

J. Serb. Chem. Soc. 75 (3) 299–305 (2010) JSCS–3961 JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS UDC 547.461.4+547.223+66.091+544.4:547.72 Original scientific paper

An efficient one-pot synthesis of highly substituted furans catalyzed by N-bromosuccinimide

HASSAN GHASEMNEJAD–BOSRA^{1*}, MOHAMMAD FARAJE¹, SETAREH HABIBZADEH² and FARHAD RAMZANIAN-LEHMALI³

¹Islamic Azad University-Babol Branch, School of Science, P.O. Box 755, Babol, ²Industrial Noshiravani University, Babol and ³University of Payamenoor, Babol, Iran

(Received 24 August, revised 25 December 2009)

Abstract: N-Bromosuccinimide was found to efficiently catalyze the synthesis of highly functionalized, tetra- substituted furan derivatives in the one-pot re - actions of but-2-ene-1,4-diones and acetoacetate esters in the presence of *i*-PrOH as solvent under mild and neutral conditions at 8 0–90 °C f or 3–7 h in high yields (87–94 %).

Keywords: hig hly substitut ed furans; *N*-bromosuccinimide; but-2-ene-1,4-diones; acetoacetate esters.

INTRODUCTION

Highly substituted furans are a structural component of a vast number of biologically active natural and s ynthetic compounds.¹⁻⁴ These com pounds ar e found as stru ctural units i n many natural products, s uch as kallolides, ⁵ combranolides,⁶ pheromones⁷ and polyether antibiotics.⁸ These heterocycles have found applications in many pharmaceuticals, fragrances and dyes.⁹ Furan subunits have also been used as building blocks for a large number of heterocyclic compounds and as synthons in natural product synthesis.¹⁰ As a consequence, the s ynthesis of furan derivatives has been a subject of research for over a century, and a variety of well-established classical methods are now available in the litera ture.^{11–14} The development of newer approaches for heterocy cle syntheses e mploying efficient and econom ic routes is a popular resear ch area nowadays. The most common strategy involved in the s ynthesis of furans is the cyclization¹⁵ of 1,4-dicarbonyl compounds. Of the other various methods, syntheses involving transition-metal salts have recently been described for the preparation of substituted furan derivatives. ^{16,17} Oh *et al.*¹⁸ synthesized highly substituted furans via Pt-catalyzed hy droxyl- or alkoxy-assist ed cy clization of 2-(1-alkynyl)-2-alkene-1-ones. More recen tly, Dey and coworkers r eported a novel method t o

^{*} Corresponding author. E-mail: h_ghasem2000@yahoo.it doi: 10.2298/JSC090824025G

 $300\,{\rm GHAS}$

EMNEJAD-BOSRA et al

highly substituted furans b y InCl₃-catalyzed nucleophilic addition followed by cyclization reaction, although it is limited to specific substrate classes.¹⁹

EXPERIMENTAL

The employed chemicals were obtained from either Merck or Fluka. The IR spectra were recorded using a Shimadzu 435-U-04 spectrophotometer (KBr pellets) and the NMR spectra were obtained in CD Cl₃ using a 90 MH z JE OL FT NMR spectrometer. All melting points were determined on a Büchi 530 melting point apparatus and are reported uncorrected.

Typical procedure for the synthesis of tetra-substituted furans

To a stirred sol ution of but-2-ene-1,4-dione, **1a** (0.24 g, 1.0 mmol), and methyl acetoacetate, **2a** (0.18 g, 1.0 m mol), in dry *i*-PrOH (7.0 ml) was added anhydrous *N*-bromosuccinimide, NBS (52 mg, 0.23 mmol). The reaction mixture was then stirred und er reflux at 80– -90 °C for 3.1 h. After complete disappearance of the startin g materials (monitored by TLC using petroleum ether–chloroform (6:4)), the solvent was removed from the reaction mixture on a rot ary evaporator. The re sidue was then diluted with water (15 ml) and extracted with CHCl₃ (4×15 m l). The organ ic lay er was se parated, washed with brine an d then dried ov er anhydrous Mg SO₄. Removal of the solvent r esulted in a sol id which was chromatographed over silica gel using petroleum ether and an increasing proportion of ethyl acetate as eluent. Petroleum ether–ethyl acetate (96:4) eluent gave a solid which was recrystallized from chloroform–petroleum ether (2:8): **3a** (0.31 g, 93 %). white solid, m.p. 92 °C.

