, 134.2, 137.5, 131.0, 128.8. 128.2, 123.0, 119.8, 110.0 (aromatic carbons). MS (*m*/*z*): 306 (M⁺).

N'-[(E)-(2-*Ethylphenyl*)*methylidene*]-2-(2-*methyl*-1H-*benzimidazo*l-1-*y*)*ace-tohydrazide* (**4***c*). IR (KBr, cm⁻¹): 1665 (–C=O amide). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 1.25 (*t*, 3H, *J* = 3.5, 1.2 Hz, –CH₂CH₃), 2.51 (*s*, 3H, –CH₃ at C-2 Bz), 2.60 (*q*, 2H, *J* = 4.7 and 1.2 Hz, –CH₂CH₃), 4.62 (*s*,2H, –N–CH₂), 7.0 (*s*, 1H, –CONH), 7.22–7.72 (*m*, 8H, *J* = 6.2, 4.9 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (–CH₃ at C-2 of benzimidazole), 39.7 (–CH₂), 171.0 (amide carbon), 168.8 (–N=C), 17.0 (–CH₃), 27.9 (–CH₂), 14.5 (–CH₃), 149.3, 142.2, 134.2, 130.9, 128.3, 124.4, 126.0, 123.0, 119.8, 110.0 (aromatic carbons). MS (*m*/*z*): 320 (M⁺).

2-(2-Methyl-1H-benzimidazol-1-yl)-N'-[(E)-(2-propylphenyl)methylidene]acetohydrazide (4d). IR (KBr, cm⁻¹): 1670 (–C=O amide); ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.32 (*s*, 3H, –CH₃), 2.51 (*s*, 3H, –CH₃ at C-2 of Bz), 4.62 (*s*, 2H, –N–CH₂), 7.0 (*s*, 1H, –CONH), 7.22–7.52 (*m*, 8H, *J* = 6.2 and 4.7 Hz, Ar–H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (–CH₃ at C-2 of benzimida-

zole), 39.7 (–CH₂), 171.0 (amide carbon), 147.7 (–N=CH), 16.7 (–CH₃), 149.3, 142.2, 134.2, 137.5, 131.0, 128.8. 128.2, 123.0, 119.8, 110.0 (aromatic carbons). MS (m/z):334 (M⁺).

N'-[(2-Hydroxyphenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4e). IR (KBr, cm⁻¹): 1672 (-C=O amide), 907 (Ar–OH) cm⁻¹. ¹H--NMR (300 MHz, CDCl₃, δ / ppm): δ 2.61 (*s*, 3H, –CH₃ at C-2 Bz), 3.81 (*s*, 2H, –N–CH₂), 6.53–7.68 (*m*, 8H, *J* = 6.2 and 4.7 Hz, Ar–H), 9.12 (*s*, 1H, –CONH), 12.25 (*s*, 1H, Ar–OH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.31 (–CH₃ at C-2 of benzimidazole), 50.82 (–CH₂), 175.73 (amide carbon), 147.79 (–N=CH), 135.19, 130.52, 111.31, 107.79, 122.24, 122.10, 137.43, 131.23, 115.32, 141.65, 124.23 (aromatic carbons). MS (*m*/*z*): 308 (M⁺), 293, 282, 280, 266.

N'-[(4-Hydroxyphenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1yl)acetohydrazide (4f). IR (KBr, cm⁻¹): 1677 (-C=O amide), 890 (Ar–OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.65 (*s*, 3H, –CH₃ at C-2 Bz), 3.75 (*s*, 2H, –N–CH₂), 6.48–8.10 (*m*, 8H, *J* = 6.2 and 4.7 Hz, Ar–H), 9.10 (*s*, 1H, –CONH), 9.68 (*s*, 1H, Ar–OH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.30 (–CH₃ at C-2 of benzimidazole), 50.83 (–CH₂), 172.60 (amide carbon), 145.87 (–N=CH), 141.90, 135.98, 118.45, 102.45, 123.14, 123.30, 146.41, 160.65, 131.88, 128.56, 117.97, 116.23 (aromatic carbons). MS (*m*/*z*): 308 (M⁺), 293, 282, 280, 266.

N'-[(2-Methoxyphenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4g). IR (KBr, cm⁻¹): 1679 (-C=O amide), 2810 (O–CH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): δ 2.60 (s, 3H, –CH₃ at C-2 Bz), 3.78 (s, 2H, –N–CH₂), 4.80 (s, 3H, O–CH₃), 6.49–7.65 (m, 8H, *J* = 7.8 and 5.1 Hz, Ar–H), 9.08 (s, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.34 (–CH₃ at C-2 of benzimidazole), 50.81 (–CH₂), 175.65 (amide carbon), 145.83 (–N=CH), 57.32 (O–CH₃), 141.90, 135.98, 118.45, 102.45, 123.14, 123.30, 146.41, 160.85, 131.45, 128.99, 117.34, 116.55 (aromatic carbons). MS (*m*/*z*): 322 (M⁺), 307, 296, 294, 291.

