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If Gisamolecular graphand A, Ay, ... A, are its eigenvalues, then the energy of G
is equal to E(G) = [Ai|+ |Agl+ ... + [A,]. This energy cannot exceed the value ri \/n — 1 =
n3'2_The graph G is said to be hyperenergetic if E(G) > 2n — 2. We describe the construc-
tion of hyperenergetic graphs G for which E(G) = 1/2 n32,
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INTRODUCTION

Motivated by Monte Carlo studies! on the dependence of the average energy
of a graph G on the parameters n (= the number of vertices of G) and m (= the num-
ber of edges of G), the concept of hyperenergetic graphs was put forward in arecent
work.2 The energy of a graph G with n vertices is defined as

E=EG)=Y A (1)
i=l
where A, i = 1,2, ..., n, are the eigenvalues of G; for more details see Ref. 2 and the
references quoted therein. A graph is said to be hyperenergetic if its energy, E, ex-
ceeds the energy of the complete graph with an equal number of vertices, i.e., if E>
2n-2. '

It seems that no molecular graph representing a conjugated n-electron system
is hyperenergetic. However, it was recently demonstrated2-3 that certain inorganic
cluster graphs are hyperenergetic.

By generating, uniformly at random, (labeled) graphs with n vertices and m
edges, it was possible to establish! the (1, m)-dependence of the average graph en-
ergy. Thus, if for a fixed value of n, n>10, edges are added one-by-one at random,
starting with » isolated vertices and ending with the complete graph, the average en-
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ergy increases, attains a maximum and then decreases. The maximal average en-
ergy was shown to increase as n.1-3 This analysis! indicated that amongst graphs
with large numbers of edges, hyperenergetic graphs are frequently encountered.
For an illustration see Fig. 1. '
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Fig. 1. The dependence of the average energy <E> of graphs with n = 30 vertices on m = number of
edges; energies above the horizontal line correspond to hyperenergetic graphs.

The next step in the study of this problem would be to find hyperenergetic

graphs with very large energies, and if possible to find the n-vertex graph(s) with

maximal energy. In connection with this it should be noted that from the McClelland

inequality*
E < 2mn

and the fact that the maximal number of edges in an n-vertex graph is n(n — 1)/2 it

immediately follows that
E<n \/ﬁ (2)

Hence, the maximal energy for an n-vertex graph cannot exceed n./n—1 = n3/2.

A CLASS OF HYPERENERGETIC GRAPHS WITH E ~ 1/2 n3?2

A graph s said to be regular of degree rif each one of its vertices has degree (=
number of adjacent vertices) equal to . If a graph is regular it is said to be strongly
regular if any two of'its adjacent vertices are mutually adjacent to an equal number
(say x) of other vertices, and if any two of its nonadjacent vertices are mutually adja-
cent to an equal number (say y) of other vertices.>»¢

Strongly regular graphs have only three distinct eigenvalues, and their spectra
are fully determined by the parameters n, 7, x, .07 Iftn =4t + 1, r=2¢,x=(-l and y= ¢,
where £ is a positive integer (1 = 1, 2, 3, ...), then the spectrum of the corresponding
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strongly regular graph (when it exists) consists of the numbers:
2, —51(1—,/4t+ 1) (2t times); —%(n JAt+ 1)(2t times) ©)

The above described graphs will be denoted by C f= Cf,; within mathematics
these are called conference graphs. There are infinitely many graphs of this kind;
for example, the highly symmetric Paley graphs,>:7:8 three examples of which are
depicted in Fig. 2.

In view of relations (1) and (3), the energy of a conference graph with 47+ 1

Fig. 2. Paley graphs with 5, 9 and 13 vertices; notice the 3-fold symmetry of Cfo and the 13-fold
symmetry of Cfi3.

vertices is equal to

1
E(Cf)=2t+ 2t-|——2—(1—«/4t+ 1)

1
+2t-'—5(1+«/4t+1),

=2t+2t[51(\/m-—1)}+2t|:51(«/m—1+l)}
=2t+2tJ4t+1 '

which results in

ECS,) = El(n—l)(\/;+l) )

It is easy to verify that for n23 the right-hand side of Eq. (4) is greater than
1/2n </n. Thus, C fy, provides an example of a graph whose energy exceeds 1/2n32,
that is, half the McClelland limit (2). At this moment these are the structurally fully

characterized graphs with the highest known E-values.
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DISCUSSION

The hyperenergetic graphs Cf, described in the previous section exist only if
n=4r+1,t=1,2,3,... Yet, the right-hand side of Eq. (4) can be calculated for any
value of n, yielding an estimate of the energy of graphs whose structure does not dif-
fer much from those of conference graphs. These are given in Table 1.

TABLE L The energy E(C f»), calculated according to Eq. (4), and the maximal energy En(max) found
by employing a random graph generator; " note that graphs of the type Cf;, existonly for n=5,9,13,17,
...; the Ex(max)-values for n < 12 are true maxima, whereas for n 213 they are just the maximal ob-
served energies in the computer experiments performed

n E(CL) E, (max)
5 6.4721 8.0000
6 8.6237 10.0000
7 10.9373 12.0000
8 13.3995 14.3253
9 16.0000 17.0600
10 18.7302 20.0000
11 21.5831 229175
12 24.5526 26.0000
13 27.6333 27.7244
14 30.8208 30.3281
15 34.1109 33.3798
16 37.5000 36.3271
17 40.9848 40.0686
18 44.5624 41.9915
19 48.2301

20 51.9853 49.6559
21 55.8258 52.5173
22 59.7494 55.2864
23 63.7542

24 67.8383 62.4321
25 72.0000

26 76.2377 69.9061
27 80.5500

28 84.9353 78.6999
29 89.3923

30 93.9198 85.4227

In general, the energy of the graph C f; is not maximal. Within our Mon-
te-Carlo type construction of (n, m)-graphs (the details of which are described else-
where!) graphs whose energies exceeded those of the conference graphs were en-
countered. The maximal observed graph energies (which need not be the true max-
ima) are also included in Table I.



HYPERENERGETIC GRAPHS 575

Acknowledgements: This work was done while one of the authors (J. H. K.) was visiting Kyushu
University, and he wishes to express his thanks for the hospitality he received there. V. M. thanks the
Swedish National Research Council (NFR) - grant M12342-300 - for its support.

U3BON
JOUI HEKH XUTIEPEHEPTETCKH MOJIEKYJICKH T'PA®OBHU

LUEK X. KOYJIEH", BUHLIEHT MOYJITOH®, UBAH I'YTMAH" u 1Y HIMLIA BYTOBUR"

*Uciipaxueayxa Zpyiia 3a poyece ciieaparsa Clpyxitype, Ynueepauiteid y Buaegpeady, Hemauxa, *Odcer 3a
gpuauxy u mailliematfiuxy, Yrusepauitieiii Cpedre Uaedcke, Cyndceun, laedcxa u Mpupodno-maiiiemaidi Ky
paxyaitietti y Kpaiyjeayy

Heka je G Moaexyncky rpad u HEKA CY A1, A2, ..., Ay IbEFOBE CONCTBEHE BPEJHOCTH.

Euneprujarpada Gje E(G) = Ir]+ [a2 1 +...+ [ anl. OBa enepruja ne Mmoxe 6uru Beha o
nn — 1=n32. 3a rpac xaxeMo ja je xunepeHepreTckH ako je E (G) > 2n — 2. Y oBom pany

OmHCaHa je KOHCTPYKIHja XUIepeHepreTckux rpadhosa 3a Koje je E(G) = 1/2 n32,
(Ipumibeno 4. HopemGpa 1999)
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