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Abstract: The electronic states of the acetylene molecule are classified employing the group
theory combined with the use of the Walsh diagrams and some elementary quantum chemi-
cal considerations. The results of this analysis are compared with those obtained by explicit
ab initio calculations. It is shown that the global structure of the electronic spectrum can be
reproduced/predicted without carrying out detailed ab initio calculations.
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INTRODUCTION

It is well known that the group theory represents a very powerful tool for the classifi-
cation of electronic, vibrational and rotational states of molecules, particularly those pos-
sessing highly symmetrical nuclear configurations.1,2 Aserious drawback of this approach
is, however, that the corresponding statements are generally of only qualitative nature. So,
for example, on the basis of symmetry considerations alone the number and type of elec-
tronic states arising by various populations of a set of molecular orbitals can be predicted,
but not their energy ordering or the energy difference between them. In the present paper, it
will be shown that also a lot of semiquantitative information can be obtained if pure group
theory results are combined with some elementary quantum chemical considerations. This
will be illustrated on the example of the acetylene molecule. This species was chosen for
two reasons: firstly, it is interesting from the group theoretical point of view because of its
relatively high symmetry (taking into account the small number of atoms) and the fact that
the equilibrium geometries in its various electronic states belong to different point groups
(D�h, C2h, C2�, C2, ...); secondly, the importance of this molecule may make the results of
the present analysis interesting not only from a pure methodological point of view.

The present approach is of course not new. Its roots represent the well known
Mulliken–Walsh rules3,4 which enable a number of qualitative and even semiquantitative
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predictions concerning the geometry and energy ordering of electronic states of various
classes of molecules to be made. We shall shorten here this name to Walsh rules, in spite of
the fact that particularly in Mulliken’s hands this simple and elegant model has led to fasci-
nating results; the reason for this is that there are also many other “Mulliken’s rules” in this
and related topics. The Walsh rules were derived in the precomputer era on the basis of
simple MO-LCAO (molecular orbital as linear combination of atomic orbitals) consider-
ations. The use of computers for solving the molecular Hartree–Fock (HF) equations has
enabled the quantitative generation of the entities (molecular orbitals and the correspond-
ing orbital energies) entering the Walsh model (see, e.g., Ref. 5). Although this “quantifica-
tion” of the model introduces several new problems, not existing, or at least being hidden,
from the pure qualitative point of view (see, e.g., Ref. 6), there are at least two important
advantages thereof: 1) it explains some important features not understandable on the basis
of the qualitative MO theory alone; b) it represents an important link between naive con-
cepts and the results of explicit ab initio calculations, the latter being of high (numerical)
accuracy but are given in terms of very complex energy surfaces and corresponding wave
functions, which obscures their interpretation.

MO DIAGRAMS FOR HAAH MOLECULES

In a previous paper,7 the behavior of MOs for the class of molecules with the formula
HAAH, where Arepresents an atom belonging to the first row of the periodic table (e.g., B,
N, O), at the H–A and A–A stretching was discussed. In the present study are considered
the angular (bending and torsional) dependence of the same quantities. To simplify the sit-
uation, it is assumed that all the bond lengths are kept fixed at their equilibrium values. At
nuclear arrangements corresponding to these types of distortions with respect to the linear
geometry (D�h point group) the molecule belongs to various point groups: C2h (at the
trans-bending), C2� (cis-bending), C2 (torsion at equal H–A–Abond angles). The correla-
tion between the irreducible representations (irreps) of these point groups is given in Table
I. For sake of completeness, the group Cs is also presented. The choice of the axes is made
according to the usual convention: For D�h the z-axis coincides with the molecular axis,
for C2h, C2� and C2 it represents the C2 symmetry axis, and for Cs it is perpendicular to the
symmetry (molecular) plane. In all cases except for D�h the y-axis is taken to lie along the
A–A bond.

For the discussion which follows it is convenient to first construct for each point group
of interest the symmetrized linear combinations of the atomic orbitals (AO) building the
“minimal” AO basis for the systems considered. The minimal AO basis consists of the fol-
lowing species:

1sA , 2sA , 2pxA� xA , 2pyA � yA, 2pzA � zA ,

1sB , 2sB , 2pxB � xB , 2pyB � yB , 2pzB � zB ,

1sHA � sHA , 1sHB � sHB .

(1)
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In Eq. 1 different symbols (A, B) for the two heavy atoms and the two hydrogens (HA,
HB) are introduced. In this new notation the HAAH molecule reads HA AB HB. The sym-
metric and antisymmetric linear combination of pairs of these twelve AOs build the bases
for irreducible representations of the point groups in question, as given in Table II. Note
that the symmetry species appearing in the same row of Table II do not necessarily corre-
late with one another (e.g., �u, bu+bu, b1+b2, b+b, corresponding to the two-dimensional
space spanned by xA+xB and yA+yB), because of the different meaning of the x, y, and z

axes for the different point groups. In the Cs point group each individual AO, except for zA
and zB belongs to a’, the latter two being of a" symmetry.