N'-[(4-Methoxyphenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4h). IR (KBr, cm⁻¹): 1660 (–C=O amide), 2808 (O–CH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): δ 2.59 (*s*, 3H, –CH₃ at C-2 Bz), 3.69 (*s*, 3H, O–CH₃), 3.72 (*s*, 2H, –N–CH₂), 5.52–7.70 (*m*, 8H, *J* = 7.8, 5.2 Hz, Ar–H), 9.00 (*s*, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.35 (–CH₃ at C-2 of benzimidazole), 50.79 (–CH₂), 174.11 (amide carbon), 145.85 (–N=CH), 56.68 (O–CH₃), 143.10, 136.38, 116.15, 103.35, 124.14, 124.90, 144.81, 162.35, 132.15, 128.29, 113.14, 116.65 (aromatic carbons). MS (*m*/*z*): 322 (M⁺), 307, 296, 294, 291.

N'-[(2-Chlorophenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (**4i**). IR (KBr, cm⁻¹): 1668 (-C=O amide), 709 (C-Cl) cm⁻¹. ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.63 (*s*, 3H, -CH₃ at C-2 Bz), 3.70 (*s*, 2H, -N-CH₂), 6.34–7.51 (*m*, 8H, *J* = 8.0 and 7.3 Hz, Ar-H), 9.27 (*s*, 1H, -CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.36 (-CH₃ at C-2 of benzimidazole), 50.81 (-CH₂),

175.65 (amide carbon), 145.76 (–N=CH), 142.46, 132.50, 118.13, 108.12, 124.21, 123.78, 146.98, 118.24, 118.11, 161.72, 126.22, 121.56, 126.23, 121.77 (aromatic carbons). MS (*m*/*z*): 326 (M⁺), 311, 300, 298, 290, 284.

N'-[(4-Chlorophenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (**4***j*). IR (KBr, cm⁻¹): 1674 (–C=O amide), 745 (C–Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.62 (*s*, 3H, –CH₃ at C-2 Bz), 3.74 (*s*, 2H, –N–CH₂), 6.53–7.68 (*m*, 8H, *J* = 8.0 and 7.3 Hz, Ar–H), 9.18 (*s*, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.30 (–CH₃ at C-2 of benzimidazole), 50.82 (–CH₂), 175.62 (amide carbon), 145.12 (–N=CH), 142.22, 132.12, 117.87, 107.64, 124.23, 123.87, 146.56, 118.34, 118.25, 161.82, 126.44, 121.57, 126.55, 121.29 (aromatic carbons). MS (*m*/*z*): 326 (M⁺), 311, 300, 298, 290, 284.

N'-[(4-Aminophenyl)methylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (**4k**). IR (KBr, cm⁻¹): 1672 (-C=O amide), 3348 (-NH₂). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.50 (*s*, 3H, -CH₃ at C-2 Bz), 3.69 (*s*, 2H, -N-CH₂), 5.58 (-C-NH₂), 6.55 (*s*, 1H, -CONH), 6.50-7.88 (*m*, 8H, *J* = 5.4, 3.7 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.30 (-CH₃ at C-2 of benzimidazole), 50.82 (-CH₂), 175.62 (amide carbon), 145.71 (-N=CH), 14.35 (-CH₃), 135.19, 130.52, 111.31, 107.79, 122.24, 122.10, 137.43, 130.09, 114.12, 146.32, 125.37 (aromatic carbons); MS (*m*/*z*): 307 (M⁺), 292, 281, 279, 263, 256.

2-(2-Methyl-1H-benzimidazol-1-yl)-N'-[1-phenylethylidene]acetohydrazide (41). IR (KBr, cm⁻¹): 1685 (-C=O amide). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.17 (*s*, 3H, -CH₃), 2.43 (*s*, 3H, -CH₃ at C-2 of Bz), 3.73 (*s*, 2H, -N-CH₂), 7.10– -7.80 (*m*, 9H, *J* = 6.4 and 6.9 Hz, Ar–H), 9.04 (*s*, 1H, -CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.64 (-CH₃ at C-2 of benzimidazole), 51.07 (-CH₂), 176.88 (amide carbon), 148.96 (-N=CH), 15.14 (-CH₃), 140.29, 135.52, 118.97, 108.85, 123.24, 123.44, 145.41, 136.97, 127.69, 127.79, 125.23, 127.69 (aromatic carbons); MS (*m*/*z*). 306 (M⁺), 291, 280, 278, 264, 262, 230.

2-(2-Methyl-1H-benzimidazol-1-yl)-N'-[(1E)-1-(2-methylphenyl)ethylidene]acetohydrazide (4m). IR (KBr, cm⁻¹): 1689 (-C=O amide); ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 1.81 (s, 3H, -CH₃), 2.48 (s, 3H, -CH₃ at benzene ring), 2.54 (s, 3H, -CH₃ at C-2 of Bz), 4.65 (s, 2H, -N-CH₂), 7.00 (s, 1H, -CONH), 7.28–7.95 (m, 9H, J = 6.9, 6.3 and 6.3 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (-CH₃ at C-2 of benzimidazole), 39.7 (-CH₂), 171.0 (amide carbon), 168.8 (-N=C), 19.2 (-CH₃), 149.3, 142.2, 135.1, 134.2, 130.9, 129.6, 128.0, 125.8, 123.0, 119.8, 110.0 (aromatic carbons). MS (*m*/*z*): 320 (M⁺).

