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Abstract: The algebraic structure count of the linear phenylene with h six-membered rings is
known to be equal to h + 1. We show that the same expression applies if each four-mem-
bered ring in the phenylene is replaced by a linear array consisting of k four-membered rings,
where k = 4, 7, 10, ... For any other value of k, the algebraic structure count is either 0 or 1 or
2, and does not increase with increasing h.
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INTRODUCTION

Whereas linear polyacenes (naphthalene, anthracene, tetracene, ...) belong among the
best and longest known polycyclic conjugated hydrocarbons,1 the analogous linear pheny-
lenes were synthesized only in the recent past; for details on the chemistry of phenylenes
see the review,2 the recent works3–6 and the references cited therein. The structure of the
linear polyacenes (Lh) and the linear phenylenes (P(1,h)) is shown in Fig. 1.

The �-electron properties of linear polyacenes are well understood.7 In particular, the
Kekulé structure count of the linear polyacene with h hexagons is h + 1, which, at the same
time, is its algebraic structure count.

The �-electron properties of phenylenes are of great interest for theoretical chemistry,
because phenylenes are conjugated systems composed of both 6-membered rings (causing
bond-length equalization and aromatic stabilization) and 4-membered rings (causing dou-
ble-bond fixation and antiaromatic destabilization).2 In 1993 an unexpected result in this
field was obtained,8 which eventually stimulated a large amount of additional research.9–16

Namely, it was shown8 that the algebraic structure count of a phenylene is equal to the
number of Kekulé structures of the benzenoid hydrocarbon obtained by formally abandon-
ing the 4-membered rings (so-called “hexagonal squeeze”). In particular, the algebraic
structure count of the linear phenylene P(1, h) is equal to the number of Kekulé structures
of the linear polyacene Lh, and is thus equal to h + 1. (This special case was known17 be-
fore the general regularity8 was discovered.)
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In phenylenes each 4-membered ring is adjacent to two 6-membered rings, and no
two 6-membered rings are adjacent. In an earlier work18 we considered the congeners of
linear phenylenes, in which there are several mutually adjacent 6-membered rings, and
found that then the algebraic structure count increases much faster than h + 1. In this work
we are concerned with the congeners of linear phenylenes, in which there are several mutu-
ally adjacent 4-membered rings, namely the systems P(k, h) whose structure is depicted in
Fig. 1. We show that their algebraic structure counts follow a completely different pattern
and, irrespective of the value of h, are very small or equal to zero.

INTERLUDE: THE ALGEBRAIC STRUCTURE COUNT

The rule that the stability of polycyclic conjugated systems is proportional to the num-
ber K of their Kekulé structures holds for benzenoid hydrocarbons.7 Attempts to directly
extend this rule to non-benzenoid hydrocarbons failed, because the conclusions thus ob-
tained were in many cases in contradiction to experimental findings. The way out of this
difficulty was found by Dewar and Longuet-Higgins19 and was eventually elaborated in
due detail by Wilcox:20,21 Each Kekulé structure has a so-called “parity” (even, with sign
+1 or odd, with sign –1); instead of counting the Kekulé structures, one has to add their
signs. The result is called the “algebraic structure count”, ASC. The parities are chosen in
such a manner that ASC � 0.
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Fig. 1. The polycyclic conjugated �-electron systems, the algebraic structure counts of which are studied in
this work.



A non-benzenoid conjugated molecule with algebraic structure count equal to � be-
haves roughly in the same manner as a benzenoid system with � Kekulé structures. This, in
particular, means that systems with ASC = 0 are extremeny unstable (and usually
non-existent) whereas ASC = 1 and ASC = 2 implies very low stability.

The basic procedure for determining the parity of Kekulé structures is the following:
Start with an arbitrary Kekulé structure k1 and assign to it even parity. The Kekulé struc-
tures that are obtained from k1 by cyclically moving an odd number of double bonds have
the same parity, i.e., are also even. The Kekulé structures obtained from k1 by cyclically
moving an even number of double bonds have opposite parity, i.e., are odd. Continuing this
procedure we can, step–by–step, determine the parity of all Kekulé structures and then eas-
ily compute the ASC. The method is applicable to alternant hydrocarbons (and thus to the
conjugated systems considered in this work), whereas in the case of non-alternant species
the parity concept is not well defined.22

We illustrate the calculation of the algebraic structure count for the non-benzenoid
conjugated systems BCB, P(2,2) and P(2,3). Their Kekulé structures are depicted in Fig. 2.

Benzocyclobutadiene (BCB) has three Kekulé structures, k1, k2, k3. Because k2 is ob-
tained from k1 by cyclically rearranging 3 double bonds, k1 and k2 are of equal parity. The
Kekulé structure k3 is obtained from k1 by cyclically rearranging two double bonds, or
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Fig. 2. Three polycyclic conjugated �-electron systems and their Kekulé structures; (+) indicates even and
(–) odd parity.



from k2 by cyclically rearranging four double bonds. Hence the parity of k3 is opposite to
that of k1 and k2.