The products **3b–j** were obtained in a similar manner using the appropriate but-2-ene--1,4-dione and acetoacetate ester.

The product s were chara cterized on t he basis of their phy sical and spectral analysis (Table I) and by direct comparison with literature data.¹⁹

	lana di	3			
IABLE I. IR (KBr),	H-NMR and	C-NMR spectral	data of the tetra	a-substituted 1	urans 3a–j

Product	IR, $\widetilde{\nu}$ / cm ⁻¹	¹ H-NMR, δ / ppm	¹³ C-NMR, δ / ppm
3a	3068, 1712,	2.35 (3H, s, -CH ₃), 3.28 (3H,	14.40 (-CH ₃), 35.63 (-CH ₂ -), 51.12
	1610, 1452,	s, –OCH ₃), 4.45 (2H, s,	(-OCH ₃), 107.69 (C ₃), 122.79 (C ₄),
	1058, 772	–CH ₂ –), 7.36–7.55	126.01–134.57 (Ph), 149.02 (C ₅), 155.15
		(10H, <i>m</i> , Ar,)	(C ₂), 166.78 (– C O ₂ Me), 196.69 (CO)
3b	3063, 1716,	1.24 (3H, <i>t</i> , –CH ₂ –CH ₃),	14.01 (-CH ₂ -CH ₃), 16.49 (-CH ₃), 37.57
	1625, 1460,	2.34 (3H, s, -CH ₃), 4.12	(-CH ₂ -), 59.74 (-OCH ₂ -), 111.32 (C ₃),
	1050, 796	$(2H, q, -CH_2-CH_3), 4.42$	125.65 (C ₄), 127.97–135.12 (Ph)
		(2H, <i>s</i> , –CH ₂ –), 7.30–7.57	149.02 (C ₅), 155.74 (C ₂), 166.49
		(10H, <i>m</i> , Ar)	(– C O ₂ Et), 196.62 (CO)
3c	3058, 2933,	2.31 (3H, s, -CH ₃), 2.35	14.85 (-CH ₃), 21.08 (-CH ₃), 21.67
	1783, 1678,	(3H, <i>s</i> , –CH ₃), 2.44 (3H, <i>s</i> ,	(-CH ₃), 35.78 (-CH ₂ -), 51.38 (-OCH ₃)
	1509, 1316,	–CH ₃), 3.62 (3H, <i>s</i> ,	114.36 (C ₃), 114.85 (C ₄), 127.03–144.15
	1050, 827	–OCH ₃), 4.43 (2H, <i>s</i> ,	(Ph), 150.79 (C ₅), 159.27 (C ₂), 165.08
		–CH ₂ –), 7.18–7.33 (4H,	(- C O ₂ Me), 197.33 (CO)
		<i>dd</i> , Ar), 7.35 (2H, <i>d</i> , Ar),	
		7.96 (2H, <i>d</i> , Ar)	