N'-[(1E)-1-(2-Ethylphenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (**4n**). IR (KBr, cm⁻¹): 1687 (-C=O amide); ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.02 (q, 2H, J = 4.7, 3.2, 0.9 Hz, CH₂CH₃), 2.48 (s, 3H, -CH₃ at benzene ring), 2.54 (s, 3H, -CH₃ at C-2 of Bz), 2.95 (t, 3H, J = 4.5 and 3.9 Hz, -CH₂CH₃), 4.65 (s, 2H, -N-CH₂), 7.02 (s, 1H, -CONH), 7.28–7.95 (m, 9H, J = 6.7 and 3.8 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4

SUPPLEMENTARY MATERIAL

 $(-CH_3 \text{ at } C-2 \text{ of benzimidazole}), 39.7 (-CH_2), 171.0 (amide carbon), 168.8 (-N=C), 19.2 (-CH_3), 149.3, 142.2, 135.1, 134.2, 130.9, 129.6, 128.0, 124.9, 123.2, 119.7, 110.3 (aromatic carbons). MS ($ *m*/*z*): 334 (M⁺).

2-(2-Methyl-1H-benzimidazol-1-yl)-N'-[(1E)-1-(2-propylphenyl)ethylidene]acetohydrazide (40). IR (KBr, cm⁻¹): 1686 (-C=O amide). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 0.90 (t, 3H, J = 6.5 Hz, -CH₂CH₂CH₃), 1.65 (m, 2H, J == 6.8 and 7.5 Hz, -CH₂CH₂CH₃), 2.48 (s, 3H, -CH₃), 2.62 (m, 2H, J = 6.5 and 1.2 Hz, -CH₂CH₂CH₃), 2.54 (s, 3H, -CH₃ at C-2 of Bz), 4.65 (s, 2H, N-CH₂), 7.02 (s, 1H, CONH), 7.28–7.95(m, 9H, J = 6.7 and 3.8 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (-CH₃ at C-2 of benzimidazole), 39.7 (-CH₂), 171.0 (amide carbon), 168.8 (-N=C), 19.2 (-CH₃), 148.2, 142.0, 134.1, 134.2, 130.9, 127.6, 128.4, 124.5, 123.0, 119.1, 109.5 (aromatic carbons). MS (m/z): 348 (M⁺).

N'-[1-(2-Hydroxyphenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (**4p**). IR (KBr, cm⁻¹): 1682 (–C=O amide), 982 (Ar–OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.21 (*s*, 3H, –CH₃), 2.40 (*s*, 3H, CH₃ at C-2 of Bz), 3.71 (*s*, 2H, NCH₂), 6.67–7.98 (*m*, 8H, *J* = 8.1 and 7.5 Hz, Ar–H), 9.12 (*s*, 1H, CONH), 12.03 (*s*, 1H, Ar–OH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.68 (–CH₃ at C-2 of benzimidazole), 51.05 (–CH₂), 176.73 (amide carbon), 152.69 (–N=CH), 15.72 (–CH₃), 140.24, 135.50, 118.91, 108.79, 123.14, 123.30, 146.41, 118.45, 118.89, 132.52, 159.13, 119.79, 127.33 (aromatic carbons). MS (*m*/*z*): 322 (M⁺), 307, 296, 294, 278, 271.

N'-[1-(4-Hydroxyphenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4q). IR (KBr, cm⁻¹): 1687 (-C=O amide), 982 (Ar-OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.18 (*s*, 3H, -CH₃), 2.41 (*s*, 3H, -CH₃ at C-2 of Bz), 3.75 (*s*, 2H, -N-CH₂), 6.86–8.00 (*m*, 8H, *J* = 8.1 and 7.2 Hz, Ar-H), 9.10 (*s*, 1H, CONH), 9.49 (*s*, 1H, Ar-OH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.62 (-CH₃ at C-2 of benzimidazole), 51.03 (-CH₂), 176.76 (amide carbon), 150.49 (-N=CH), 15.21 (-CH₃), 140.24, 135.50, 118.91, 108.79, 123.14, 123.30, 146.41, 160.35, 130.88, 127.46, 118.97, 117.34 (aromatic carbons). MS (*m*/*z*): 322 (M⁺), 307, 296, 294, 280, 278, 271.

N'-[1-(2-Methoxyphenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4r). IR (KBr, cm⁻¹): 1689 (–C=O amide), 2815 (O–CH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.19 (s, 3H, –CH₃), 2.45 (s, 3H, –CH₃ at C-2 of Bz), 3.75 (s, 2H, –N–CH₂), 3.89 (s, 3H, O–CH₃), 6.58–7.78 (m, 8H, *J* = 7.8 and 6.2 Hz, Ar–H), 9.08 (s, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.60 (–CH₃ at C-2 of benzimidazole), 51.09 (–CH₂), 176.49 (amide carbon), 147.73 (–N=CH), 15.94 (–CH₃), 56.16 (O–CH₃), 140.29, 135.52, 118.97, 108.85, 123.24, 123.44, 146.41, 118.19, 118.88, 132.87, 159.76, 121.08, 129.24 (aromatic carbons). MS (*m*/*z*): 336 (M⁺), 321, 310, 308.