Besides these twelve (“valence”) AOs, the s, p, ... Rydberg orbitals will also be con-
sidered, because the latter are involved in the series of experimentally observed excited
electronic states of the acetylene molecule. These orbitals are characterized by large spatial
extension and closely resemble the orbitals of an isolated atom. They can all be assumed to
be centered at the mid-point of the molecule and each of them transforms separately ac-
cording to the total-symmetrical irrep (s-species), like the x, y, z coordinates (px, py, pz

Rydberg orbitals, respectively), etc., in each of the point groups considered.
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Fig. 1. The dependence of MO energies on variation of geometry in symmetric tetraatomic molecules
HAAH. 1a: Trans- and cis-bending. Solid lines denote species of ag (C2h point group) and a1 (C2� group)

symmetry, dotted lines au and a2, dashed lines bg and b1, dash-dotted lines bu and b2. 1b: Torsional depend-
ence of MO energies. Solid lines denote species of a symmetry, dashed lines b MOs. Correlation of C2 spe-

cies with their C2h and C2� counterparts is indicated.

a b



TABLE I. Correlation of the species of a linear molecule (D�h point group) with those of a molecule of lower
symmetry.

D�h C2h C2� C2 Cs

�g
+ Ag A1 A A’

�g
– Bg B1 B A"

�g Ag + Bg A2 + B2 A + B A’ + A"

�g Ag + Bg A1 + B1 A + B A’ + A"

�g Ag + Bg A2 + B2 A + B A’ + A"

... ... ... ... ...

�u
+ Bu B2 B A’

�u
– Au A2 A A"

�u Au + Bu A1 + B1 A + B A’ + A"

�u Au + Bu A2 + B2 A + B A’ + A"

�u Au + Bu A1 + B1 A + B A’ + A"

... ... ... ... ...

TABLE II. Classification of atomic orbitals according to the irreducible representations of the point groups of
interest.

D�h C2h C2� C2

1sA + 1sB 	g ag a1 a

1sA – 1sB 	u bu b2 b

2sA + 2sB 	g ag a1 a

2sA – 2sB 	u bu b2 b

xA + xB �u
bu b1 b

yA + yB bu b2 b

zA + zB 	u au a1 a

xA – xB �g
ag a2 a

yA – yB ag a1 a

zA – zB 	g bg b2 b

HA + HB 	g ag a1 a

HA – HB 	u bu b2 b

The dependence of the energies of the low-energy orbitals up to 1�g (except for the
1	g and 1	u which are characterized by much lower energies than those of all other spe-
cies) on the bending coordinates is presented in Fig. 1a. It is extracted from HF calculations
on several HAAH molecules and is in most, but not all instances, qualitatively the same as
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that predicted in the original studies by Mulliken and Walsh. The data of Fig. 1a is of
semiquantitative nature in the sense that the energy ordering, increase or decrease of the
curves are reproduced quite correctly, while the energy differences between the curves are
arbitrary.

First the composition of the MOs for the linear nuclear arrangement will be discussed.
The two MOs with the lowest energy, 1	g and 1	u (not shown in Fig. 1a), are built by the
symmetric and antisymmetric linear combinations of the 1s AOs of the A, B atoms. The
electrons populating these orbitals are mainly localized at the heavy nuclei and do not con-
tribute significantly to the binding of the atoms in the molecule. The next two orbitals in or-
der of increasing energy are 2	g and 2	u, composed predominately by the symmetric and
antisymmetric linear combinations of the 2s A, B orbitals, respectively, with a small ad-
mixture of the hydrogen 1s AOs. They are followed by 3	g, involving the antisymmetric
linear combination of the 2pz A, B orbitals directed along the molecular axis (2p	) and the
symmetric linear combination of the hydrogen 1s AOs. The next orbital is 1�u, composed
of the symmetric linear combination of the p orbitals of the A, B atoms perpendicular to the
molecular axis (2px, 2py = 2p�). If the AO basis employed did not involve the Ryd-
berg-type species, the lowest-lying orbitals not occupied in the ground state of C2H2 (“vir-
tual orbital”) would be 1�g, built by the symmetric linear combinations of the 2p� A, B
AOs. It would be followed by the 3	u orbital, etc. However, the Rydberg orbitals present in
the AO basis employed enter into a branch of non-bonding MOs, characterized with ener-
gies close to zero, and lying thus between 1�u and 1�g. Let us note that discrete energies of
virtual orbitals are actually artificial; if the AO basis were infinite, the spectrum of virtual
orbitals would be continuous.