In view of this, the algebraic structure count of benzocyclobutadiene is ASC(BCB) =
+1+ 1 – 1 = 1.

The conjugated system P(2,2) has a total of 8 Kekulé structures. Of these four are even
and four are odd. For instance, the parity of k2 is even, because k2 is obtained from k1 by re-
arranging three double bonds. The parity of k4 is also even, because k4 is obtained from k2
by rearranging three double bonds. (Note that k4 cannot be obtained from k1 by rearranging
double bonds within a single cycle.) The parity of k6 is odd, because k6 is obtained from k4
by cyclically rearranging 4 double bonds. Etc. As a final result we get ASC(P(2,2)) = +1 + 1
+ 1 + 1 – 1 – 1 – 1 – 1 = 0.

The conjugated system P(2,3) has 30 Kekulé structures, of which in Fig. 2 are de-
picted only three. A detailed analysis (same as in the case of BCB and P(2,2)) shows that
there are 16 even and 14 odd Kekulé structures. Therefore ASC(P(2,3)) = 16 – 14 = 2.

In the general case it is not known how to evaluate ASC without actually constructing
all the Kekulé structures and determining their parities. In contrast to the counting of
Kekulé structures,7 no generally applicable recursive method is known for the calculation
of the ASC.23,24 However, for the systems P(k, h) we were able to find a pertinent method
and determine ASC(P(k, h)) for all values of the parameters k and h. This is outlined in the
subsequent sections.

COMPUTING THE ALGEBRAIC STRUCTURE COUNT OF P(k, h)

We first determine ASC(P(2, h)). For this consider the carbon–carbon bond indicated
in Fig. 3 by an arrow. In some of the Kekulé structures of P(2, h) this bond is double and in
some it is single. If this bond is double, then the single/double-character of a few more
bonds is fixed, as indicated on diagram A in Fig. 3. The non-fixed double bonds belong
then to two disjoint fragments, of which one is P(2, h – 2) and the other BCB. The contribu-
tion of these Kekulé structures to the algebraic structure count of P(2, h) is thus equal to
ASC(P(2, h – 2)) � ASC(BCB).

If the bond considered is fixed to be single, then the non-fixed double bonds belong to
two disjoint fragments, of which one is P(2, 2) and the other is denoted by X, see diagram
B in Fig. 3. The contribution of these Kekulé structures to the algebraic structure count of
P(2, h) is equal to ASC(X) � ASC(P(2, 2)).

Consequently,

ASC(P(2, h)) = �ASC(P(2, h – 2)) � ASC(BCB) ± ASC(X) � ASC(P(2, 2))�

From the previous section we know that ASC(BCB) = 1 and ASC(P(2, 2)) = 0. There-
fore, we arrive at the recursion relation

ASC(P(2, h)) = ASC(P(2, h – 2))

whose initial conditions are ASC(P(2, 2)) = 0, ASC(P(2, 3)) = 2. This immediately yields
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ASC(P(2, h)) =
0 if 2,4,6, ...

2 if = 3,5,7, ...

h

h

��
�
	

In an analogous, yet somewhat more laborious manner, we obtain

ASC(P(3, h)) =
1 if 2,4,6, ...

2 if = 3,5,7, ...

h

h

��
�
	

and

ASC(P(4, h)) = h + 1.

Hence, ASC(P(4, h)) = ASC(P(1, h)), which – as will be seen in a while – is a special
case of a more general result.

We could continue along these lines and deduce expressions for ASC(P(5, h)),
ASC(P(6, h)), etc. This however is not necessary, in view of Eq. (1) from the subsequent
section.

The finding that the ASC-values of the conjugated systems P(2, h) and P(3, h) are zero
or near–to–zero, and that these values do not increase with the increasing size of the mole-
cule are in agreement with the fact that the respective compounds have never been synthe-
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Fig. 3. Diagrams needed for the derivation of the formula for the algebraic structure count of P(2, h).



sized. Another reason for the poor stability of these species would be the enormous steric
strain caused by several concatenated 4-membered rings.

A GENERAL RULE FOR THE ALGEBRAIC STRUCTURE COUNT

Denote by F1 and F2 two arbitrary alternant conjugated-hydrocarbon fragments. Let
H and H* be conjugated hydrocarbons whose structures are shown in Fig. 4. Then,

ASC(H) = ASC(H*). (1)

In order to prove Eq. (1) consider first the Kekulé structures of H. These can be classi-
fied into five types, 1, 2, 3, 4, and 5, as shown in Fig. 4. The number of even and odd
Kekulé structures of each type are denoted by Ki(even) and Ki(odd), i = 1, 2, 3, 4, 5. Then
tha algebraic structure count of H is given by

ASC(H) = [ even odd ]K Ki i
i

( ) ( )

�
�

1

5 (2)

The summands in (2) corresponding to types 4 and 5 cancel out because of

K4(even) = K5(odd) ; K4(odd) = K5(even)

The Kekulé structures of H* can be classified into several types. Of these 11, 12, and
13 pertain to Kekulé structures of H of type 1 (see Fig. 4). Now, bearing in mind the way in
which the parities of Kekulé structures are determined, we have