ANSARI, LAL and KHITOLIYA

N'-[1-(4-Methoxyphenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4s). IR (KBr, cm⁻¹): 1680 (–C=O amide), 2811 (O–CH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.12 (*s*, 3H, –CH₃), 2.48 (*s*, 3H, CH₃ at C-2 Bz), 3.78 (*s*, 2H, –NCH₂), 3.84 (*s*, 3H, OCH₃), 6.61–7.88 (*m*, 8H, *J* = 7.8 and 6.2 Hz, Ar–H), 9.00 (*s*, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.62 (–CH₃ at C-2 of benzimidazole), 51.11 (–CH₂), 176.40 (amide carbon), 147.78 (–N=CH), 15.91 (–CH₃), 55.33 (O–CH₃), 140.29, 135.52, 118.97, 108.85, 123.24, 123.44, 146.41, 118.19, 118.88, 160.75, 126.97, 121.08, 126.97, 121.08 (aromatic carbons). MS (*m*/*z*): 336 (M⁺), 321, 310, 308, 294, 260.

N'-[1-(2-Chlorophenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4t). IR (KBr, cm⁻¹): 1668 (–C=O amide), 775 (C–Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.10 (*s*, 3H, –CH₃), 2.37 (*s*, 3H, –CH₃ at C-2 of Bz), 3.61 (*s*, 2H, –N–CH₂), 6.54–7.63 (*m*, 8H, *J* = 7.1 and 5.5 Hz, Ar–H), 8.97 (*s*, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.59 (–CH₃ at C-2 of benzimidazole), 51.08 (–CH₂), 176.38 (amide carbon), 147.75 (–N=CH), 15.85 (–CH₃), 140.26, 135.50, 118.93, 108.82, 123.21, 123.42, 146.38, 118.14, 118.85, 160.72, 126.97, 121.06, 126.94, 121.07 (aromatic carbons). MS (*m*/*z*): 340 (M⁺), 325, 314, 312, 304, 296.

N'-[-1-(4-Chlorophenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4u). IR (KBr, cm⁻¹): 1674 (-C=O amide), 780 (C-Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.15 (*s*, 3H, -CH₃), 2.39 (*s*, 3H, -CH₃ at C-2 of Bz), 3.64 (*s*, 2H, -N-CH₂), 6.66-7.79 (*m*, 8H, *J* = 7.1, 5.4 Hz, Ar-H), 9.00 (*s*, 1H, -CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.52 (-CH₃ at C-2 of benzimidazole), 51.04 (-CH₂), 176.36 (amide carbon), 147.71 (-N=CH), 15.80 (-CH₃), 140.23, 135.45, 118.89, 108.80, 123.15, 123.34, 146.36, 118.10, 118.81, 160.71, 126.94, 121.02, 126.90, 121.03 (aromatic carbons). MS (*m*/*z*): 340 (M⁺), 325, 314, 312, 304, 296.

N'-[1-(4-Aminophenyl)ethylidene]-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazide (4ν). IR (KBr, cm⁻¹): 1672 (-C=O amide), 3348 (-NH₂). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.11 (s, 3H, -CH₃), 2.50 (s, 3H, -CH₃ at C-2 of Bz), 3.69 (s, 2H, -N-CH₂), 5.58 (s, 2H, C-NH₂), 6.55 (s, 1H, -CONH), 6.50–7.88 (m, 8H, J = 6.2 and 4.4 Hz, Ar-H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.64 (-CH₃ at C-2 of benzimidazole), 51.07 (-CH₂), 176.88 (amide carbon), 146.84 (-N=CH), 14.97 (-CH₃), 55.26 (O-CH₃), 140.29, 135.52, 118.97, 108.85, 123.24, 123.44, 146.41, 131.13, 115.32, 147.93, 126.66 (aromatic carbons). MS (*m*/*z*): 321 (M⁺), 306, 295, 293, 279, 245.

2-[(2-Methyl-1H-benzimidazol-1-yl)acetyl]-N-phenylhydrazinecarbothioamide (5a). IR (KBr, cm⁻¹): 1650 (-C=O amide), 1220 (-C=S). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.38 (s, 3H, -CH₃ at C-2 of Bz), 3.68 (s, 2H, -N-CH₂), 7.08–7.68 (m, 9H, J = 6.6 and 6.3 Hz, Ar–H), 7.42 (s, 1H, CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.83 (-CH₃ at C-2 of benzimidazole), 50.16 (-CH₂),

171.43 (amide carbon), 178.04 (–C=S), 142.98, 137.27, 118.97, 108.26, 123.24, 123.44, 148.16, 13.00, 125.80, 128.25, 125.85 (aromatic carbons). MS (*m*/*z*): 339 [M⁺], 324, 313, 311, 297, 263.

2-[(2-Methyl-1H-benzimidazol-1-yl)acetyl]-N-(2-methylphenyl)hydrazinecarbothioamide (**5b**). IR (KBr, cm⁻¹): 1658 (-C=O amide), 1225 (-C=S). ¹H--NMR (300 MHz, CDCl₃, δ / ppm): 1.25 (*t*, 3H, *J* = 3.6 Hz, -CH₃), 2.00 (*s*, 1H, -NH), 2.51 (*s*, 3H, -CH₃ at C-2 of Bz), 2.60 (*q*, 2H, *J* = 3.3 Hz, -CH₂), 4.62 (*s*, 2H, -N-CH₂), 6.02–7.59 (*m*, 8H, *J* = 6.3, 6.6 Hz, Ar-H), 8.20 (*s*, 1H, -CONH), 10.08 (*s*, 1H, -NH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (-CH₃ at C-2 of benzimidazole), 40.0 (-CH₂), 164.4 (amide carbon), 181.1 (-C=S), 17.9 (-CH₃ at benzene) 142.20, 136.217, 135.02, 134.12, 130.24, 129.24, 127.16, 126.12, 125.80, 119.8, 110.02 (aromatic carbons). MS (*m*/*z*): 353 [M⁺].