The behaviour of the orbital energies upon bending is governed by several effects.
First of all, because of the reduced symmetry, all the species doubly degenerate in the linear
geometry (�, 
, ...) split into two components. The second important effect is that in the
lower-symmetry groups more AOs are generally involved in a MO belonging to a particu-
lar irrep, which can contribute to a lowering of its energy - an example for this are the 2ag
and 2a1 orbitals compared with 2	g to which they correlate in the linear nuclear arrange-
ment. The overlap between the AOs belonging to a hydrogen and a heavy atom within a
MO can become more (as, for example, in 3bu) or less (e.g., in 3ag and 3a1) pronounced
upon bending; in the first case such a MO is stabilized, in the second case it is destabilized
upon bending. The next effect influencing the geometry dependence of orbital energies is
mutual “repelling” of MOs of the same symmetry and similar energy (as e.g., 3a1 and 4a1).
Finally, the composition of MOs and consequently their energy is influenced by the re-
quirement for their mutual orthogonality. The form of the curves presented in Fig. 1a can
be interpreted more or less straightforwardly by taking into account all these facts (see also
Ref. 5). The behavior of the MOs involving also Rydberg-type AOs is clearly dominated
by the properties of these species; these MOs show no significant change in composition
and energy with variation of the geometry.
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In. Fig. 1b are displayed the orbital energies as functions of the torsion angle at a par-
ticular value for the bending angle � HA–A–B = � A–B–HB (of, say 120º). The torsion
angle � is defined as half the angle between the HAAB and ABHB planes. This means that
� = 0 for cis-planar geometry, and � = �/2 for trans-planar nuclear arrangement. Only the
5a and 4b orbitals show significant change upon torsion. This is easy to explain: The 5a or-
bital correlates at trans-planar geometry (� =�/2) with the 4ag species; this MO is predomi-
nantly built by the antisymmetric linear combination of the px orbitals of the heavy atoms
(lying in the molecular plane), but is significantly admixed by the symmetric linear combi-
nation of the hydrogen 1s function. The overlap between these functions decreases with
decreasing torsional angle. At cis-planar geometry, the 5a orbital correlates with 1a2, the
latter does not involve the hydrogen AOs for symmetry reasons (see Table II). A conse-
quence of these facts is that the energy of the 5a orbital decreases on changing of the mo-
lecular geometry from trans-planar towards cis-planar. The behavior of the 4b species is
just the opposite.

VERTICAL ELECTRONIC SPECTRUM OF ACETYLENE

In the ground electronic state, the acetylene molecule is linear. The electronic configu-
ration of the ground state corresponds to the distribution of fourteen electrons among the
lowest-energy MOs available: 1	g

2 1	u
2 2	g

2 2	u
2 3	g

2 1�u
4. The symmetry of this state

is thus 1�g
+.

The lowest-lying excited state of acetylene corresponds to a one-electron excitation
from the highest MO populated in the ground state 1�u � �u, into the lowest lying
unpopulated (“virtual”) MO, 1�g ��g (�u

3 �g configurations). When considering the linear
nuclear arrangement, it is convenient to use instead of Cartesian components of these
orbitals their linear combinations which are eigenfunctions of the projection of the elec-
tronic angular momentum operator onto the molecular axis, Lz. All the electronic configu-
rations which are considered in the present study have at most two electrons in “open
shells”, i.e., in (spatial) orbitals populated with a single electron (at linear geometry there
will actually also be situations where three electrons occupy a � orbital – such a case can
and shall be treated as a single “hole” in this MO). Since the electrons occupying “closed
shells” do not contribute to the molecular angular (spatial and spin) momentum, the z-com-
ponents of the angular momentum and spin operator of the molecule can be written in the
form

Lz = lz1 + lz2 = –i





� �1 2
�

�

�
��

�

�
��; Sz = sz1 + sz2

(2)

(atomic units, me � 1, e � 1, } � 1 are used throughout this paper) where indices 1 and 2 de-
note the electrons which can be outside the closed shells, and �1, �2 represent their
azimuthal angles. To obtain the required components of the � orbitals one starts with the p
AOs of the heavy atoms (A, B) expressed in polar coordinates,
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2pxA � xA = � (�, zA) cos �, 2pxB � xB = � (�, zB) cos �,

2pyA � yA = � (�, zA) sin �, 2pyB � yB = � (�, zB) sin �, (3)

where the symbol zA (zB) indicates that the corresponding function is centered at the nu-
cleus A (B). It follows that

xA + xB = �u cos �, xA – xB = �g cos �,
yA + yB = �u sin �, yA – yB = �g sin �, (4)

where

�u � f(�, zA) + �(�, zB), �g � �(�, zA) – �(�, zB). (5)

Now the linear combinations of (4) are built,

�u =
1

2 1 � S
[(xA + xB) + i (yA + yB)] = fu ei�

�u =
1

2 1 � S
[(xA + xB) – i (yA + yB)] = fu e–i�

�g =
1

2 1 � S
[(xA – xB) + i (yA – yB)] = fg ei�

�g =
1

2 1 � S
[(xA – xB) – i (yA – yB)] = fg e–i�

(6)

It is assumed that AOs are real and normalized (but, of course, not mutually orthogo-
nal in the general case); S is the overlap integral,

S � x xA B� d� � y yA B� d�. (7)

There are 16 Slater detrminants corresponding to the �u
3 �g configurations, which are

in accordance with the Pauli principle:

D1 = ��u�, �g��, D2 = ��u�, �g��, D3 = ��u�, �g��, D4 = ��u�, �g��,
D5 = ��u�, �g��, D6 = ��u�, �g��, D7 = ��u�, �g��, D8 = ��u�, �g��,

D9 = ��u�, �g��, D10 = ��u�, �g��, D11 = ��u�, �g��, D12 = ��u�, �g��,
D13 = ��u�, �g��, D14 = ��u�, �g��, D15 = ��u�, �g��, D16 = ��u�, �g��,

(8)