K11(even) = K1(even) ; K11(odd) = K1(odd)
K12(even) = K1(odd) ; K12(odd) = K1(even)
K13(even) = K1(odd) ; K13(odd) = K1(even)

implying

� 
 
 � 
 � 
 

�
�
i

i iK K K K
1

3

1 1 1 1(even) (odd) (even) (odd)
(3)

The text types of Kekule structures of H* are those marked in Fig. 4 by 21, 22, 23, 24,
and 25. these all pertain to type 2 Kekule structures of H. By direct inspection we verity that

K21(even) = K2(even) ; K21(odd) = K2(odd)
K22(even) = K2(odd) ; K22(odd) = K2(even)
K23(even) = K2(odd) ; K23(odd) = K2(even)
K24(even) = K2(odd) ; K24(odd) = K2(even)
K25(even) = K2(even) ; K25(odd) = K2(odd)

inplying

� 
 � 
 � 
 
�
i

i iK K K K
=1

5

2 2 2 2(even) (odd) (even) (odd)] (4)

Because of symmetry the analysis of Kekulé structures of H* of the type 31–35 (not
shown in Fig. 4), that correspond to the Kekulé structures of H of the type 3 lead to
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� 
 
 � 
 � 
 
�
i

i iK K K K
=1

5

3 3 3 3(even) (odd) (even) (odd) (5)

Finally, we have to examine the Kekulé structures of H* of the types 41–48, which are
related to the Kekulé structures of H of the types 4 and 5. Their total contribution is also
zero, because four of them (41, 46, 47, 48) are of one parity and the other four (42, 43, 44,
45) of opposite parity.

In summary, the algebraic structure count of H* depends on the number of even and
odd Kekulé structures of the types 1i, 2i, and 3i and in view of Eqs. (3)–(5),

ASC(H*) = � � 
 
 � � 
� �
i

i i
i

i iK K K K
=1

3

1 1
=1

5

2 2(even) (odd) (even) (odd)
 +

+ � 
 
�
i

i iK K
��

�
� � � �3 3even odd � = � – � 
 
�

i
i iK K

=1

3
(even) (odd) ��

= � – ASC(H) � = ASC(H)

which is just the result stated as Eq. (1).
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Fig. 4. The general form of the conjugated �-electron systems to which Eq. (1) applies and various types of
their Kekule structures.



BACK TO THE CONGENERS OF LINEAR PHENYLENES

Bearing in mind Eq. (1), we see that the identity

ASC(P(k + 3, h)) = ASC(P(k, h)) (6)

must hold for any k � 1 and h � 2. This means that it is sufficient to determine the expres-
sions for the algebraic structure counts of P(1, h), P(2, h), and P(3, h) (what we already did),
whereas for all higher values of k the formulas are readily obtained by means of Eq. (6).

Thus the general expression for the algebraic structure count of the congeners of linear
phenylenes studied in this work (cf. Fig. 1) reads:

ASC(P(k, h)) =

h + 1 for h = 2, 3, 4, 5, ... and
0
1
2

for h = 2, 4, 6, 8, ... and
for h = 2, 4, 6, 8, ... and
for h = 3, 5, 7, 9, ... and

k = 1, 4, 7, 10, ...
k = 2, 5, 8, 11, ...
k = 3, 6, 9, 12, ...
k � 1, 4, 7, 10, ...

The main chemical consequence of the above formulas is the following. Linear
phenylenes P(1, h) (possessing one four-membered ring between the six-membered rings)
are slightly less stable than the corresponding linear polyacenes Lh. Introduction of addi-
tional four-membered rings drastically reduces the stability of the thus obtained �-electron
systems. This is implied both by the extremely low ASC-values (a feature studied in this
work) and by the extremely increased steric strain (a feature not considered in this work).

In order to help understanding how small are the ASC-values of the phenylenes and
their congeners, we mention that in the case h = 5 (cf. Fig. 1), the systems P(1, h), P(2, h),
and P(3, h) possess 79, 418, and 3038 Kekulé structures, repsectively. Yet their behavior is
such as if they had 6, 2, and 2 Kekulé structures, respectively. There is no (stabilizing) ef-
fect originating from the numerous Kekulé structures, because nearly half of them are of
one and half of the opposite parity.

I Z V O D

ALGEBARSKI BROJ STRUKTURA LINEARNIH FENILENA I SRODNIH

JEDIWEWA

IVAN GUTMAN

Prirodno-matemati~ki fakultet, Univerzitet u Kragujevcu, Kragujevac

Poznato je da je algebarski broj struktura linearnog fenilena sa h {esto~lanih
prstenova jednak h + 1. U radu pokazujemo da isti izraz va`i i ako se svaki ~etvoro~lani
prsten u fenilenu zameni sa k linearno pore|anih ~etvoro~lanih prstenova, za k = 4, 7, 10, ...
Za sve ostale vrednosti k, algebarski broj struktura je ili 0 ili 1 ili 2, i ne raste sa
porastom h.

(Primqeno 27. avgusta 2002)
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