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Abstract: Thermoplastic poly(ester–siloxane)s (TPES) and poly(ester–ether–silo-
xane)s, (TPEES), based on poly(butylene terephthalate) (PBT) as the hard segment
and different siloxane-prepolymers as the soft segments, were prepared. The TPES
and TPEES were synthesized by catalyzed two-step transesterification from di-
methyl terephthalate, (DMT), 1,4-butanediol, (BD) and a siloxane-prepolymer. In-
corporation of dicarboxypropyl- or disilanol-terminated poly(dimethylsiloxane)s
(PDMS) into the polar poly(butylene terephthalate) chains resulted in rather inho-
mogeneous TPES copolymers, which was a consequence of a prononuced phase
separation of the polar and non-polar reactants during synthesis. Two concepts were
employed to avoid or reduce phase separation: 1) the use of siloxane-containing
triblock prepolymers with hydrophilic terminal blocks, such as ethylene oxide (EO),
poly(propylene oxide) (PPO) or poly(caprolactone) (PLC) when the terminal blocks
serve as a compatibilizer between the extremely non-polar PDMS and the polar
DMT and BD, and 2) the use of a high-boiling solvent (1,2,4-trichlorobenzene) dur-
ing the first phase of the reaction. Homogeneity was significantly improved in the
case of copolymers based on PCL–PDMS–PCL.

Keywords: thermoplastic elastomers, poly(ester–siloxane)s, poly(ester–ether–si-
loxane)s, phase separation, compatibility.

INTRODUCTION

Block copolymers as thermoplastic elastomers

Thermoplastic elastomers represent polymeric materials which show proper-

ties characteristic of chemically cross-linked elastomers, while possessing the

processibility of thermoplastic materials. Combined thermoplastic and elastomeric

behavior is characteristic for block copolymers, as well as for mixtures of elasto-

139

doi: 10.2298/JSC0702139A

* Author for correspondence.

# Serbian Chemical Society active member.



mers and thermoplasts. Such a behavior is a consequence of the incompatibility of

the segments of a copolymer or different polymers in a mixture. Incompatibility

leads to phase segregation and the formation of a two-phase microstructure, i.e.,

such a material is self-reinforced. Block copolymers which show thermoplastic

and elastic behavior are composed of two types of blocks: soft, flexible blocks with

a low glass transition temperature and hard, glassy or crystalline blocks, which

provide physical crosslinking. Due to the two-phase microstructure, thermoplastic

elastomers possess excellent mechanical properties, such as low-temperature flex-

ibility, impact strenght, toughness and high modules in the rubbery plateau region.

At elevated temperatures, the physical bonds dissociate, allowing the copolymer to

soften and flow like a thermoplastic material, enabling it to be processed in the

melt by techniques such as injection molding.1,2

Block copolymers with soft poly(siloxane) segments

Organic–siloxane block copolymers, due to the presence of poly(siloxane)

chains, show lower glass transition temperatures, higher thermal and thermo-oxi-

dative stability, as well as higher resistance to UV-radiation, atomic oxygen and

ozone, enhanced permeability to many gases, hydrophobicity, biocompatibility

and resistance to many solvents in comparison with common organic polymers. As

a result of the mentioned properties, organic–siloxane copolymers have received

special attention as elastomers, protective coatings, photoresists, biomaterials, gas

separation membranes, emulsifiers, etc.3

Poly(dimethylsiloxane) has one of the lowest glas transition temperatures (Tg

= – 123 °C) and a large molar volume (75.5 cm3/mol). The chain flexibility and

low intermolecular forces are also responsible for its low surface tension, low solu-

bility parameters and low dielectric constant. Moreover, these properties show

only a very small variation over a wide temperature range, which is also an impor-

tant characteristic of poly(siloxane)s.3,4

Reactive, telechelic siloxane oligomers are the most important starting material for

the synthesis of siloxane-containing copolymers with properties of thermoplastic elasto-

mers. Step-growth polymerization is usually used for the synthesis of such orga-

no–siloxane copolymers, mainly due to the availability of a wide variety of well-defined,

organofunctionally terminated, reactive siloxane oligomers (���-telechelic siloxanes).