TADLE I. COMMING	TABLE I.	Continued
------------------	----------	-----------

Product	IR $\widetilde{\nu}$ / cm ⁻¹	1 H-NMR δ / norm	13 C-NMR δ / nnm
2.1	2070 1710		$\frac{14.15}{14.15} (CH, CH) + 1(50) (CH) + 21.10$
3 d	50/0, 1/10, 1600, 1449	1.22 (3H, t , $-CH_2-CH_3$),	14.15 ($-CH_2-CH_3$), 16.58 ($-CH_3$), 21.10
	1609, 1448,	$2.32 (3H, s, -CH_3), 2.34$	$(-CH_3), 21.82 (-CH_3), 35.79 (-CH_2-),$
	1250, 1108,	$(3H, s, -CH_3), 2.3 / (3H, s, CH) = 0.000$	$58.45 (-0CH_2-), 115.01 (C_3), 114.97$
	//0	$-CH_3$, 4.10 (2H, q, $-CH_2$ -	(C_4) 12/.03–143.4/ (Ph), 15/.98 (C ₅),
		CH_3 , 4.45 (2H, s, $-CH_2$ -),	$164.35 (C_2), 166.08 (-CO_2Et),$
		(.03-/.19 (4H, dd, Ar), /.76)	197.97 (CO)
•	2000 1704	(2H, d, Ar), 8.02 (2H, d, Ar)	15.22 (CH) 21.20 (CH) 50.72
3 e	3080, 1704,	$2.36 (3H, s, -CH_3), 3.30 (3H, OCH) + 4.47 (2H)$	$15.32 (-CH_3), 31.29 (-CH_2-), 50.73$
	1605, 1442,	$s, -OCH_3), 4.4/(2H, s, CH_3), 7.40, 7.50 (4H)$	$(-0CH_3), 118.49 (C_3), 123.84 (C_4),$
	1238, 1025,	$-CH_2$ -), 7.48-7.56 (4H,	126.03-141.49 (Ph), 149.02 (C ₅), 155.17
	/85	dd, Ar), $/./0-/.81$ (4H,	$(C_2), 165.23 (-CO_2Me), 196.70 (CO)$
26	2005 1700	dd, Ar)	1(01(CH_CH) 1707(CH) 2(11
31	3085, 1709,	$1.24 (3H, t, CH_2-CH_3), 2.41$	16.01 (CH_2 – CH_3), 1/.0/ (– CH_3), 36.11
	1611, 1437,	$(3H, s, -CH_3), 4.13 (2H, q, $	$(-CH_2-)$, 59.82 $(-OCH_2-)$, 116.12 (C_3) ,
	1245, 1062,	$-CH_2-CH_3$, 4.48 (2H, s,	110.97 (C ₄), $131.17 - 147.53$ (Pn), 158.58
	/88	$-CH_2$ -), 7.41-7.50 (4H dd,	$(C_5), 165.25 (C_2), 165.98 (-CO_2Et),$
•	2100 1705	Ar), /.68–/./6 (4H, dd, Ar)	198.17 (CO)
3g	3100, 1705,	$2.35 (3H, s, -CH_3), 3.28 (3H, OCH) = 4.45 (2H)$	$14.68 (-CH_3), 31.5 / (-CH_2-), 51.38$
	1610, 1450,	$s_{1} = OCH_{3}$, 4.45 (2H, s_{1}	$(-0CH_3), 116.33 (C_3), 127.81 (C_4),$
	1248, 1055,	$-CH_2-$), 7.39 (2H, <i>d</i> , Ar),	129.10-142.40 (Ph), 151.03 (C ₅), 156.37
	792	7.50–7.58 (4H, <i>dd</i> , Ar), 7.85	$(C_2), 16/.03 (-CO_2Me), 196.19 (CO)$
21	2000 1706	(2H, d, Ar)	15.01 (CH. CH.) 17.10 (CH.) 24.24
3h	3090, 1706,	1.20 (3H, t , –CH ₂ –CH ₃), 2.32	$(-CH_2-CH_3), 17.19 (-CH_3), 34.24$
	1613, 1458,	$(3H, s, -CH_3), 4.08 (2H, q, -$	$(-CH_2-)$, 59.01 ($-OCH_2-$), 116.57 (C_3),
	1090, 838	CH_2 - CH_3), 4.51 (2H, s, -	$115.8/(C_4), 132.54-14/.78$ (Ph), 15/.44
		CH_2 -), /.31 (2H, <i>d</i> , Ar),	$(C_5), 166.05 (C_2), 167.01 (-CO_2Et),$
		/.45–/.51 (4H, <i>dd</i> , Ar), /./3	197.18 (CO)
2:	2110 1702	(2H, d, Ar)	14.11 (CU) 25.09 (CU) 2(20
31	3110, 1703,	$2.18(3H, s, -CH_3), 2.21(3H, CH)$	$(-CH_3), 25.98 (-CH_3), 26.29$
	1606, 1451,	$s_1 = -CH_3$, 2.29 (3H, $s_1 = -CH_3$),	$(-CH_3), 37.12 (-CH_2-), 51.74 (-OCH_3)$
	1100, 840	$3.32 (3H, S, -OCH_3,), 4.56$	$(C_3), 110.84 (C_4), 129.14-145.35 (C_4), 150.70 (C_3), 110.84 (C_4), 129.14-145.35 (C_4), 170.22 $
		$(2H, s, -CH_2-)/.24(3H, m, $	(Pn), 159.70 (C ₅), 169.47 (C ₂), 170.22
2:	2105 1707	Ar), $/.51$ (3H, m, Ar)	$(-CO_2Me)$, 198.35 (CO)
J	3105, 1707,	$1.23(3H, t, CH_2-CH_3), 2.17$	14.15 ($-CH_2-CH_3$), 10.58 ($-CH_3$) 20.78
	1611, 1452,	$(3H, s, -CH_3), 2.28 (3H, s, CH)$	$(-CH_3), 2/.2/(-CH_3), 3/.48(-CH_2-),$
	1235, 1039,	$-CH_3$, 2.51 (5H s, $-CH_3$),	59.57 (-OCH ₂ -), 115.01 (C ₃), 116.13
	//0	4.10 (2H q , -CH ₂ -CH ₃), 4.53	(C_4) 130.12–143.23 (Pn), 100.15 (C ₅),
		$(2\Pi, S, -\Box\Pi_2 -), /.12 (3\Pi, m, A_{T}) = 7.40 (2\Pi, m, A_{T})$	$1/0.51 (C_2), 1/2.15 (-CO_2Et),$
		AI), $/.49(3H, m, AI)$	198.34 (CO)

