Hyper-Wiener index and Laplacian spectrum

IVAN GUTMAN*

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and Montenegro
(Received 7 July 2003)
Abstract: The hyper-Wiener index $W W W$ of a chemical tree T is defined as the sum of the product $n_{1} n_{2} n_{3}$, over all pairs u, v of vertices of T, where n_{1} and n_{2} are the number of vertices of T, lying on the two sides of the path which connects u and v, and n_{3} is the number of vertices lying between u and v. An expression enabling the calculation of $W W W$ from the Laplacian eigenvalues of T has been deduced.

Keywords: hyper-Wiener index, Wiener index, Laplacian spectrum, chemical trees, alkanes.
In the preceding paper ${ }^{1}$ a new modification of the hyper-Wiener index, denoted as $W W W$, was put forward. It was demonstrated ${ }^{1}$ that the $W W W$ has certain advantages over the original hyper-Wiener index ${ }^{2} W W$, and relations between $W W W$ and $W W$ were established. In this note it will be shown how the $W W W$ can be computed from the Laplacian eigenvalues of the underlying molecular graph.

The Laplacian graph spectral theory has found recently many chemical applications, see, for instance, the papers ${ }^{3-11}$ and the references quoted therein. Details of this theory can be found in several reviews. ${ }^{12-15}$

The Laplacian matrix $L(G)$ of a graph G with n vertices, $v_{1}, v_{2}, \ldots v_{n}$, is a square matrix of order n whose (i, j)-entry is defined as
$L(G)_{i j}= \begin{cases}\delta_{i} & \text { if } i=j \\ -1 & \text { if the vertices } v_{i} \text { and } v_{j} \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}$
where δ_{i} denotes the degree (= number of first neighbors) of the i-th vertex of G. The eigenvalues of the Laplacian matrix, denoted by $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, are said to be the Laplacian eigenvalues of the graph G and to form its Laplacian spectrum.

The Laplacian eigenvalues are labeled so that

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \mu_{n}
$$

Then for all graphs, $\mu_{n}=0$, and for connected graphs (among which are all molecular graphs), $\mu_{n-1}>0$.

* Serbian Chemical Society active member.

The Laplacian characteristic polynomial is $\psi(G, x)=\operatorname{det}[x I-L(G)]$. It can be written in the coefficient form as:

$$
\psi(G, x)=\sum_{k=0}^{n-1}(-1)^{k} c_{k} x^{n-k}
$$

According to the Kel'mans theorem, $3,8,16,17$ the k-th coefficient of the Laplacian polynomial can be computed from the structure of the graph G by means of the formula

$$
c_{k}=\sum_{F} \Gamma(F)
$$

where the summation goes over all spanning forests F of G, possessing k disconnected components, and where $\Gamma(F)$ is equal to the product of the number of vertices of the components of F. In the case of a tree T, the straightforward application of the Kel'mans theorem gives:

$$
\begin{align*}
& c_{n}=0 \\
& c_{n-1}=n \\
& c_{n-2}=\sum_{a d j} n_{1} n_{2} \\
& c_{n-3}=\sum_{u, v} n_{1} n_{2} n_{3} \tag{1}
\end{align*}
$$

where the notation is same as in the preceding paper. ${ }^{1}$ Thus, it can immediately be realized that:

$$
\begin{align*}
& c_{n-2}=W(T) \tag{2}\\
& c_{n-3}=W W W(T) \tag{3}
\end{align*}
$$

Using the Vieta identities and bearing in mind that $\mu_{n}=0$, the coefficients c_{n-1}, c_{n-2}, and c_{n-3} are expressed in terms of Laplacian eigenvalues as:

$$
\begin{aligned}
& c_{n-1}=\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n-1} \\
& c_{n-2}=\sum_{i} \mu_{1} \times \mu_{2} \times \ldots \times \mu_{i-1} \times \mu_{i+1} \times \ldots \times \mu_{n-1} \\
& c_{n-3}=\sum_{i<j} \mu_{1} \times \mu_{2} \times \ldots \times \mu_{i-1} \times \mu_{i+1} \times \ldots \times \mu_{j-1} \times \mu_{j+1} \times \ldots \times \mu_{n-1}
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& c_{n-1}=\prod_{k} \mu_{k} \\
& c_{n-2}=\left(\prod_{k} \mu_{k}\right)\left(\sum_{i} \frac{1}{\mu_{i}}\right) \\
& c_{n-3}=\left(\prod_{k} \mu_{k}\right)\left(\sum_{i<j} \frac{1}{\mu_{i} \mu_{j}}\right)
\end{aligned}
$$