The structures of ���-telechelic siloxane oligomers are presented in Fig. 1.
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Fig. 1. Structure of ���-telechelic poly(dimethylsiloxane)s.



The main factors determining the reactivity of telechelic siloxane oligomers

toward other reactants are the type and nature of the terminal functional groups.

Due to the fundamental differences in their structures, chemical reactivities and

overall properties, it is possible to divide functionally terminated siloxane oligo-

mers into two groups. The first group (I in Fig. 1) consists of oligomers with Si-X

terminal units and the other (II in Fig. 1) with Si-R-X units, where X and R repre-

sent the reactive functional group and a short organic moiety, respectively.

In most of the published reports about siloxane containing copolymers, the

soft segment is almost exclusively poly(dimethylsiloxane). The extremely non-po-

lar nature of PDMS, together with very low levels of inter and intramolecular at-

tractions, leads to the formation of thermodynamically and mechanically incom-

patible blends with virtually all other polymers. This is reflected by the very low

value of the solubility parameters of PDMS �� = 15 (J/cm
3)1/2

�,3,5 when compared

with other polymers �� = 15.4–28.0 (J/cm
3)1/2

�.
6 This is the most important driv-

ing force in the formation of two-phase microstructures in PDMS containing co-

polymers. Another very important factor which makes the morphology and struc-

ture-property relationships of siloxane copolymers somewhat unusual when com-

pared with conventional organic block copolymers is the fact that at room tempera-

ture (20–25 °C), at which most of polymer experimens are conducted, PDMS is

about 150 °C above its glass transition temperature. At these temperatures, due to

the absence of inter and intramolecular interactions, PDMS segments should be-

have like a non-polar viscous liquid, thus providing perfect conditions for the for-

mation of phase separated copolymer structures. In many cases, a siloxane molar

mass as low as 500–600 g/mol (6–8 siloxane repeat units) and an organic segment

having only a single repeat unit is sufficient to obtain two-phase morphologies.3

The incorporation of poly(organosiloxane)-segments into a PBT-backbone results

in improved clarity, surface smoothness and non-sticking properties, as well as

good film, fiber and hydrophobic properties of the resulting copolymers.7–12

Our research in the field of siloxane containing copolymers is related to the

synthesis of thermoplastic poly(ester–siloxane)s (TPES) and poly(ester–ether–si-

loxane)s, (TPEES), based on poly(butylene terephthalate) (PBT) as the hard seg-

ment, and different siloxane-prepolymers as the soft segments. TPES and TPEES

were synthesized by catalyzed two-step transesterification, from dimethyl tere-

phthalate, (DMT), 1,4-butanediol, (BD) and different siloxane-prepolymers. In-

corporation of dicarboxypropyl- or disilanol-terminated poly(dimethylsiloxane)

homopolymers (PDMS) into the polar poly(butylene terephthalate) chains resulted

in rather inhomogeneous TPES copolymers, because of the pronounced phase sep-

aration of the polar and non-polar reactants during synthesis.13–16 All the prepared

samples were partially soluble in chloroform, as a consequence of their significant

structural and compositional inhomogeneity. Siloxane-containing triblock prepo-

lymers with hydrophilic terminal blocks (which serve as a compatibilizer between
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the extremely non-polar PDMS and the polar DMT and BD), such as ethylene ox-

ide (EO), poly(propylene oxide) (PPO) or poly(caprolactone) (PCL),17,18 were

used in further investigations to avoid phase separation during copolymer synthe-

sis. Application of the high-boiling solvent (1,2,4-trichlorobenzene) during the

transesterification step was also investigated in order to increase the miscibility of

the polar and non-polar reactants.17

EXPERIMENTAL

Reactive siloxane prepolymers

���-Dicarboxypropyl-poly(dimethylsiloxane)s (PDMS-CP, Mn = 550–2170 g/mol) were pre-

pared as described previously.19
���-Disilanol-poly(dimethylsiloxane) (PDMS-OH, Mn = 2400

g/mol), ���-dihydroxy-poly(ethylene oxide–dimethylsiloxane–ethylene oxide) (EO–PDMS–EO),