RESULTS AND DISCUSSION

In continuation of on-going research on various transformations by halogenating agents and s ydnones, 2^{20-26} and also in order to avoid the drawbacks generally resulting from the use of stron g acidic media in nitrosation reactions, herein is reported the use of NBS as a more robust and efficient cataly st in the

EMNEJAD-BOSRA et al

one-pot synthesis of the highl y functionalized tetra-substituted fur an derivatives 3a-j by reaction of but-2-ene-1,4-diones 1a-e and acetoacetate esters 2a or 2b in *i*-PrOH in satisfactory yields (87–94 %) under neutral conditions (Scheme 1, Table II). As shown in Table II, the reactions occurred satisfactorily within 3.1--6.1 h under reflux conditions. The experimental results indicate that the most effective conversion occurred when a 1:0.23 substrate:NBS mole ratio was used. Longer reaction times were required when lower amounts of NBS were employed. It is important to note that n o furan derivatives were afforded when the reactions were performed in the absence of NBS in the reaction mixture.

Scheme 1. Proposed mechanism for the synthesis of highly substituted furans.²⁶

Entry Product	a	Ar	R	Time, h	Yield, % ^b M	.p., °C
1 38	a	C ₆ H ₅ Me		3.1	93	92
2 3	b	C ₆ H ₅ Et		3.9	91	89
3 3	с	4-Me-C ₆ H ₄ Me		4.0	89	83
4 3	d	4-Me-C ₆ H ₄ Et		3.8	87	80
5 3	e	4-Br-C ₆ H ₄ Me		3.3	89	87
6 3	f	4-Br-C ₆ H ₄ Et		5.2	94	85
7 3	g	4-Cl-C ₆ H ₄ Me		4.7	90	96
8 3	h	4-Cl-C ₆ H ₄ Et		5.5	91	94
9 3	i	3-Cl,4-Me-C ₆ H ₃ Me		6.0	93	79
10 3	j	3-Cl,4-Me-C ₆ H ₃ Et		6.1	94	77

TABLE II. NBS-catalyzed synthesis of furans 3a-j

 $302\,\mathrm{GHAS}$

^aAll the isolated products were char acterized by their physical properties, by ¹H-NMR, ¹³C-NMR and IR spectra and by direct comparison with literature data; ^{19 b} isolated yields

The mechanism shown in Sche me 2 is proposed for these reactions.²⁶ Thus, the 1,4-diarylbut-2-ene-1,4-diones act as Michael acceptors and the acetoacetates as nucleophiles resulting in a Michael adduct that under the influence of NBS forms a hemiketal, which undergoes spontaneous dehydration to afford the furans. It is important to note that no furan derivatives were formed when the reactions were performed in the presence of HBr as cat alyst. Furthermore, no reaction was see n when the 1,4-diary lbut-2-ene-1,4-diones and acetoac etates were used separ ately as substrates with NBS as the catalyst in the presence of *i*-PrOH under reflux.