The shortened notation for the Slater determinants will be employed, e.g.,

|��, ��| � 1

2

� � �
� � �

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2

�
� (9)

The electronic Hamiltonian of a linear molecule commutes with the operators Lz, S2

and Sz, and thus the quantum numbers corresponding to these operators, �, S and MS are
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“good” quantum numbers. All the Slater determinants (8) are eigenfunctions of Lz and Sz

but generally not of S2. Additionally, the Hamiltonian commutes with the operator for per-
mutations of identical nuclei (A, B and HA, HB), as well as with the operator �� corre-
sponding to the reflection of all electronic spatial coordinates in the planes crossing one an-
other along the molecular axis. Thus, a correct electronic wave function is labeled by the
quantum number g or u, according to its behavior upon reflection in the nuclear inversion
centrum, and the wave function for a � (� = 0) electronic states also by + if it is invariant
upon reflection in �� and by – if it changes sign under this operation. From the Slater deter-
minants (8) the following spectroscopic states are constructed:

1�u =
1

2
(D10–D13) = 1�2 �1,

1�u =
1

2
(D4–D7) = 1�–2 �1;

3�u (MS = 1) = D9 = 3�2 �3
1,

3�u (MS = 0) =
1

2
= (D10 + D13) = 3�2 �3

0,

3�u (MS = –1) = D14 = 3�2 �3
–1;

3�u (MS = 1) = D3 = 3�–2 �3
1,

3�u (MS = 0) =
1

2
(D4 + D7) = 3�–2 �3

0,

3�u (MS = –1) = D8 = 3�–2 �3
–1,

1�u
+ =

1

2
(D2 – D5 + D12 – D15) = 1�+ �1,

3�u
+ (MS = 1) =

1

2
(D1 + D11) = 3�+ �3

1,

3�u
+ (MS = 0) =

1

2
(D2 + D5 + D12 + D15) = 3�+ �3

0,

3�u
+ (MS = –1) =

1

2
(D6 + D16) = 3�+ �3

–1;

3�u
– =

1

2
(D2 – D5 – D12 + D15) = 1�– �1,

3�u
– (MS = 1) =

1

2
(D1 – D11) = 3�– �3

1,

3�u
– (MS = 0) =

1

2
(D2 + D5 – D12 – D15) = 3�– �3

0,

3�u
– (MS = –1) =

1

2
(D6 – D16) = 3�– �3

–1.

(10)

On the left-hand side � stands for the species with � = 2, � for those corresponding to
� = –2. The components of a triplet state are denoted by the value of MS given in parenthe-
ses. The functions appearing in Eqs. (10) are defined as
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1�2 � �
�

��u(1) �g(2) + �g(1) �u(2) � 1

2
��u�g + �g�u =

=
1

2
��u(1) �g(2) + �g(1) �u(2) exp�i(�1 + �2) � �

�
�fu�g +�g�u exp�i(�1 + �2) ,

1�–2 =
1

2
��u�g + �g�u =

1

2
��u�g + �g�u exp�–i(�1 + �2)  ,

3�2 =
1

2
��u�g – �g�u =

1

2
��u�g – �g�u exp�i(�1 + �2)  ,

3�–2 =
1

2
��u�g – �g�u =

1

2
��u�g – �g�u exp�–i(�1 + �2)  ,

1�+ =
1

2
��u�g + �g�u + �u�g + �g�u = ��u�g + �g�u cos(�1 – �2) ,

3�+ =
1

2
��u�g – �g�u + �u�g – �g�u = ��u�g – �g�u cos(�1 – �2) ,

1�– =
1

2
��u�g + �g�u – �u�g – �g�u = i ��u�g – �g�u sin(�1 – �2) ,

3�– =
1

2
��u�g – �g�u – �u�g + �g�u = i ��u�g + �g�u sin(�1 – �2) ,

(11)

and

�1 � 1

2
��(1) �(2) – �(1)�(2)  � �

�
(�� – ��)

�3
1 = �(1) �(2) � ��,

�3
0 =

1

2
��(1) �(2) + �(1) �(2) � �

�
(�� + ��)

�3
–1 = �(1) �(2) � �� .

(12)

Now the approximate expectation values for the electronic Hamiltonian, correspond-
ing to the wave functions defined by Eqs. (10), will be derived. It is assumed that the contri-
bution from the closed shells is the same in all cases, and that the relative ordering of the
states considered can be obtained by computing the mean value of the Hamiltonian for two
electrons,

H = h1 + h2 +
1

12r
(13)

where h1 and h2 are one-electron operators and r12 is the distance between the electrons 1
and 2. The contribution from the one-electron operators h1 and h2 is for all the present cases
(�u�g configurations)
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< �u�h1/2� �u > + < �g�h1/2� �g > � !u + !g . (14)

The mean values for the two-electron operator 1/r12 are

1�u : Jug + Kug =

1

2 1 2( )� S
"(xA xA � xA xA) – (xA xB � xA xB) + (xA xA � yA yA) – (xA xB � yA yB) +

+ (xA yB � xA yB) – (xA yB � xB yA) #,

3�u : Jug – Kug =
1

2 1 2( )� S
"(xA xA � xB xB) – (xA xB � xA xB) + (xA xA � yB yB) – (xA xB � yA yB) –