���-dihydroxy-poly(propylene oxide–dimethylsiloxane–propylene oxide) (PPO–PDMS–PPO), and

���-dihydroxy-poly(caprolactone–dimethylsiloxane–caprolactone) (PCL–PDMS–PCL) were supplied

from ABCR (Germany). The number-average molar masses of the EO–PDMS–EO, PPO–PDMS–PPO

and PCL–PDMS–PCL, were determined by
1H-NMR spectroscopy; The Mn of the prepolymer

EO–PDMS–EO was 1100 g/mol, and the terminal ethylene oxide (EO) consisted of one unit. The

number-average molar mass of the PPO–PDMS–PPO was 2900 g/mol, while the molar mass of the

central poly(dimethylsiloxane) (PDMS) block was MPDMS = 1100 g/mol and molar mass of the ter-

minal poly(propylene oxide) (PPO) blocks was MPPO = 900 g/mol. The Mn of the PCL–PDMS–PCL

was 6100 g/mol, with the molar mass of the central poly(dimethylsiloxane) (PDMS) block of

MPDMS = 2000 g/mol. The molar mass of the terminal poly(caprolactone) (PCL) blocks was MPCL =

2050 g/mol.

Poly(ester–siloxane) and poly(ester–ether–siloxane) synthesis

Poly(ester–siloxane)s, TPES, and poly(ester–ether–siloxane)s, TPEES, were synthesized by

catalzyed two-step reactions involving transesterification and polycondenzation in the melt, under

the optimal conditions, as was described in previous papers.13–17 The reactans were dimethyl

terephthalate (DMT), 1,4-butanediol (BD), and the corresponding siloxane prepolymer (PDMS–CP,

PDMS–OH, EO–PDMS–EO, PPO–PDMS–PPO or PCL–PDMS–PCL). The catalyst was tetra-n-bu-

tyl-titanate (1.0–2.5 mmol/mol DMT), while the thermal stabilizer was N,N'-diphenyl-p-phe-

nylenediamine. The first step, transesterification, was carried out from 160 to 230–240 °C, at atmo-

spheric pressure, when the formed methanol was distilled off. The second step, polycondensation,

was performed for 1.5 to 4.5 h (depending on which prepolymer was used) at 230–250 °C, under re-

duced pressure. In this manner, several series of TPESs and TPEESs, with different soft segments

and hard-to-soft weight ratios in the range from 90/10 to 40/60, were obtained. The synthesized

TPES adn TPEES samples were extracted with chloroform,13–17 and the obtained soluble and insol-

uble fractions were analyzed by 1H-NMR spectroscopy.

A sample of a thermoplastic poly(ester–ether–siloxane) based on PPO–PDMS–PPO, was syn-

thesized in solution (50 mass % of 1,2,4-trichlorobenzene in the reaction mixture).17

Characterization of the copolymers

1H-NMR (200 MHz) spectra were obtained on a Varian Gemini-200 instrument. The TPES

samples based on dicarboxypropyl- and disilanol-terminated poly(dimethylsiloxane)s, as well as

the TPEES samples, were measured as solutions in CF3COOD. The solvent was simultaneously

used as the internal standard. The TPES samples based on PCL–PDMS–PCL prepolymers were

measured as solutions in CDCl3.

The inherent viscosities (�inh) of the TPES and TPEES samples were measured in a mixture of

phenol/trichloroethylene/toluene (1:1:2 by vol.) at 30 °C, using an Ubbelohde viscometer.
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Differential scanning calorimetry (DSC) was performed using a Perkin Elmer DSC2 thermal ana-

lyzer. The DSC scans were recorded under a dynamic nitrogen atmosphere (flow rate 25 cm3/min) at a

heating and cooling rate of 10 °C/min (two scans were run for each sample). The weight of the samples

was approximately 10 mg. The samples were analyzed between 50 and 250 °C for the determination of

the melting temperature (Tm) and the crystallization temperature (Tc) of the hard segment.