N-(2-*Ethylphenyl*)-2-[(2-*methyl*-1H-*benzimidazol*-1-*yl*)*acetyl*]*hydrazinecar-bothioamide* (*5c*). IR (KBr, cm⁻¹): 1654 (–C=O amide), 1222 (–C=S). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 1.25 (*t*, 3H, *J* = 3.9 Hz, –CH₃), 2.51 (*s*, 3H, –CH₃ at C-2 of Bz), 2.60 (*q*, 2H, *J* = 3.2 Hz, –CH₂), 4.62 (*s*, 2H, –N–CH₂), 6.04–7.65 (*m*, 8H, *J* = 6.3, 6.5 Hz, ArH), 8.0 (*s*, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (–CH₃ at C-2 of benzimidazole), 40.0 (–CH₂), 164.4 (amide carbon), 181.1 (–C=S), 17.9, 14.4 (–CH₂CH₃ at benzene)142.20, 136.217, 135.02, 134.12, 130.24, 129.24, 127.16, 126.12, 125.80, 119.8, 110.02 (aromatic carbons). MS (*m*/*z*): 367 [M⁺].

2-[(2-Methyl-1H-benzimidazol-1-yl)acetyl]-N-(2-propylphenyl)hydrazinecarbothioamide (5d). IR (KBr, cm⁻¹): 1654 (-C=O amide), 1222 (-C=S). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 0.91 (*t*, 3H, *J* = 4.5 Hz, -CH₂CH₂CH₃), 1.62 (*m*, 2H, *J* = 6.5, 1.2 Hz, -CH₂CH₂CH₃), 2.51 (*s*, 3H, -CH₃ at C-2 of Bz), 2.60 (*t*, 2H, *J* = 6.5, 1.5 Hz, -CH₂CH₂CH₃), 4.62 (*s*, 2H, -N-CH₂), 6.04-7.65 (*m*, 8H, *J* = 8.1 and 4.5 Hz, ArH), 8.0 (*s*, 1H, -CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.4 (-CH₃ at C-2 of benzimidazole), 40.0 (-CH₂), 164.4 (amide carbon), 181.1 (-C=S), 17.9, 14.4, 10.6 (-CH₂CH₂CH₃ at benzene) 142.20, 136.217, 135.02, 134.12, 130.24, 129.24, 127.16, 126.12, 125.80, 119.8, 110.02 (aromatic carbons). MS (*m*/*z*): 381 [M⁺].

N-(2-Hydroxyphenyl)-2-[(2-methyl-1H-benzimidazol-1-yl)acetyl]hydrazinecarbothioamide (5e). IR (KBr, cm⁻¹): 1654 (–C=O amide), 1225 (–C=S) 990 (Ar–OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.35 (*s*, 3H, –CH₃ at C-2 of Bz), 3.67 (*s*, 2H, –N–CH₂), 7.42–7.85 (*m*, 8H, *J* = 7.8 and 4.5 Hz, Ar–H), 7.47 (*s*, 1H, –CONH), 12.03 (*s*,1H, Ar–OH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.64 (–CH₃ at C-2 of benzimidazole), 50.25 (–CH₂), 171.54 (amide carbon), 178.18 (–C=S), 143.12, 137.45, 119.23, 108.41, 123.24, 123.44, 148.15, 13.25, 126.14, 128.47, 125.91 (aromatic carbons). MS (*m*/*z*): 355 [M⁺], 340, 329, 327, 313, 311, 304.

ANSARI, LAL and KHITOLIYA

N-(4-Hydroxyphenyl)-2-[(2-methyl-1H-benzimidazol-1-yl)acetyl]hydrazinecarbothioamide (5f). IR (KBr, cm⁻¹): 1649 (-C=O amide), 1220 (-C=S) 1022 (Ar–OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.31 (*s*, 3H, –CH₃ at C-2 of Bz), 3.62 (*s*, 2H, –N–CH₂), 7.40–7.81 (*m*, 8H, *J* = 7.8 and 4.5 Hz, Ar–H), 7.44 (*s*, 1H, –CONH), 9.48 (*s*, 1H, Ar–OH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.60 (-CH₃ at C-2 of benzimidazole), 50.14 (–CH₂), 171.54 (amide carbon), 178.18 (–C=S), 143.12, 137.45, 119.23, 108.41, 123.24, 123.44, 148.27, 13.32, 126.29, 128.54, 125.98 (aromatic carbons). MS (*m*/*z*): 355 [M⁺], 340, 329, 327, 313, 311, 304.