– (xA yB � xA yB) + (xA yB � xB yA) #,

1�u
+ : Jug + Kug +

1

1 2� S
�(�u �u � �g �g) + (�u �g � �g �u) =

=
1

1 2� S
"(xA xA � xA xA) – (xA xB � xA xB) + (xA yA � xA yA) – (xA yB � xA yB) #,

3�u
+ : Jug – Kug +

1

1 2� S
�(�u �u � �g �g) – (�u �g � �g �u) =

=
1

1 2� S
"(xA xA � xB xB) – (xA xB � xA xB) + (xA yA � xB yB) – (xA yB � xB yA) #,

1�u
– : Jug + Kug –

1

1 2� S
�(�u �u � �g �g) + (�u �g � �g �u) =

=
1

1 2� S
"(xA xA � yB yB) – (xA xB � yA yB) – (xA yA � xB yB) + (xA yB � xA yB) #,

3�u
– : Jug – Kug –

1

1 2� S
�(�u �u � �g �g) – (�u �g � �g �u) =

=
1

1 2� S
"(xA xA � yA yA) – (xA xB � yA yB) – (xA yA � xA yA) + (xA yB � xB yA) #.

(15)

In Eq. (15), the “chemists’ notation”8 for four-center integrals is employed,

a b* *( ) ( )1 2��
1

12r
c(1) d(2) d�1 d�2 � (a c $ b d), (16)

the Coulomb and exchange integrals are introduced

Jug � (u u � g g), Kug� (u g � g u), Jug� (u u � g g), Kug� (u g � g u) (17)

(where u denotes �u and g �g), and the matrix elements expressed also in terms of the
atomic basis functions.
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The values for the four-center integrals can be estimated by means of the Mulliken
formula9:

(a b�c d) % �
&

Sab Scd �(a a�c c) + (b b�c c) + (a a�d d) + (b b�d d)  , (18)

where Sab and Scd are overlap integrals for the orbitals a, b, and c, d, respectively. An analy-
sis of the expressions (15) leads to the following ordering of the acetylene excited elec-
tronic states in order of increasing energy:

3�u
+, 3�u, 3�u

–, 1�u
–, 1�u, 1�u

+. (19)

All these states except for 1�u
+ (lying at very high energy) represent the lowest-lying

excited species of the acetylene molecule.
The excited electronic states corresponding to the �u

3�g electronic configurations are
followed by a series of Rydberg-type states arising by excitations out of the �u orbital into
the orbitals involving the Rydberg AOs. The energy positions of these species generally
match very reasonably the formula

TR = IP – R/(n – �)2 (20)

where TR is the term value of the state in question, IP the ionization potential of the mole-
cule (11.4 eV), R the Rydberg constant, n the principal quantum number of the Rydberg
state, and � the quantum defect (usually assumed to be � = 1.0 for s series, � = 0.4/0.5 for p,
and � = 0.0/0.1 for d states). The only exception represent the lowest-lying states of both
singlet and triplet multiplicity (corresponding to the 1�u '3sR electron excitation) the ver-
tical energies of which differ significantly from those obtained by means of formula 20, in-
dicating that these species are of mixed Rydberg-valence character. The Rydberg states of
acetylene converge towards the ground state, X 2�u, of the C2H2

+ ion.

TRANS-BENDING POTENTIAL CURVES

At trans-bent nuclear arrangements (point group C2h), the �u and �g orbitals split into
3bu + 1au and 4ag + 1bg, respectively. One-electron excitations out of 3bu (�bu) or 1au
(�au) into 4ag (�ag) or 1bg (�bg) lead to the electronic species represented by the following
sixteen Slater determinants

D1
T = �au �, ag ��, D2

T = �au �, ag ��( D3
T = �au �, bg ��, D4

T = �au �, bg ��,

D5
T = �au �, ag ��, D6

T = �au �, ag ��, D7
T = �au �, bg ��, D8

T = �au �, bg ��,

D9
T = �bu �, ag ��, D10

T = �bu �, ag ��, D11
T = �bu �, bg ��, D12

T = �bu �, bg ��,

D13
T = �bu �, ag ��, D14

T = �bu �, ag ��, D15
T = �bu �, bg ��, D16

T = �bu �, bg ��.

(21)

These Slater determinants are combined into “spectroscopically correct” electronic
states, i.e., species being eigenfunctions of the spin operators S2 and Sz and belonging to a
particular irrep of the C2h point group as
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1 1Au =
1

2
(D2

T – D5
T) =

1

2
(auag + agau) �1,

2 1Au =
1

2
(D12

T – D15
T) =

1

2
(bubg + bgbu) �1;

1 3Au (Ms = 1) = D1
T =

1

2
(auag – agau) �1

3,

1 3Au (Ms = 0) =
1

2
(D2

T + D5
T) =

1

2
(auag – agau) �0

3,

1 3Au (Ms = –1) = D6
T =

1

2
(auag – agau) �–1

3;