RESULTS AND DISCUSSION

Our work on siloxane containing copolymers started with the optimization of

the synthesis of thermoplastic poly(ester–siloxane)s, TPESs, based on PBT as the

hard segment and PDMS as the soft segment.13 The PDMS prepolymers used in

the investigations differed in the reactive terminal groups (i.e., either silanol- or

carboxypropyl, Fig. 2). Poly(butylene terephthalate) was chosen as the hard

segment in the thermoplastic elastomers because it has high structural regularity, crys-
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tallizes rapidly and has a high degree of crystallinity.20,21 After the optimal reaction

conditions had been established, the effect of the length of carboxypropyl-terminated

PDMS prepolymers (550–2170 g/mol) on some characteristic properties of the TPES

was examined, while the mass ratio of the hard and soft segments was kept constant

(57/43).14 Further investigations were related to the effect of the mass ratio of the hard

and soft segments on some properties of TPESs, with a constant length of the

carboxypropyl-terminated PDMS prepolymer (1030 g/mol).15 Due to the high incom-

patibility of the extremely non-polar PDMS–OH and PDMS–CP with the polar reac-

tants, DMT and BD, phase separation occurred during the reaction in the melt. It was

observed that the PDMS prepolymers floated to the surface of the reaction mixtures

when stirring was stopped during the transesterification step, hence the reaction mix-

ture were not homogeneous. As a consequence, the incorporation of dicarboxypropyl-

or disilanol-terminated PDMS into the polar poly(butylene terephthalate) chains re-

sulted in rather inhomogeneous TPES copolymers.

The effectiveness of the incorporation of PDMS prepolymers into the copoly-

mer chains was proven by Soxhlet extraction with chloroform. It is well known

that PBT-homopolymer is insoluble, while the PDMS-prepolymers are soluble in

chloroform. The obtained results showed that all the examined samples were com-

prised of a soluble, as well as of an insoluble fraction (Table I). The TPES samples

based on PDMS–CP prepolymer lost 19–42 mass % during extraction. The compo-

sition and structure of the soluble and insoluble fractions were investigated by
1H-NMR spectroscopy. The spectra of both fractions contained signals of aromatic

rings from the PBT segments and also signals of Si–CH3 protons from the PDMS

segments. The spectra also showed that the extracted and insoluble fractions dif-

fered in both their composition and sructure, containing considerably different

amounts of PDMS and PBT segments (Table I). The soluble fractions of the TPES

samples contained 66–89 mass % of PDMS segments, while the insoluble fractions

contained only 13–58 mass %. The calculated value of p (the average degree of bu-

tylene terephthalate units in the hard segments, Fig. 3) in the soluble fractions was

very small (psol = 1.0–2.9), while in the insoluble fractions, it was much higher

(pins = 3.5–32.1). It can be concluded that both the extracted and insoluble frac-

tions have a segmented (multiblock) structure, but with shorter PBT blocks in the

soluble and longer ones in the insoluble fractions. As the used PDMS–CP polymer

was polydisperse, it was not unexpected that longer PDMS chains (1130–1640
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g/mol) were found in the soluble, and shorter chains (610–990 g/mol) in the insolu-

ble TPES fractions, as show by 1H-NMR spectroscopy.

In order to avoid or reduce phase separation during the synthesis of PDMS

containing thermoplastic elastomers, two concepts were employed in further in-

vestigations: a) hydroxy-terminated triblock (ABA) prepolymers with hydrophilic

terminal blocks, i.e., ethylene oxide (EO), poly(propylene oxide) (PPO) or po-

ly(caprolactone) (PCL) and with a central PDMS block (Fig. 2) were used and b) a

high-boiling solvent was used during the first phase of the reaction. It was ex-

pected that the terminal EO, PPO or PCL blocks would serve as a compatibilizer

between the extremely non-polar PDMS and the polar DMT and BD.