N-(2-*Methoxyphenyl*)-2-[(2-*methyl*-1H-*benzimidazol*-1-*yl*)*acetyl*]*hydrazine-carbothioamide* (**5***g*):IR (KBr, cm⁻¹): 1653 (–C=O amide), 1232 (–C=S) 2829 (O–CH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.35 (*s*, 3H, –CH₃ at C-2 of Bz), 3.69 (*s*, 2H, –N–CH₂), 7.49 (*s*, 1H, –CONH), 7.54–8.35 (*m*, 8H, *J* = 7.7 and 5.0 Hz, Ar–H), 9.48 (*s*, 3H, O-CH₃). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.88 (–CH₃ at C-2 of benzimidazole), 50.18 (–CH₂), 171.45 (amide carbon), 178.14 (–C=S), 55.53 (O–CH₃), 143.21, 137.49, 119.28, 108.47, 123.26, 123.25, 148.45, 127.87, 126.08, 123.54, 111.44, 123.27, 151.67 (aromatic carbons). MS (*m*/*z*): 369 [M⁺], 354, 343, 338, 326.

N-(4-Methoxyphenyl)-2-[(2-methyl-1H-benzimidazol-1-yl)acetyl]hydrazinecarbothioamide (**5h**). IR (KBr, cm⁻¹): 1653 (–C=O amide), 1232 (–C=S) 2835 (O-CH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.31 (*s*, 3H, –CH₃ at C-2 of Bz), 3.65 (*s*, 2H, –N–CH₂), 3.80 (*s*, 3H, O–CH₃), 7.30–8.25 (*m*, 8H, *J* = 7.7 and 5.1 Hz, Ar–H), 7.44 (*s*, 1H, –CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.82 (–CH₃ at C-2 of benzimidazole), 50.13 (–CH₂), 171.41 (amide carbon), 178.28 (–C=S), 55.50 (O–CH₃), 143.15, 137.32, 119.21, 108.44, 123.21, 123.24, 148.43, 132.58, 158.38, 113.84, 125.49 (aromatic carbons). MS (*m*/*z*): 369 [M⁺], 354, 343, 338, 326.

N-(2-*Chlorophenyl*)-2-[(2-*methyl*-1H-*benzimidazol*-1-*yl*)*acetyl*]*hydrazinecarbothioamide* (*5i*). IR (KBr, cm⁻¹): 1665 (–C=O amide), 1245 (–C=S) 775 (C–Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.37 (*s*, 3H, –CH₃ at C-2 of benzimidazole), 3.69 (*s*, 2H, –N–CH₂), 7.48 (*s*, 1H, –CONH), 7.11–8.28 (*m*, 8H, Ar–H) 2.37 (*s*, 3H, –CH₃ at C-2 of Bz), 3.69 (*s*, 2H, –N–CH₂), 7.48 (*s*, 1H, –CONH), 7.11–8.28 (*m*, 8H, *J* = 8.5 and 5.9 Hz, Ar–H). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.96 (–CH₃ at C-2 of benzimidazole), 50.24 (–CH₂), 171.55 (amide carbon), 178.36 (–C=S), 143.11, 137.25, 119.24, 108.40, 123.20, 123.21, 148.47, 137.14, 130.19, 128.93, 124.48 (aromatic carbons). MS (*m*/*z*): 373 [M⁺], 358, 347, 345, 331.

N-(4-Chlorophenyl)-2-[(2-methyl-1H-benzimidazol-1-yl)acetyl]hydrazinecarbothioamide (5j). IR (KBr, cm⁻¹): 1660 (–C=O amide), 1240 (–C=S) 782 (C–Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.34 (s, 3H, –CH₃ at C-2 of Bz), 3.62 (s, 2H, –N–CH₂), 7.04–8.12 (m, 8H, J = 8.5 and 5.8 Hz, Ar–H), 7.42 (s, 1H,

-CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.96 (-CH₃ at C-2 of benzimidazole), 50.24 (-CH₂), 171.55 (amide carbon), 178.36 (-C=S), 143.02, 137.27, 119.20, 108.47, 123.19, 123.32, 148.48, 137.25, 130.14, 128.18, 124.58 (aromatic carbons). MS (*m*/*z*): 373 [M⁺], 358, 347, 345, 331.

N-(4-Aminophenyl)-2-[(2-methyl-1H-benzimidazol-1-yl)acetyl]hydrazinecarbothioamide (5k). IR (KBr, cm⁻¹): 1658 (-C=O amide), 1232 (-C=S), 3340 (-C-NH₂). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.45 (*s*, 3H, -CH₃ at C-2 of benzimidazole), 3.54 (*s*, 2H, -N-CH₂), 8.31 (*s*, 1H, -CONH), 6.42 (*s*, 2H, -C-NH₂) 7.40–8.59 (*m*, 8H, Ar–H) 2.45 (*s*, 3H, -CH₃ at C-2 of Bz), 3.54 (*s*, 2H, -N-CH₂), 6.42 (*s*, 2H, -C-NH₂), 7.40–8.59 (*m*, 8H, *J* = 6.2, 4.8 Hz, Ar–H), 8.31 (*s*, 1H, -CONH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 12.90 (-CH₃ at C-2 of benzimidazole), 50.11 (-CH₂), 171.53 (amide carbon), 178.41 (-C=S), 143.45, 137.40, 119.27, 108.60, 123.21, 123.44, 132.56, 145.96, 113.77, 125.09 (aromatic carbons). MS (*m*/*z*): 354 [M⁺], 339, 328, 326, 312, 310, 278.