2 3Au (Ms = 1) = D11
T =

1

2
(bubg – bgbu) �1

3,

2 3Au (Ms = 0) =
1

2
(D12

T + D15
T) =

1

2
(bubg – bgbu) �0

3,

2 3Au (Ms = –1) = D16
T =

1

2
(bubg – bgbu) �–1

3,

1 1Bu =
1

2
(D4

T – D7
T) =

1

2
(aubg + bgau) �1,

2 1Bu =
1

2
(D10

T – D13
T) =

1

2
(buag + agbu) �1,

1 3Bu (Ms = 1) = D3
T =

1

2
(aubg – bgau) �1

3,

1 3Bu (Ms = 0) =
1

2
(D4

T + D7
T) =

1

2
(aubg – bgau) �0

3;

1 3Bu (Ms = –1) = D8
T = (aubg – bgau) �–1

3,

2 3Bu (Ms = 1) = D9
T =

1

2
(buag – agbu) �1

3,

2 3Bu (Ms = 0) =
1

2
(D10

T + D13
T) =

1

2
(buag – agbu) �0

3,

2 3Bu (Ms = –1) = D14
T =

1

2
(buag – agbu) �–1

3.

(22)

The MOs in the D�(h point group are connected with their C2h counterparts by the re-
lations

�u =
1

2
(bu + i au), �u =

1

2
(bu – i au),

�u =
1

2
(ag + i bg), �u =

1

2
(ag – i bg).

(23)
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By using (23), the correlation between the electronic states of the two point groups
considered can be derived. It reads

1

2
(1�u + 1�u) ' 1

2
(21Bu – 11Bu),

1

2
(1�u – 1�u) ' i

2
(21Au – 11Au),

1

2
(3�u + 3�u) ' 1

2
(13Bu – 23Bu),

1

2
(3�u – 3�u) ' i

2
(23Au + 13Au),

1�u
+ ' 1

2
(21Bu + 11Bu),

1�u
– ' i

2
(11Au – 21Au),

3�u
+ ' 1

2
(13Bu – 23Bu),

3�u
– ' i

2
(13Au – 23Au).

(24)

The geometry of the electronic states of acetylene in terms of the energy change of the
MOs involved in the corresponding wave functions upon trans-bending are now dis-
cussed. Only the singlet electronic states will be considered – the analysis of triplet species
can be carried out in a completely analogous way. At the linear nuclear arrangement, the
electronic configuration of the ground electronic state of acetylene, X1�g

+ is ... �u
4. At

trans-bent geometries it becomes ... 3bu
21au

2. The effect of decreasing the energy of the
3bu

2 orbital upon bending is outweighed by the strong energy increase of the 3ag MO (also
doubly occupied), resulting in a linear equilibrium geometry of the X1�g

+ state. The corre-
lation scheme given by Eqs. (24) shows that the first excited singlet state, 1�u

–, correlates
with the antisymmetric linear combination of the 11Au and 21Au species of the C2h point
group, with coefficients of exactly equal magnitude (1/ 2). However, already at small dis-
tortions from linearity, the 11Au component becomes dominant. The 1�u electronic state of
the linear molecule splits upon bending into a Bu and a Au component (the Renner-Teller
effect10). The Bu component retains also at trans-bent geometries the composition given
by the first of Eqs. (24), on the other hand the 21Au species become dominant in the Au
component of the 1�u state. The composition of the two lowest-lying singlet electronic
states of Au symmetry can be interpreted as mixing of the 1�u

– and 1�u states at trans-bent
geometries. The mixing between the Bu component of the 1�u state and the species of the
same symmetry (Bu) correlating with the 1�u

+ state of the linear molecule is not significant
(at least at small distortions from linearity), because of a relatively large energy difference
between the 1�u

+ and 1�u states.
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The fact that the state correlating with 1�u
– (see Eqs. (22)) corresponds to the excita-

tion from the 1au orbital, the energy of which does not change significantly upon bending,
into 4ag, being stabilized at bent geometries (see Fig. 1a), has as a consequence the geome-
try of this electronic state being bent at equilibrium. On the other hand, the Au component
of the 1�u state corresponds to the excitation from the 3bu orbital, the energy of which de-
creases upon bending, into 1bg, with an energy practically independent of variation in the
geometry; this leads to a continuous increase of the energy for the electronic state in ques-
tion with increasing distortion from linearity. The other component of the 1�u state (of Bu
symmetry) is described by two leading configurations corresponding to 3bu ' 4ag, 1au'
1bg excitations with respect to the ground state. Inspection of Fig. 1a shows that it is diffi-
cult to predict precisely whether linear or bent geometry will be preferred by an electronic
state of such a composition; the results of explicit ab initio computations (Fig. 2, Refs.
11–13) show that it is non-linear, but with a very flat potential curve.

Rydberg electronic states arise by excitations out of the orbitals 1au and 3bu, correlat-
ing with �u, into the MOs involving Rydberg-type AOs. Since the latter show negligible
dependence on the molecular geometry, all Rydberg states possess linear equilibrium ge-
ometry. The states arising by excitations out of the 1au MO lie below those corresponding
to excitations from its lower-energy counterpart 3bu, as, for example, the Au component of
the first singlet Rydberg state, 11�u �1au' 3sR(ag) excitation with respect to the Bu com-
ponent �3bu ' 3sR(ag) excitation of the same state (see Fig. 2).