Combining the latter identities with Eqs. (1)-(3), one obtains:

$$
\begin{align*}
W(T) & =n \sum_{i=1}^{n-1} \frac{1}{\mu_{i}} \tag{4}\\
W W W(T) & =n \sum_{i<j} \frac{1}{\mu_{i} \mu_{j}} \tag{5}
\end{align*}
$$

Formula (4), which is an expression for the Wiener index in terms of Laplacian eigenvalues, is a previously known result. ${ }^{3,4}$ The analogous formula (5) is being reported here for the first time. It can be simplified as:

$$
\begin{aligned}
W W W(T) & =\frac{n}{2}\left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \frac{1}{\mu_{i} \mu_{j}}-\sum_{i=1}^{n-1} \frac{1}{\left(\mu_{i}\right)^{2}}\right) \\
& =\frac{n}{2}\left[\left(\sum_{i=1}^{n-1} \frac{1}{\mu_{i}}\right)\left(\sum_{j=1}^{n-1} \frac{1}{\mu_{j}}\right)-\sum_{i=1}^{n-1} \frac{1}{\left(\mu_{i}\right)^{2}}\right] \\
& =\frac{n}{2}\left[\left(\frac{W(T)}{n}\right)^{2}-\sum_{i=1}^{n-1} \frac{1}{\left(\mu_{i}\right)^{2}}\right]
\end{aligned}
$$

which finally results in the identity:

$$
\begin{equation*}
W W W(T)=\frac{W(T)}{2 n}-\frac{n}{2} \sum_{i=1}^{n-1} \frac{1}{\left(\mu_{i}\right)^{2}} \tag{6}
\end{equation*}
$$

Formula (6), combined with (4), is particularly suitable for computer-aided numerical calculation of the hyper-Wiener index. All the results reported in the preceding work ${ }^{1}$ were obtained by means of this formula.

Acknowledgement: The autor thanks the Alexander von Humboldt Foundation for financial support in 2003.
ИЗ В О Д

ХИПЕР-ВИНЕРОВ ИНДЕКС И ЛАПЛАСОВ СПЕКТАР

ИВАН ГУТМАН

Природно-майиемайички факулиееие у Краг̄ујевиу
Хипер-Винеров индекс $W W W$ хемијског стабла T дефинисан је као сума производа $n_{1} n_{2} n_{3}$, преко свих парова u, v чворова стабла T, где n_{1} и n_{2} означавају број чворова који леже са две стране пута који повезује u и v, а n_{3} је број чворова између u и v. Добивена је формула која омогућава да се $W W W$ израчуна из Лапласових сопствених вредности стабла T.

REFERENCES

1. I. Gutman, B. Furtula, J. Belić, J. Serb. Chem. Soc. 68 (2003) 941
2. M. Randić, Chem. Phys. Lett. 211 (1993) 478
3. B. Mohar, D. Babić, N. Trinajstić, J. Chem. Inf. Comput. Sci. 33 (1993) 153
4. I. Gutman, S. L. Lee, C. H. Chu, Y. L. Luo, Indian J. Chem. 33A (1994) 603
5. C. D. Godsil, I. Gutman, ACH Models Chem. 136 (1999) 503
6. I. Gutman, V. Gineityte, M. Lepović, M. Petrović, J. Serb. Chem. Soc. 64 (1999) 673
7. I. Gutman, D. Vidović, D. Stevanović, J. Serb. Chem. Soc. 67 (2002) 407
8. I. Gutman, D. Vidović, B. Furtula, Indian J. Chem. 42A (2003) 1272
9. I. Gutman, MATCH Commun. Math. Comput. Chem. 47 (2003) 133
10. W. Xiao, I. Gutman, MATCH Commun. Math. Comput. Chem. 49 (2003) 67
11. W. Xiao, I. Gutman, Theor. Chem. Acc., 110 (2003) 284
12. R. Grone, R. Merris, V. S. Sunder, SIAM J. Matrix Anal. Appl. 11 (1990) 218
13. R. Grone, R. Merris, SIAM J. Discr. Math. 7 (1994) 221
14. R. Merris, Lin. Algebra Appl. 197 (1994) 143
15. R. Merris, Lin. Multilin. Algebra 39 (1995) 19
16. D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980
17. M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova, Huntington, 2001.