The advantages or the char acteristic aspects of the method described in this paper in comparison with other previou sly reported ones are the following: the yields of products were b etter than the pr evious reported yields and in addition, the catalyst NBS in comparison with 1,3-dibrom o-5,5-dimethylhydantoin (DBH)

and InCl₃ is inexpensive, has no moisture sensitivity, and no special measures are required for the reaction.

The role of the solvent w as also inv estigated. Among the various solvents tested, *i*-PrOH afforded the maximum yield of the furan derivative **3a** (Table III). It is well known that reactions of this type are more efficient in polar solvents, which was corroborated in this study (Table III). It was also observed that t he inclusion of water had very little or no effect on this reaction.

TABLE III. Role of the solvent in the synthesis of furan 3a

Solvent Ti	me, ^a h	Isolated yield of 3a , %
<i>i</i> -PrOH 3.0		93
<i>i</i> -PrOH–H ₂ O (6:4)	11	60
MeOH 9.0		52
CH ₃ CN 18		44
CH ₂ Cl ₂ 15		38
THF 14		61

^aExtension of the reaction did not improve the product yield

 $304\,{\rm GHAS}$

EMNEJAD-BOSRA et al

CONCLUSIONS

The present methodology shows that *N*-bromosuccinimide (NBS) is an efficient cataly st in t he one-pot s ynthesis of hi ghly functionalized tetra-substituted furan derivatives. The main advantages of the presented protocol a re mild, clean and environmentally benign reaction cond itions, as well as the high yields. Furthermore, this method is also expected to find appli cation in org anic synthesis due to the low cost of the reagent. It is believed that this method will be a useful addition to modern synthetic methodologies.

Acknowledgements. W e wish to thank the Isla mic Azad University –Babol Branch, Babol, Iran, for financial support during the realization of this research.

ИЗВОД

ЕФИКАСНА СИНТЕЗА У ЈЕДНОМ СУДУ ВИСОКО СУПСТИТУИСАНИХ ФУРАНА КАТАЛИЗОВАНА *N*-БРОМСУКЦИНИМИДОМ

HASSAN GHASEMNEJAD-BOSRA $^{\rm I},$ MOHAMMAD FARAJE $^{\rm I},$ SETAREH HABIBZADEH $^{\rm 2}$ $_{\rm H}$ FARHAD RAMZANIAN-LEHMALI $^{\rm 3}$

¹Islamic Azad University-Babol Branch, School of Science, P.O. Box 755, Babol, ²Industrial Noshiravani University, Babol u ³University of Payamenoor, Babol, Iran

Утврђено је да *N*-бромсукцинимид ефикасно катализује синтезу високо функционализованих, тетрасупституисаних деривата фурана у реакцији у једном суду бут-2-ен-1,4-диона и ацатоацетатних естара у *i*-PrOH као растварачу под благим и неутралним условима на 80– -90 °C током 3–7 h уз високе приносе (87–94 %).

(Примљено 24. августа, ревидирано 25. децембра 2009)

REFERENCES

- a) Y. Guindon, M. Therien, Y. Girard, C. Yoakim, J. Org. Chem. 52 (1987) 1680; b) D. J. Goldsmith, E. Kennedy, R. J. Ca mpbell, J. Org. Chem. 40 (1975) 3571; c) B. H. Lipshutz, Chem. Rev. 86 (1986) 795
- 2. K. S. Huang, J. Chin. Chem. Soc. 51 (2004) 1305
- S. Solujić, S. S ukdolak, N, Vu ković, N. Niciforović, S. Stanić, J. Serb. Chem. Soc. 73 (2008) 1039
- 4. T. Shah, V. Desi, J. Serb. Chem. Soc. 72 (2007) 443
- 5. S. A. Look, M. T. Burch, W. Fenical, Q. Zheng, J. Clardy, J. Org. Chem. 50 (1985) 5741
- W. Fenical, R. K. Okuda, M. M. Bandurraga, P. Culver, R. S. Jacobs, *Science* 212 (1981) 1512
- a) K. Mori, *Tetrahedron* 45 (1989) 3233; b) D. L. Wright, *Chem. Innov.* 31 (2001) 17; c)
 B. A. Keay, P. W. Dibble, in *Comprehensive Heterocyclic Chemistry* II, Elsevier, Oxford, 1997, p. 395
- 8. J. W. Westley, *Polyether Antibiotics: Naturally Occurring Acid Ionophores*, Marcel Dekker, New York, 1982
- X. L. Hou, H. Y. Cheu ng, T. U. Hon, P. L. Kwan, T. H. Lo, S. Y. Tong, H. N. C. Wong, *Tetrahedron* 54 (1998) 1955
- 10. D. L. Wright, Prog. Heterocycl. Chem. 17 (2005) 1