376 JEROSIMI] and PERI]

Fig. 2. Trans (left-hand side) and cis-
(right-hand side) bending potential cur-
ves for singlet electronic states of acety-
lene. Solid lines: states Ag (C2h point
group) and A1 (C2� group) symmetry;
dotted lines Au and A2 states; dashed
lines Bg and B1; dash-dotted lines: Bu and
B2 species.



CIS-BENDING POTENTIAL CURVES

At cis-bent molecular geometries (point group C2�), the �u and �g orbitals split into
1b1+4a1 and 3b2+1a2, respectively. One-electron excitations out of 1b1 (�b1) or 4a1(�a1)
into 3b2 (�b2) or 1a2 (�a2) lead to the electronic species represented by the following six-
teen Slater determinants

D1
C = �a1 �, b2 ��, D2

C = �a1 �, b2 ��, D3
C = �a1 �, a2 ��, D4

C = �a1 �, a2 ��,
D5

C = �a1 �, b2 ��, D6
C = �a1 �, b2 ��, D7

C = �a1 �, a2 ��, D8
C = �a1 �, a2 ��,

D9
C = �b1 �, b2 ��, D10

C = �b1 �, b2 ��, D11
C = �b1 �, a2 ��, D12

C = �b1 �, a2 ��,
D13

C = �b1 �, b2 ��, D14
C = �b1 �, b2 ��, D15

C = �b1 �, a2 ��, D16
C = �b1 �, a2 ��.

(25)

The spectroscopic states built by linear combinations of the determinants (25) are

1 1A2 =
1

2
(D4

C – D7
C) =

1

2
(a1a2 + a2a1) �1,

2 1A2 =
1

2
(D10

C – D13
C) =

1

2
(b1b2 + b2b1) �1;

1 3A2 (Ms = 1) = D3
C =

1

2
(a1a2 – a2a1) �1

3,

1 3A2 (Ms = 0) =
1

2
(D4

C – D7
C) =

1

2
(a1a2 – a2a1) �0

3,

1 3A2 (Ms = –1) = D8
C =

1

2
(a1a2 – a2a1) �–1

3;

2 3A2 (Ms = 1) = D9
C =

1

2
(b1b2 – b2b1) �1

3,

2 3A2 (Ms = 0) =
1

2
(D10

C + D13
C) =

1

2
(b1b2 – b2b1) �0

3,

2 3A2 (Ms = –1) = D14
C =

1

2
(b1b2 – b2b1) �–1

3,

1 1B2 =
1

2
(D2

C – D5
C) =

1

2
(a1b2 + b2a1) �1,

2 1B2 =
1

2
(D12

C – D15
C) =

1

2
(b1a2 + a2b1) �1,

1 3B2 (Ms = 1) = D1
C =

1

2
(a1b2 – b2a1) �1

3;

1 3B2 (Ms = 0) =
1

2
(D2

C + D5
C) =

1

2
(a1b2 – b2a1) �0

3;

1 3B2 (Ms = –1) = D6
C = (a1b2 – b2a1) �–1

3;

2 3B2 (Ms = 1) = D11
C =

1

2
(b1a2 – a2b1) �1

3;

2 3B2 (Ms = 0) =
1

2
(D12

C + D15
C) =

1

2
(b1a2 – a2b1) �0

3;

2 3B2 (Ms = –1) = D16
C =

1

2
(b1a2 – a2b1) �–1

3.

(26)
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The MOs in the D�h point group are connected with those of the C2h by the relations

�u =
1

2
(a1 + i b1) , �u =

1

2
(a1 – i b1)

�g =
1

2
(b2 + i a2) , �g =

1

2
(b2 – i a2).

(27)

The states of the D�h and C2� point groups correlate with one another in the following
way:

1

2
(1�u + 1�u) ' 1

2
(11B2 – 21B2),

1

2
(1�u – 1�u) ' i

2
(21A2 + 11A2),

1

2
(3�u + 3�u) ' 1

2
(13B2 – 23B2),

1

2
(3�u – 3�u) ' i

2
(23A2 + 13A2),

1�u
+ ' 1

2
(21B2 + 11B2),

1�u
– ' i

2
(11A2 – 21A2),

3�u
+ ' 1

2
(13B2 + 23B2),

3�u
– ' i

2
(13A2 – 23A2).

(28)

Again only singlet electronic states will be discussed. The energy of the state correlat-
ing with the X 1�g

+ linear species, ... 1b1
24a2

2, increases upon cis-bending. In analogy with
the situation at trans-bending, the first excited singlet state (1�u

– at linear geometry) is at
cis-bent geometries predominantly described by the single 11A2 wave function (1b1'3b2
excitation with respect to the ground state), and the component of the 1�u state of the same
symmetry by 21A2 (4b1'1a2 excitation). The other 1�u component (of B2 symmetry) re-
tains the composition it has at linear geometry (4a1'3b2, 1b1'1a2). Reasoning analo-
gous to that carried out for trans-bending leads to the conclusion that the first singlet state
of A2 symmetry (correlating with 1�u