5-[(2-Methyl-1H-benzimidazol-1-yl)methyl]-4-phenyl-4H-1,2,4-triazole-3--thiol (**6a**). IR (KBr, cm⁻¹): 2550 (SH).¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.56 (s, 3H, -CH₃ at C-2 of Bz), 6.00 (s, 2H, -N–CH₂), 6.61–7.57 (m, 9H, *J* = 7.5 and 6.6 Hz, Ar–H), 12.90 (s, 1H, –C–SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 13.12 (–CH₃ at C-2 of benzimidazole), 41.73 (–CH₂), 141.84, 133.22, 119.55, 106.84, 122.30, 126.56, 147.72, 161.16, 172.51, 146.11, 127.08, 129.35, 132.60, 127.08, 129.35 (aromatic carbons). MS (*m*/*z*): 321 [M⁺], 306, 295, 245, 270.

5-[(2-Methyl-1H-benzimidazol-1-yl)methyl]-4-(2-methylphenyl)-4H-1,2,4--triazole-3-thiol (**6b**). IR (KBr, cm⁻¹): 2538 (SH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.25 (*s*, 3H, –CH₃), 2.51 (*s*, 3H, –CH₃ at C-2 of Bz), 4.99 (*s*, 2H, –N–CH₂), 7.22–7.68 (*m*, 8H, *J* = 7.2, 6.6 Hz, Ar–H), 11.15 (*s*, 1H, –C–SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.7 (–CH₃ at C-2 of benzimidazole), 49.1 (–CH₂), 149.2, 142.2, 164.2, 128.3, 119.8, 110.0, 131.9, 129.5, 128.7, 123.0, 125.9, (aromatic carbons). MS (*m*/*z*): 321 [M⁺], 335.

4-2-Ethylphenyl-5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4H-1,2,4-triazole-3-thiol (**6***c*). IR (KBr, cm⁻¹): 2536 (SH). ¹H-NMR (300 MHz, CDCl₃, δ / / ppm): 1.25 (*t*, 3H, *J* = 6.2 Hz, -CH₂CH₃), 2.51 (*s*, 3H, -CH₃ at C-2 of Bz), 2.60 (*q*, 2H, *J* = 6.5 and 4.2 Hz, -CH₂CH₃), 4.99 (*s*, 2H, -N-CH₂), 7.22-7.62 (*m*, 8H, *J* = 7.2 and 4.9 Hz, Ar-H), 11.15 (*s*, 1H, -C-SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.7 (-CH₃ at C-2 of benzimidazole), 49.1 (-CH₂), 29.1 and 14.6 (-CH₂CH₃) 168.9, 149.3, 145.7, 142.2, 134.2, 128.3, 119.8, 110.0, 131.9, 129.5, 128.7, 123.0, 125.9, (aromatic carbons). MS (*m*/*z*): 321 [M⁺], 349.

5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4-(2-propylphenyl)-4H-1,2,4triazole-3-thiol (6d). IR (KBr, cm⁻¹): 2538 (SH). ¹H-NMR (300 MHz, CDCl₃, δ / / ppm): 0.90 (t, 3H, J = 4.5 Hz, -CH₂CH₂CH₃), 1.65 (m, 2H, J = 6.5, 1.8 Hz, -CH₂CH₂CH₂CH₃), 2.51 (s, 3H, -CH₃ at C-2 of Bz), 2.62 (t, 2H, J = 6.5 Hz,

-CH₂CH₂CH₃), 4.99 (*s*, 2H, -N-CH₂), 7.22–7.68 (*m*, 8H, J = 7.7, 4.9 Hz, Ar-H), 11.15 (*s*, 1H, -C-SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 14.7 (-CH₃ at C-2 of benzimidazole), 49.1 (-CH₂), 32.8, 24.1 and 13.7 (-CH₂CH₂CH₃) 168.9, 149.3, 145.7, 142.2, 134.2, 128.3, 119.8, 110.0, 131.9, 129.5, 128.7, 123.0, 125.9 (aromatic carbons). MS (*m*/*z*): 321 [M⁺], 363.

2-{3-[(2-Methyl-1H-benzimidazol-1-yl)methyl]-5-sulfanyl-4H-1,2,4-triazol--4-yl}phenol (**6**e). IR (KBr, cm⁻¹): 2548 (SH), 997 (Ar-OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.58 (s, 3H, -CH₃ at C-2 of Bz), 6.02 (s, 2H, -N-CH₂), 6.60– -7.69 (m, 8H, J = 7.9 and 5.1 Hz, Ar-H), 10.01 (s, 1H, Ar-OH), 11.15 (s, 1H, -C-SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 13.13 (-CH₃ at C-2 of benzimidazole), 41.58 (-CH₂), 141.84, 133.22, 119.55, 106.84, 122.30, 126.56, 147.72, 160.05, 171.40, 125.16, 148.63, 116.65, 126.71, 117.31, 120.03 (aromatic carbons). MS (m/z): 337 [M⁺], 322, 311, 295, 261, 286.