It was shown that the presence of ether chains, either EO or PPO in the

siloxane containing prepolymers did not improve the homogeneity of the prepared

TPEES samples. All the TPEES samples were partially soluble in chloroform, as

were the TPES samples based on PDMS–CP and PDMS–OH prepolymers. The

compositions of the chloroform soluble and insoluble fractions of the TPEES sam-

ples are also presented in Table I.

TABLE I. Inherent visosities (�inh) and 1H-NMR analysis of the chloroform soluble and insoluble

fractions of some of the TPES and TPEES samples

Sample PBT/soft
segment
mass %

�inh
dl/g

Soluble/In-
soluble

founded %

Soluble fractions Insoluble fractions

mass % of
soft segments

psol in
Fig. 3

mass % of soft
segments

pins in
Fig. 3

TPES based on PDMS–CP prepolymer, MnPDMS–CP = 1030 g/mol

TPES1 70/30 0.37 19/81 83 1.2 13 32.1

TPES2 60/40 0.43 25/75 79 1.7 18 21.9

TPES3 55/45 0.45 42/58 66 2.9 17 23.4

TPES4 50/50 0.44 39/61 89 1.0 31 10.7

TPES5 40/60 0.35 41/59 86 1.0 58 3.5

TPEES based on EO–PDMS–EO prepolymer, MnEO–PDMS–EO = 1100 g/mol

TPEES-A1 90/10 0.38 3/97 82 1.2 4 134.1

TPEES-A2 80/20 0.38 13/87 82 1.2 7 77.7

TPEES-A3 70/30 0.43 26/74 81 1.3 10 52.5

TPEES-A4 60/40 0.61 26/74 86 1.0 16 29.8

TPEES-A5 50/50 0.76 34/66 83 1.2 24 18.1

TPEES-A6 40/60 0.47 56/44 82 1.2 19 24.0

TPEES based on PPO–PMDS–PPO prepolymer, MnPPO–PDMS–PPO = 2930 g/mol

TPEES-B1 60/40 0.48 39/61 88 2.0 19 61.5

TPEES-B2 55/45 0.44 43/57 88 1.8 19 61.5

TPEES-B3 50/50 0.44 39/61 89 1.7 25 41.0

TPEES-B1Sa) 60/40 0.52 36/64 86 2.2 19 61.5

a) Synthesis performed in solution using 1,2,4-trichlorobenzene as solvent
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The TPEES samples based on the EO–PDMS–EO prepolymer lost 3–56 mass

% during extraction. The sample TPEES-A4 lost 26 mass % during extraction,

similar to the TPES2 sample based on the prepolymer PDMS–CP (25 mass %).

The samples TPES2 and TPEES-A4 had the same PBT/(soft segment) ratio

(60/40) and almost the same length of the soft segment (MnPDMS–CP = 1030 g/mol

and MnEO–PDMS-EO = 1100 g/mol). The soluble fraction of the TPEES-A4 sample

contained 86 mass % of soft segments (EO–PDMS–EO), while the insoluble frac-

tion contained 16 mass %. The soluble and insoluble fractions of the sample

TPES2 contained 79 and 18 mass % of soft, PDMS segments, respectively. It can

be concluded that the length of the EO block (only 1 repeating unit) was too short

to be an efficient compatibilizer between PBT and PDMS, in spite of its high solu-

bility parameter [�PEO = 20.2 (J/cm3)1/2
],

5
which is close to the solubility parame-

ter of PBT [�PBT = 23.0 (J/cm3)1/2
].6

The TPEES samples based on the PPO–PDMS–PPO prepolymer lost 36–43 mass

% during extraction. The sample TPEES-B1, with a PBT/(soft segment) ratio of 60/49,

lost 39 mass % during extraction, which indicates a relationship between the soft seg-

ment length and the amount of soluble fraction. The samples TPES2 and TPEES-A4,

with the same hard/soft segment ratio, but with shorter soft segments, lost 25 and 26

mass %, respectively. The soluble fractions of the PPO–PDMS–PPO based TPEES

contained 86–89 mass % of soft segments, while the insoluble fractions contained

19–25 mas %. In the case of the PPO–PDMS–PPO based TPEES, it can be concluded

that the compatibilizing effect between PBT and PDMS was not realized, because of

the rather low solubility parameter of PPO ��PPO = 15.4 (J/cm3)1/2
��

���� which is very

close to the solubility parameter of PDMS ��PDMS = 15 (J/cm3)1/2
�.