–) has bent equilibrium geometry, while the second
A2 species (which correlates with 1�u) prefers linear geometry. The lowest-lying B1 state
(the other 1�u component) is slightly non-linear, like its Bu trans-planar counterpart. All
Rydberg-type species are predicted to be more stable at linear geometry than at cis-planar
nuclear arrangements.
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TORSIONAL POTENTIAL CURVES

The dependence of the energy of the MOs on the torsional angle, presented in Fig. 1b,
is directly reflected in the form of the potential curves for torsional motion. The low-
est-energy potential curve corresponds to the electronic configuration ... 3b2 4a2, 11A. This
state corresponds at trans-planar geometry to 11Ag and at cis-planar nuclear arrangement
to 11A1, both of these species correlating with the X1�g

+ state of the linear molecule. A
consequence of the very weak torsional dependence of all the MOs involved in the wave
function of the 11A state is that the corresponding potential curve has the form of a nearly
straight line. On the other hand, the composition and energy of the next two 1A electronic
states in order of increasing energy show dramatic changes upon torsion. The lower-energy
one of them correlates at trans-planar geometry with the ... 3bu

2 1au 4ag, 11Au species and
at cis-planar geometry with ... 1b1 4a1

2 3b2, 11A2. This means that at large values of the
torsional angle � (i.e., at relatively small torsional distortions with respect to the trans-pla-
nar geometry) the electronic configuration for the 21A electronic state is ... 3b2 4a 5a
(4a'5a electronic excitation with respect to the 11A state), and at small � values (nearly
cis-planar geometry) it is ... 3b 4a2 4b (3b'4b electronic excitation with respect to the 11A
state). This change in the composition of the wave functions for the 21A adiabatic state is
easily understandable in terms of the MO diagram presented in Fig. 1b: At large � values,
the 4a'5a excitation is energetically more favorable than 3b'4b, while the situation is
opposite for small values of �. The behavior of the 31A state is complemental to that of its
21Acounterpart. This leads to an “avoided crossing” of the 21Aand 31Aadiabatic potential

ELECTRONIC STATES OF ACETYLENE 379
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bond angle of 120º (central part of the figure). On the left-hand side of the figure the trans-bending curves
for the interval of � H–C–C values between 180º (linear geometry) and 120º is reproduced. Right-hand

side: cis-bending curves.



curves and consequently to a potential barrier for the 21A state at � % �/4. On the other
hand, the torsional potential curve for the 11B state, connecting with each other the 11Bu
(C2h geometry) and 11B2 (C2�) states, has a relatively monotonous form. This concerns
also all the Rydberg-type electronic states. In Fig. 3 are displayed the ab initio computed
torsional curves for the 21A, 31A and 11B electronic states.12 They confirm the above analy-
sis. It should be noted, however, that ab initio calculations showed that the electronic states
in question are at non-planar geometries appreciably admixed by Rydberg-type MOs.

ELECTRONIC SPECTRA OF ACETYLENE

At linear nuclear arrangement, representing the equilibrium geometry of the ground
state X1�g

+ of acetylene, electronic transitions to all low-lying valence-type excited states
3�u

+, 3�u, 3�u
–, 1�u

–and 1�u are forbidden. The lowest-energy dipole allowed transition in
absorption involves the first member of the singlet Rydberg series, 1�u(3sR). For this rea-
son the majority of the experimental studies have been devoted to the investigation of the
Rydberg spectrum of acetylene (for a historical overview see Ref. 13). However, when the
linear molecular geometry is distorted, many of the “vertically forbidden” transitions be-
come allowed. The first excited singlet state (1�u

– at linear geometry) correlates with the
11Au species at C2h geometry and with 11A2 at C2�. While the electronic transition from
the ground state (11Ag at C2h, 11A1 at C2�) to the latter species remains forbidden, the
11Ag ' 11Au transition at trans-planar geometry is allowed. However, such a “non-ver-
tical” transition is of low intensity.14–16 The spectrum arising from a transition into the
11Bu state, correlating at the linear geometry with 1�u has also been observed.17–19 It is
possible that some of the features ascribed to this spectrum originate from the transition
into the B2 component of the 1�u state (see, e.g., Ref. 12). On the other hand, the transition
from the ground state into the A2 component of 1�u is forbidden, and the spectrum involv-
ing the Au component of 1�u, preferring linear geometry, should be extremely weak.

CONCLUSION

In the present study it has been shown that all the global features of the electronic
spectra of acetylene can be reproduced by means of the group theory, combined with ele-
mentary quantum chemical considerations, based ultimately on an inspection of the com-
position of a set of low-energy molecular orbitals. The reliability of this analysis is con-
firmed by comparison with the results of explicit ab initio calculations on the same sys-
tem,11,12 as well as with the available experimental findings. Moreover, with minor modi-
fications, this approach can be used to predict the structure of spectra for a number of re-
lated species, for example C2H2

+, B2H2, B2H2
+, as documented in Ref. 13.
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Elektronska stawa molekula acetilena klasifikovana su kori{}ewem teorije grupa u
kombinaciji sa Vol{ovim dijagramima i nekim elementarnim kvantnohemijskim razma-
trawima. Pokazano je da se globalna struktura elektronskog spektra mo`e reprodukova-
ti/predvideti i bez detaqnih kvantnohemijskih ra~una.
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