4-{3-[(2-Methyl-1H-benzimidazol-1-yl)methyl]-5-sulfanyl-4H-1,2,4-triazol-4-yl]phenol (**6f**). IR (KBr, cm⁻¹): 2545 (SH), 982 (Ar–OH). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.60 (s, 3H, –CH₃ at C-2 of Bz), 6.08 (s, 2H, –N–CH₂), 6.78– -7.89 (m, 8H, J = 7.9 and 8.5 Hz, Ar–H), 9.40 (s, 1H, Ar–OH), 11.15 (s, 1H, –C–SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 13.11 (–CH₃ at C-2 of benzimidazole), 41.52 (–CH₂), 141.84, 133.22, 119.55, 106.84, 122.30, 126.56, 147.72, 160.05, 171.62, 137.13, 124.26, 115.34, 158.34, (aromatic carbons). MS (*m*/*z*): 337 [M⁺], 322, 311, 295, 261, 286.

4-(2-Methoxyphenyl)-5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4H-1,2,4--triazole-3-thiol (**6g**). IR (KBr, cm⁻¹): 2548 (SH), 2817 (OCH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.52 (*s*, 3H, -CH₃ at C-2 of Bz), 3.88 (*s*, 3H, -OCH₃), 6.06 (*s*, 2H, -N-CH₂), 6.59–7.70 (*m*, 8H, *J* = 9.0 and 6.1 Hz, Ar–H), 11.15 (*s*, 1H, -C–SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 13.10 (-CH₃ at C-2 of benzimidazole), 41.66 (-CH₂), 55.87 (OCH₃), 159.24, 170.59, 125.85, 138.40, 112.50, 129.55, 117.27, 120.86 (aromatic carbons). MS (*m*/*z*): 351 [M⁺], 336, 325, 320, 300.

4-(4-Methoxyphenyl)-5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4H-1,2,4--triazole-3-thiol (**6h**). IR (KBr, cm⁻¹): 2549 (SH), 2810 (OCH₃). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.50 (*s*, 3H, -CH₃ at C-2 of Bz), 3.82 (*s*, 3H, -OCH₃), 6.08 (*s*, 2H, -N-CH₂), 6.66-7.65 (*m*, 8H, *J* = 8.9 and 6.2 Hz, Ar-H), 11.15 (*s*, 1H, -C-SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 13.15 (-CH₃ at C-2 of benzimidazole), 41.71 (-CH₂), 55.66 (OCH₃), 161.15, 172.50, 167.96, 124.22, 114.18, 163.03, 124.22, 114.18 (aromatic carbons). MS (*m*/*z*): 351 [M⁺], 336, 325, 320, 308, 375, 300.

4-(2-chlorophenyl)-5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4H-1,2,4--triazole-3-thiol (**6***i*). IR (KBr, cm⁻¹): 2550 (SH), 750 (C-Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.62 (*s*, 3H, -CH₃ at C-2 of Bz), 6.07 (*s*, 2H, -N-CH₂), 6.56-7.72 (*m*, 8H, *J* = 8.9 and 7.2 Hz, Ar-H), 11.15 (*s*, 1H, -C-SH). ¹³C-NMR

SUPPLEMENTARY MATERIAL

S17

(300 MHz, CDCl₃, δ / ppm): 13.18 (–CH₃ at C-2 of benzimidazole), 41.75 (–CH₂), 154.14, 172.12, 167.87, 124.11, 114.24, 163.54, 124.78, 114.77 (aromatic carbons). MS (*m*/*z*): 355 [M⁺], 340, 329, 319, 279, 304.

4-(4-chlorophenyl)-5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4H-1,2,4--triazole-3-thiol (**6j**). IR (KBr, cm⁻¹): 2552 (SH), 742 (C-Cl). ¹H-NMR (300 MHz, CDCl₃, δ / ppm): 2.61 (*s*, 3H, –CH₃ at C-2 of Bz), 6.07 (*s*, 2H, –N–CH₂), 6.50–7.70 (*m*, 8H, J = 8.9 and 7.2 Hz, Ar–H), 11.15 (*s*, 1H, –C–SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ppm): 13.12 (–CH₃ at C-2 of benzimidazole), 41.72 (–CH₂), 160.71, 172.06, 142.58, 120.24, 126.97, 135.38, 120.24, 126.97 (aromatic carbons). MS (*m*/*z*): 355 [M⁺], 340, 329, 319, 279, 304.

4-(4-aminophenyl)-5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4H-1,2,4--triazole-3-thiol (**6**k). IR (KBr, cm⁻¹): 2560 (SH). ¹H-NMR (300 MHz, CDCl₃, δ / ρ ppm): 2.61 (*s*, 3H, -CH₃ at C-2 of Bz), 6.07 (*s*, 2H, -N-CH₂), 6.50-7.70 (*m*, 8H, J = 8.9 and 7.2 Hz, Ar-H), 11.15 (*s*, 1H, -C-SH). ¹³C-NMR (300 MHz, CDCl₃, δ / ρ ppm): 13.11 (-CH₃ at C-2 of benzimidazole), 41.71 (-CH₂), 141.84, 133.22, 119.55, 106.84, 122.30, 126.56, 147.72, 162.66, 174.01, 138.00, 105.48, 148.27, 105.48, 116.19 (aromatic carbons). MS (*m*/*z*): 336 [M⁺], 321, 310, 260, 285, 309.