ONE-POT SYNTHESIS OF HIGHLY SUBSTITUTED FURANS

- 11. C.-T. Chunge, C.-H. Yen, H.-J. Wu, J. Chin. Chem. Soc. 45 (1998) 789
- 12. T.-W. Tsai, E.-C. Wang, S.-R. Li, Y.-H. C hen, Y.-L. Lin, Y.-F. Wang, K.-S. Huang, J. Chin. Chem. Soc. **51** (2004)1307
- 13. K.-S. Huang, E.-C. Wang, H.-M. Chen, J. Chin. Chem. Soc. 51 (2004) 585
- 14. K. Yasutaka, T. Makoto, T. Kazuhiko, U. Kiitiro, Tetrahedron 48 (1992) 3495
- a) J. A. Marshall, E. D. Robinson, J. Org. Chem. 55 (1990) 3450; b) J. A. Marshall, X. J. Wang, J. Org. Chem. 57 (1992) 3387; c) A. S. K. Hashmi, T. L. Ruppert, T. Knöfel, J. W. Bats, J. Org. Chem. 62 (1997) 7295; d) J. B. Sperry, C. R. Whitehead, I. Ghiviriga, R. M. Walczak, D. L. Wright, J. Org. Chem. 69 (2004) 3726; e) A. S. K. Hash mi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. Int. Ed. 112 (2000) 2382; f) A. S. K. Hash mi, P. Sinha, Adv. Synth. Catal. 346 (2004) 432
- a) W. C. Christopfel, L. L. Miller, J. Org. Chem. 51 (1986) 4169; b) F. Freeman, D. S. H. L. Kim, E. Rodriguez, J. Org. Chem. 57 (1992) 1722
- a) B. M. Trost, M. C. McIntosh, J. Am. Chem. Soc. 117 (1995) 7255; b) M. Aso, A. Ojida,
 G. Yang, O.-J. Cha, E. Osawa, K. J. Kanematsu, J. Org. Chem. 58 (1993) 3960
- 18. C. H. Oh, V. R. Reddy, A. Kim, C. Y. Rhim, Tetrahedron Lett. 47 (2006) 5307
- S. Dey, D. Na ndi, P. K. Prad han, V. S. Giri, P. Jai sankar, *Tetrahedron Lett.* 48 (2007) 2573
- 20. D. Azarifar, H. Ghasemnejad, F. Ramzanian, Mendeleev Commun. (2005) 209
- D. Azarifar, H. Ghase mnejad-Bosra, M.-A. Zolfigol, M. Tajbaksh, *Heterocycles* 68 (2006) 175
- 22. D. Azarifar, H. Ghasemnejad-Bosra, Synthesis (2006) 1123
- 23. D. Azarifar, H. Ghasemnejad-Bosra, M. Tajbaksh, J. Heterocycl. Chem. 44 (2007) 467
- 24. H. Ghasemnejad-Bosra, M. Haghdadi, I. Gholampour-Azizi, Heterocycles 75 (2008) 391
- 25. H. Ghasemnejad-Bosra, M. Haghdadi, O. Khanmohamadi, M. Gholipour, G. Asghari, J. Chin. Chem. Soc. 55 (2008) 464
- 26. H. Ghasemnejad-Bosra, M. Faraje, S. Habibzadeh. Helv. Chim. Acta 92 (2009) 575.