3

The calculated value of p in the TPEES soluble fractions was very small (psol =

1.0-2.2) and similar to the psol values of the TPES samples. In the insoluble fractions, it

was much higher for the PPO–PMDS–PPO based TPEES (pins = 61.5 for TPEES-B1)

than for the EO–PDMS–EO based TPEES (pins = 29.8 for TPEES-A4) at the same

PBT/(soft segment) ratio (60/40). The length of the PBT segments in the insoluble

fraction is directly related to the molar mass of the prepolymer which was used for the

copolymer synthesis, at a fixed mass ratio of hard-to-soft segments (Table I).

With the intention of improving the miscibility of the reaction mixture and,

therefore, the effectiveness of the incorporation of the PPO–PDMS–PPO prepo-

lymer into the PBT chains, the sample TPEES-B1S was prepared in solution using

the high boiling solvent 1,2,4-trichlorobenzene. A clear solution was obtained at

the synthesis temperature. The transesterification reaction in solution was more ef-

ficient than in the melt.17 It was shown that the efficiency of transesterification has

an effect on the further course of the copolymer synthesis, i.e., on the polyconden-

zation, and, finally, on the molar mass of the obtained copolymer. The inherent vis-

cosity (which is an indicator of molar mass) of TPEES-B1S (�inh = 0.52 dl/g), was

higher than that of TPEES-B1 (�inh = 0.48 dl/g), which had the same composition
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but was synthesized in the melt. Extraction with chloroform showed that both the

soluble and insoluble fractions had multiblock structures, although the homogene-

ity of TPEES-B1S was not improved over that of TPEES-B1 in spite of the addi-

tion of solvent (Table I).

The series of TPES copolymers based on PBT and poly(caprolactone)-po-

ly(dimethylsiloxane)-poly(caprolactone) with hard-to-soft segment ratios in the

range from 80/20 to 40/60 were completely soluble in chloroform, which enabled

their molar masses to be determined by gel-permeation chromatography (GPC).

The chromatograms showed the presence of only one peak, the shape of which cor-

responded to a typical high-molecular weight product of step-growth polymeriza-

tion. It is obvious that the presence of the longer (18 repeating units), polar

poly(caprolactone) blocks ��PCL = 20.0 (J/cm3)1/2
�,

23,24 played a significant role

in the improvement of the miscibility of the prepolymer with the polar reactants

and PBT. The reaction mixture was homogeneous, as were the synthesized copoly-

mers with respect to their structure and composition.

The synthesized TPES and TPEES were semi-crystalline copolymers. The

melting temperatures (Tm) of the hard segments were observed by DSC. The DSC

measurements were performed between 50 and 250 °C to determined Tm, the

enthalpy of melting (�Hm) and the degree of crystallinity (wc) of the TPES and
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PPO–PDMS–PPO prepolymer (C).



TPEES samples, and for the sake of comparison, of PBT-homopolymer. With in-

creasing mass fraction of PBT segments, the melting temperature shiffted gradu-

ally to higher values, from 208 to 218 °C for TPES samples based on PDMS seg-

ments, from 214 to 223 °C for TPEES samples based on EO–PDMS–EO segments

and from 216 to 220 °C for TPEES samples based on PPO–PDMS–PPO segments

(Fig. 4). The melting temperature of the PBT-homopolymer was 227 °C. The

enthalpies of melting were calculated from the corresponding thermograms. The

total degree of crystallinity, i.e., the mass fraction of crystallities in the TPES and

TPEES copolymers, were calculated from the determined �Hm using the equation:

wc = �Hm / �Hm
	

where �Hm
	 = 144.5 J/g is the enthalpy of melting of perfectly crystalline PBT-ho-

mopolymer.6

The melting temperature, the enthalpy of melting and the degree of cry-

stallinity of the TPES and TPEES increased with increasing mass fraction of the

hard PBT segments, as presented in Fig. 4.

CONCLUSIONS

Thermoplastic elastomers with hard segments based on poly(butylene tereph-

thalate) (PBT) and soft segment based on: a) poly(dimethylsiloxane) (PDMS) or b)

prepolymers with central PDMS blocks and terminal ethylene oxide (EO), poly(pro-

pylene oxide) (PPO) or poly(caprolactone) (PCL) block were synthesized by two-step

transesterification in the melt. The poly(ester–siloxane)s based on PDMS segments

and the poly(ester–ether–siloxane)s based on EO–PDMS–EO or PPO–PDMS–PPO

segments were rather inhomogeneous. After extraction with chloroform, soluble and

insoluble fractions of different structure and composition were obtained. In the pres-

ence of a high-boiling solvent (1,2,4-trichlorobenzene), the molar mass of the synthe-

sized poly(ester–ether–siloxane) based on PPO–PDMS–PPO showed a modest in-

crease. Extraction with chloroform showed that both the soluble and insoluble frac-

tions had miltiblock structures, but the homogeneity of the sample was not signifi-

cantly improved by the addition of the solvent. Due to the presence of long, polar PCL

blocks, the miscibility of the PCL–PDMS–PCL prepolymer with the polar monomers

in the reaction mixture was significantly improved, in comparison with all the other

examined systems. As a result, the obtained PCL–PDMS–PCL based copolymers

were structurally and compositionally homogeneous and completely soluble in chlo-

roform. The semi-crystalline structure of the poly(ester–siloxane)s and poly(es-

ter–ether–siloxane)s was confirmed by DSC analysis. With increasing mass fraction of

hard-PBT segments, the melting temperature, the enthalpy of melting and the degree

of crystallinity of the TPES and TPEES increased.
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U okviru ovog rada su sintetisani termoplasti~ni poli(estar–siloksani) (TPES)

i poli(estar–etar–siloksani) (TPEES), sa tvrdim segmentima na bazi poli(butilente-

reftalata) (PBT) i mekim segmentima na bazi razli~itih siloksanskih pretpolime-

ra. TPES i TPEES su sintetisani katalizovanom reakcijom dvostepene transesterifi-

kacije, iz dimetilterftalata (DMT), 1,4-butandiola (BD) i odgovaraju}eg siloksan-

skog pretpolimera. Pri ugradwi dikarboksipropil- ili disilanol-terminiranih

poli(dimetilsiloksana) (PDMS) u polarne poli(butilentereftalatne) lance dobije-

ni su prili~no nehomogeni TPES kopolimeri, {to je bila posledica lo{e me{qivo-

sti reaktanata tokom odigravawa reakcije. Primewena su dva koncepta da bi se iz-

beglo ili smawilo fazno razdvajawe reakcione sme{e tokom sinteze organo–silok-

sanskih kopolimera: 1) primena siloksanskih triblok-pretpolimera kod kojih su

hidrofilni terminalni blokovi, izgra|eni od etilenoksida (EO), poli(propileno-

ksida) (PPO) ili poli(kaprolaktona) (PLC), imali funkciju kompatibilizatora iz-

me|u nepolarnog PDMS-a i polarnih reaktanata, DMT-a i BD-a i 2) primena rastva-

ra~a visoke temperature kqu~awa (1,2,4-trihlorbenzena) za vreme izvo|ewa prve

faze reakcije. Zna~ajno pove}awe homogenosti postignuto je kod kopolimera na bazi

PCL–PDMS–PCL segmenata.

(Primqeno 10. februara 2006)
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